首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
剪切波速与地基土的抗剪强度、剪切模量和卓越周期等参数密切相关,是地震安全性评价中判定场地类别的一个主要指标和参数。鉴于海域工程中剪切波速往往难以直接由原位测得,而室内实验结果又常常与野外现场物探测试值存在较大差异,因此,如何通过其他途径有效获取满足工程需要的剪切波速参数在海域工程的地震安全性评价等方面具有迫切的实用需求。为此本文通过对渤海海域数十个石油平台项目中一系列饱和黏性土样品的剪切波速与抗剪强度实验数据的统计分析,尝试采用多种可能的函数来拟合确定二者之间的经验关系。结果表明:对于渤海海域黏性土剪切波速V_s与抗剪强度S_u之间的最佳统计经验关系为幂函数V_s=53.751S_u~(0.376)。此关系可为渤海海域工程中通过不排水抗剪强度估算剪切波速提供一种简便可行的实用性方法。  相似文献   

2.
Cyclic shear response of channel-fill Fraser River Delta silt   总被引:2,自引:0,他引:2  
The cyclic shear response of a channel-fill, low-plastic silt was investigated using constant-volume direct simple shear testing. Silt specimens, initially consolidated to stress levels at or above the preconsolidation stress, displayed cyclic-mobility-type strain development during cyclic loading without static shear stress bias. Liquefaction in the form of strain softening accompanied by loss of shear strength did not manifest regardless of the applied cyclic stress ratio, or the level of induced excess pore water pressure, suggesting that the silt is unlikely to experience flow failure under cyclic loading. The cyclic shear resistance of the silt increased with increasing overconsolidation ratio (OCR) for OCR>1.3. The silt specimens that experienced high equivalent excess cyclic pore water pressure ratios (ru>80%) resulted in considerable volumetric strains (2.5%–5%) during post-cyclic reconsolidation implying potentially significant changes to the particle fabric under cyclic loading.  相似文献   

3.
In the Taiwan region, the empirical spectral models for estimating ground-motion parameters were obtained recently on the basis of recordings of small to moderate (5.0≤ML≤6.5) earthquakes. A large collection of acceleration records from the ML=7.3 Chi-Chi earthquake (21 September, 1999) makes it possible to test the applicability of the established relationships in the case of larger events. The comparison of ground-motion parameters (Fourier amplitude spectra, peak accelerations and response spectra), which were calculated using the models, and the observed data demonstrates that the models could provide an accurate prediction for the case of the Chi-Chi earthquake and the largest aftershocks. However, there are some peculiarities in the ground-motion frequency content and attenuation that, most probably, are caused by the features of the rupture process of the large shallow earthquake source.  相似文献   

4.
Design recommendations for steel plate shear wall (SPSW) systems have recently been introduced into seismic provisions for steel buildings. Response modification (R), overstrength (Ωo), and displacement amplification (Cd) factors for SPSW systems presented in design codes were based on professional experience and judgment. A numerical study has been undertaken to evaluate these factors for SPSW systems. Forty‐four unstiffened SPSW possessing different geometrical characteristics were designed based on the recommendations given in the AISC Seismic Provisions. Bay width, number of stories, story mass, and steel plate thickness were considered as the prime variables that influence the response. Twenty records were selected to include the variability in ground motion characteristics. In order to provide a detailed analysis of the post‐buckling response, three‐dimensional finite element analyses were conducted for the 44 structures subjected to the selected suite of earthquake records. For each structure and earthquake record, two analyses were conducted in which the first includes geometrical nonlinearities and the other includes both geometrical and material nonlinearities, resulting in a total of 1760 time history analyses. In this paper, the details of the design and analysis methodology are given. Based on the analysis results, response modification (R), overstrength (Ωo), and displacement amplification (Cd) factors for SPSW systems are evaluated. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

5.
Fourier-amplitude spectrum is one of the most important parameters describing earthquake ground motion, and it is widely used for strong ground motion prediction and seismic hazard estimation. The relationships between Fourier-acceleration spectra, earthquake magnitude and distance were analysed for different seismic regions (the Caucasus and Taiwan island) on the basis of ground motion recordings of small to moderate (3.5≤ML≤6.5) earthquakes. It has been found that the acceleration spectra of the most significant part of the records, starting from S-wave arrival, can be modelled accurately by the Brune's “ω-squared” point-source model. Parameters of the model are found to be region-dependent. Peak ground accelerations and response spectra for condition of rock sites were calculated using stochastic simulation technique and obtained models of source spectra. The modelled ground-motion parameters are compared with those predicted by recent empirical attenuation relationship for California.  相似文献   

6.
A multi-parametric study of empirical relationships between macroseismic data and magnitude is presented for the Italian region by the analysis of a new extended data set concerning 146 earthquakes. The available magnitude determinations include all of the most intense earthquakes which occurred in Italy in the last century and have been obtained by an accurate revision of original instrumental data. Intensity data have been revised and upgraded on the basis of the most recent studies: only local intensities directly documented have been used. Macroseismic determinations ofM s ,m B andM wa magnitudes have been performed. The empirical relationships between maximum felt intensity (I max ) and magnitude have been determined by the use of a distribution-free approach and a linear regression analysis. This last parameterization allows for the explanation of more than 60% of the variation in magnitude. In order to improve these results, the linear dependence between magnitude,I max and average distances (in logarithm) corresponding to fixed attenuation values has been explored. The comparison between instrumental magnitudes and corresponding macroseismic estimates obtained from empirical relationships shows that the respective uncertainties are comparable.  相似文献   

7.
Estimating ground motions using recorded accelerograms   总被引:1,自引:0,他引:1  
A procedure for estimating ground motions using recorded accelerograms is described. The premise of the study is the assumption that future ground motions will be similar to those observed for similar site and tectonic situations in the past. Direct techniques for scaling existing accelerograms have been developed, based on relative estimates of local magnitude,M L . Design events are described deterministically in terms of fault dimension, tectonic setting (stress drop), fault distance, and site conditions. A combination of empirical and theoretical arguments is used to develop relationships betweenM L and other earthquake magnitude scales. In order to minimize scaling errors due to lack of understanding of the physics of strong ground motion, the procedure employs as few intermediate scaling laws as possible. The procedure conserves a meaningful measure of the uncertainty inherent when predicting ground motions from simple parameterizations of earthquake sources and site conditions.  相似文献   

8.
CPT-based seismic stability assessment of a hazardous waste site   总被引:1,自引:0,他引:1  
In areas of high seismicity, seismic stability often controls hazardous and solid waste landfill closure design. The undrained shear strength (Su) of the waste mass is fundamental to seismic slope stability analyses. The value of Su for hazardous waste fill is often difficult to characterize. The physical and chemical natures of the waste fill typically preclude laboratory testing of the materials. In certain cases, Cone Penetration Test (CPT) soundings can provide a viable technique for evaluation of Su provided that the cone shear strength factor Nk can be established. If hazardous waste materials laboratory testing is not an option, Nk may be evaluated based upon results of non-intrusive in situ testing. This paper presents a case history of the seismic stability assessment of a hazardous waste site in which Nk was established from the results of non-intrusive Spectral Analysis of Surface Waves (SASW) soundings and empirical correlations to shear strength of soils. Generalization of the proposed methodology to other sites should be done with caution owing to variability among the parameters used in the analyses.  相似文献   

9.
The use of regional attenuation in computing the local magnitude, ML, from strong motion data gathered at distances less than 100 km may lead to systematic underestimates approaching 0·5 magnitude units (Trifunac & Herak, Soil Dynamics and Earthquake Engineering, 1992, 18, 229-41). The use of the attenuation law Att(Δ), for example, with synthetic estimates of Wood-Anderson seismometer response, during the Loma Preita earthquake, leads to estimates of ML which agree with the surface wave and moment magnitudes, and which are essentially distance-independent.  相似文献   

10.
Abstract

Abstract Routine estimates of daily incoming solar radiation from the GOES-8 satellite were compared to locally measured values in Florida. Longwave radiation estimates corrected using GOES-derived cloud amount and cloud top temperature products improved net radiation estimates as compared to a clear sky longwave approach. The Penman-Monteith, Turc, Hargreaves and Makkink models were applied using GOES-derived estimates of solar radiation and net radiation to predict daily evapotranspiration and were compared to evapotranspiration measured with an eddy-correlation system in an emergent wetland experimental site in north-central Florida under unstressed conditions. While the Penman-Monteith model provided the best estimates of evapotranspiration (R 2 = 0.92), the empirical Makkink method demonstrated nearly comparable agreement (R 2 = 0.90) using only the GOES solar radiation and measured temperature. The results show that it is possible to generate spatially distributed daily potential evapotranspiration estimates using GOES-derived solar radiation and net radiation with limited additional surface measurements.  相似文献   

11.
A hybrid optimization scheme, comprising a genetic algorithm in series with a local least-squares fit operator, is used for the inversion of weak and strong motion downhole array data obtained by the Kik-Net Strong Motion Network during the Mw7.0 Sanriku-Minami Earthquake. Inversion of low-amplitude waveforms is first employed for the estimation of low-strain dynamic soil properties at five stations. Successively, the frequency-dependent equivalent linear algorithm is used to predict the mainshock site response at these stations, by subjecting the best-fit elastic profiles to the downhole-recorded strong motion. Finally, inversion of the mainshock empirical site response is employed to extract the equivalent linear dynamic soil properties at the same locations. The inversion algorithm is shown to provide robust estimates of the linear and equivalent linear impedance profiles, while the attenuation structures are strongly affected by scattering effects in the near-surficial heterogeneous layers. The forward and inversely estimated equivalent linear shear wave velocity structures are found to be in very good agreement, illustrating that inversion of strong motion site response data may be used for the approximate assessment of nonlinear effects experienced by soil formations during strong motion events.  相似文献   

12.
Three component recordings from an array of five ocean bottom seismographs in the northwestern part of the Vøring basin have been used to obtain a 2-D shear-wave (S-wave) velocity-depth model. The shear waves are identified by means of travel-time differences compared to the compressional (P) waves, and by analyzing their particle motions. The model has been obtained by kinematic (travel-time) ray-tracing modelling of the OBS horizontal components.The shear-wave modelling indicates that mode conversions occur at several high velocity interfaces (sills) in the 4–10 km depth range, previously defined by a compressional-wave velocity-depth model using the same data set.An averageV p /V s ratio of 2.1 is inferred for the layers above the uppermost sill, indicative of both poorly consolidated sediments and a low sand/shale ratio. A significant decrease in theV p /V s ratio (1.7) below the first sill may in part be atributed to well consolidated sediments, and to a change in lithology to more sandy sediments. This layer is interpreted to lie within the lower Cretaceous sequence. At 5–10 km depthV p /V s ratios of 1.85 indicate a lower sand/shale ratio consistent with the expected lithologies. The averageV p /V s ratio inferred for the crust is 1.75, which is consistent with values obtained north of Vøring, in the Lofoten area. An eastward thinning of the crystalline basement is supported by the shear-wave modelling.  相似文献   

13.
This study examined the application of slim-hole nuclear magnetic resonance (NMR) tools to estimate hydraulic conductivity (KNMR) in an unconsolidated aquifer that contains a range of grain sizes (silt to gravel) and high and variable magnetic susceptibilities (MS) (10−4 to 10−2 SI). A K calibration dataset was acquired at 1-m intervals in three fully screened wells, and compared to KNMR estimates using the Schlumberger-Doll research (SDR) equation with published empirical constants developed from previous studies in unconsolidated sediments. While KNMR using published constants was within an order of magnitude of K, the agreement, overprediction, or underprediction of KNMR varied with the MS distribution in each well. An examination of the effects of MS on NMR data and site-specific empirical constants indicated that the exponent on T2ML (n-value in the SDR equation, representing the diffusion regime) was found to have the greatest influence on KNMR estimation accuracy, while NMR porosity did not improve the prediction of K. KNMR was further improved by integrating an MS log into the NMR analyses. A first approach detrended T2ML for the effects of MS prior to calculating KNMR, and a second approach introduced an MS term into the SDR equation. Both were found to produce similar refinements of KNMR in intervals of elevated MS. This study found that low frequency NMR logging with short echo times shows promise for sites with moderate to elevated MS levels, and recommends a workflow that examines parameter relationships and integrates MS logs into the estimation of KNMR.  相似文献   

14.
Contrary to many laboratory investigations, common empirical correlations from in situ tests consider that the increase in the percentage of fines leads to an increase of the cyclic liquefaction resistance of sands. This paper draws upon the integrated Critical State Soil Mechanics framework in order to study this seemingly not univocal effect. Firstly the effect of fines on the Critical State Line (CSL) is studied through a statistical analysis of a large data set of published monotonic triaxial tests. The results show that increasing the content of non-plastic fines practically leads to a clockwise rotation of the CSL in (e–ln p) space. The implication of this effect on cyclic liquefaction resistance is subsequently evaluated with the aid of a properly calibrated critical state elasto-plastic constitutive model, as well as a large number of published experimental results and in situ empirical correlations. Both sets of data show clearly that a fines content, less than about 30% by weight, may prove beneficial at relatively small effective stresses (p0<50–70 kPa), such as the in situ stresses prevailing in most liquefaction case studies, and detrimental at larger confining stresses, i.e. the stresses usually considered in laboratory tests. To the extent of these findings, a correction factor is proposed for the practical evaluation of liquefaction resistance in terms of the fines content and the mean effective confining stress.  相似文献   

15.
In single‐event deterministic design flood estimation methods, estimates of the peak discharge are based on a single and representative catchment response time parameter. In small catchments, a simplified convolution process between a single‐observed hyetograph and hydrograph is generally used to estimate time parameters such as the time to peak (TP), time of concentration (TC), and lag time (TL) to reflect the “observed” catchment response time. However, such simplification is neither practical nor applicable in medium to large heterogeneous catchments, where antecedent moisture from previous rainfall events and spatially non‐uniform rainfall hyetographs can result in multi‐peaked hydrographs. In addition, the paucity of rainfall data at sub‐daily timescales further limits the reliable estimation of catchment responses using observed hyetographs and hydrographs at these catchment scales. This paper presents the development of a new and consistent approach to estimate catchment response times, expressed as the time to peak (TPx) obtained directly from observed streamflow data. The relationships between catchment response time parameters and conceptualised triangular‐shaped hydrograph approximations and linear catchment response functions are investigated in four climatologically regions of South Africa. Flood event characteristics using primary streamflow data from 74 flow‐gauging stations were extracted and analysed to derive unique relationships between peak discharge, baseflow, direct runoff, and catchment response time in terms of TPx. The TPx parameters are estimated from observed streamflow data using three different methods: (a) duration of total net rise of a multipeaked hydrograph, (b) triangular‐shaped direct runoff hydrograph approximations, and (c) linear catchment response functions. The results show that for design hydrology and for the derivation of empirical equations to estimate catchment response times in ungauged catchments, the catchment TPx should be estimated from both the use of an average catchment TPx value computed using either Methods (a) or (b) and a linear catchment response function as used in Method (c). The use of the different methods in combination is not only practical but is also objective and has consistent results.  相似文献   

16.
It is shown that a new definition of MLSM (Trifunac14), which is computed from recorded strong motion earthquake accelerograms, leads to stable and unbiased estimates of the local earthquake magnitude ML (Richter8) for epicentral distance R < 100 km and for 3 MnL < 6.5. Tables of the uniform estimates using this new MLSM are presented for all earthquakes contributing to the current data base of free field strong motion accelerograms in EQINFOS files (Lee and Trifunac6).  相似文献   

17.
北京平原地区VS30估算模型适用性研究   总被引:1,自引:1,他引:0  
本文使用基于钻孔测井数据的3类模型,即常速度外推模型、速度梯度模型、双深度参数外推模型,通过对北京地区460个深度超过30m的钻孔剪切波速资料进行分析,详细探究了VS30估算模型在本研究区的适用性。研究结果表明双深度参数外推模型在估算VS30上准确度很高,其不需要大量的数据进行回归分析,且不具有区域独立性,可以为全球包括北京地区场地类别划分提供依据,进而在震害快速评估中用于确定场地影响,是一种值得推广的估算模型。  相似文献   

18.
The amplitude of vertical ground surface vibrations generated by impact tests on the ground surface was measured at various radial distances from the point of impact at locations of Greece. The results of measurements were analyzed in the frequency domain (in the range from 0–100 Hz) and the attenuation characteristics of soil materials were studied in terms of a frequency-independent attenuation coefficient, a0, of the empirical Bornitz equation. The aim of the study was to investigate the effect of soil stiffness (expressed by the value of low-amplitude shear wave velocity of soil, VSO) on the value of attenuation coefficient, a0. Values of VSO for the tested soils were estimated by applying the methodology of Spectral Analysis of Surface Waves (SASW) technique and utilizing the surface vibration data. An empirical relationship between a0 and VSO1 (VSO1 is the representative value of VSO for the soil profile up to a depth of one wavelength) was established for values of VSO1 ranging from 140 to 1000 m/s. A similar relationship in terms of the low-amplitude shear modulus of soil, GO1, was also established by converting the VSO1 values to GO1 values. The experimental results were compared to values reported in the literature for comparable soil types and frequencies of vibration and a reasonable agreement was found to exist. The proposed empirical relationship can be utilized in many practical applications of soil dynamics requiring the knowledge of the attenuation rate of Rayleigh waves with distance in various types of soils.  相似文献   

19.
Empirical scaling equations for Fourier amplitude spectra of strong ground motion are used to describe A0 and τ in the assumed (high-frequency) shape of strong motion amplitudes: FS(φ) = A0e-πτφ. The res of computed A0 and τ with other related estimates of spectral amplitudes; (2) smooth decay of strong motion spectral amplitudes up to φ = 25 Hz, without an abrupt low-pass filtering of high frequecies; and (3) good agreement with other estimates of the regionally specific attenuation of high-frequncy seismic waves.As the recorded strong earthquake shaking in the western United States typically samples only the shallow (10 km) and local (100km) characteristics of wave attenuation, the processed strong motion accelerograms can be used as the most direct means of describing the nature of the high-frequency attenuation of the entire strong motion signal for use in earthquake engineering applications. Seismological body wave, Lg and coda wave estimates of Q sample different volumes of the crust surrounding the station, and involve different paths of the waves. These differences must be carefully documented and understood before the results can be used in earthquake engineering characterization of strong motion amplitudes.  相似文献   

20.
Flume experiments were conducted using four different gravel beds (D50 + 12–39 mm) and a range of marked particles (10–65 mm). The shear stresses were evaluated from friction velocities, when initial movement of marked particles occurred. Two kinds of equations were produced: first for the threshold of initial movement, and second for generalized movement. Equations of the type 0c + a(Di/D50)b, as proposed by Andrews (1983) are applicable even if the material is relatively well sorted. However, the values of a and b are lower (respectively 0·050 and -0·70) for initial movement. Generalized movement requires a higher shear stress (a + 0·068 and b + -0·80). D90 of the bed material and y0 (the bed roughness parameter) were also used as reference values in place of D50. They produced lower values than in natural streams, mainly owing to the fact that the material used in the flume is better sorted: clusters are less well developed and the bed roughness is lower.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号