首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Målingen structure in Sweden has for a long time been suspected to be the result of an impact; however, no hard evidence, i.e., shock metamorphic features or traces of the impactor, has so far been presented. Here we show that quartz grains displaying planar deformation features (PDFs) oriented along crystallographic planes typical for shock metamorphism are present in drill core samples from the structure. The shocked material was recovered from basement breccias, below the sediment infill, and the distribution of the orientation of the shock‐produced PDFs indicates that the studied material experienced low shock pressures. Based on our findings, we can exclude that the material is transported from the nearby Lockne impact structure, which means that the Målingen structure is a separate impact structure, the seventh confirmed impact structure in Sweden. Furthermore, sedimentological and biostratigraphic aspects of the deposits that fill the depression at Målingen are very similar to features at the Lockne impact structure. This implies a coeval formation age and thus also the confirmation of the first known marine target doublet impact craters on Earth (i.e., the Lockne–Målingen pair).  相似文献   

2.
Abstract— The Middle Ordovician Granby structure in Sweden is generally considered the result of an asteroidal or cometary collision with Earth, although no hard evidence, i.e., shock metamorphic features or traces of the impactor, have been presented to date. In this study, drill core samples of a sedimentary breccia from the Granby structure have been investigated for microscopic shock metamorphic evidence in an attempt to verify the impact genesis of the structure. The finding of multiple sets of decorated planar deformation features (PDFs) in quartz grains in these samples provides unambiguous evidence that the structure is impact derived. Furthermore, the orientation of the PDFs, e.g., ω {101 }, π {101 } and r, z {101 }, is characteristic for impact deformation. The fact that a majority of the PDFs are decorated implies a water‐bearing target. The shocked quartz grains can be divided into two groups; rounded grains found in the breccia matrix likely originated from mature sandstone, and angular grains in fragments from crystalline target rocks. The absence of melt particles provides an estimated maximum shock pressure for the sedimentary derived quartz of 15–20 GPa and the frequency distribution of PDF orientations in the bedrock quartz implies pressures of the order of 10 GPa.  相似文献   

3.
The lower Cambrian Vakkejokk Breccia is a proximal ejecta layer from a shallow marine impact. It is exposed for ~7 km along a steep mountainside in Lapland, northernmost Sweden. In its central parts, the layer is up to ~27 m thick. Here the breccia shows a vertical differentiation into (1) a lower subunit consisting of strongly deformed target sediments mixed with up to decameter size, mainly crystalline basement clasts (i.e., lower polymict breccia [LPB]); (2) a middle subunit consisting of a polymict, blocky to gravelly breccia, commonly graded (i.e., graded polymict breccia [GPB]), that, in turn, is sporadically overlain by (3) a few dm thick, sandy bed (i.e., top sandstone [TS]). Previous work interpreted the graded beds as deposited by resurging water during early crater modification. We made three short (<1.35 m) core drillings through the graded beds. The line‐logging technique previously used on cores from other marine‐target craters was complemented by logging of equal‐sized cells in photos made along the cores. Granulometry and clast lithology determinations provide further evidence for the top beds of the breccia being resurge deposits. However, the magnitude of this resurge can only be assessed by future deep core drilling of the infill of the crater hidden below the mountain.  相似文献   

4.
The ≤27 m thick Vakkejokk Breccia is intercalated in autochthon Lower Cambrian along the Caledonian front north of Lake Torneträsk, Lapland, Sweden. The spectacular breccia is here interpreted as a proximal ejecta layer associated with an impact crater, probably ~2–3 km in size, located below Caledonian overthrusts immediately north of the main breccia section. The impact would have taken place in a shallow‐marine environment ~520 Ma ago. The breccia comprises i) a strongly disturbed lower polymict subunit with occasional, in themselves brecciated, crystalline mega‐clasts locally exceeding 50 m surrounded by contorted sediments; ii) a middle, commonly normally graded, crystalline‐rich, polymict subunit, in turn locally overlain by iii) a thin fine‐grained quartz sandstone, <30 cm thick. The upper sandstone is sporadically either overlain, or replaced, by a conglomerate. In progressively more distal parts of the ejecta layer, the lower subunit is better described as only slightly disturbed strata. The lower subunit is suggested to have formed by ejecta bombardment of the strata surrounding the impact crater, even causing some net outwards mobilization of the sediments. The middle subunit and the uppermost quartz sandstone are considered resurge deposits. The top conglomerate may be caused by subsequent wave reworking and slumping of material from the elevated rim. Quartz grains showing planar deformation features are present in the graded polymict subunit and the upper sandstone, that is, the inferred resurge deposits.  相似文献   

5.
Abstract– Although the meteorite impact origin of the Keurusselkä impact structure (central Finland) has been established on the basis of the occurrence of shatter cones, no detailed microscopic examination of the impactites from this structure has so far been made. Previous microscope investigations of in situ rocks did not yield any firm evidence of shock features (Raiskila et al. 2008; Kinnunen and Hietala 2009). We have carried out microscopic observations on petrographic thin sections from seven in situ shatter cone samples and report here the discovery of planar fractures (PFs) and planar deformation features (PDFs) in quartz and feldspar grains. The detection and characterization of microscopic shock metamorphic features in the investigated samples substantiates a meteorite impact origin for the Keurusselkä structure. The crystallographic orientations of 372 PDF sets in 276 quartz grains were measured, using a universal stage (U‐stage) microscope, for five of the seven distinct shatter cone samples. Based on our U‐stage results, we estimate that investigated shatter cone samples from the Keurusselkä structure have experienced peak shock pressures from approximately 2 GPa to slightly less than 20 GPa for the more heavily shocked samples. The decoration of most of the PDFs with fluid inclusions also indicates that these originally amorphous shock features were altered by postimpact processes. Finally, our field observations indicate that the exposed surface corresponds to the crater floor; it is, however, difficult to estimate the exact diameter of the structure and the precise amount of material that has been eroded since its formation.  相似文献   

6.
Yallalie is a ~12 km diameter circular structure located ~200 km north of Perth, Australia. Previous studies have proposed that the buried structure is a complex impact crater based on geophysical data. Allochthonous breccia exposed near the structure has previously been interpreted as proximal impact ejecta; however, no diagnostic indicators of shock metamorphism have been found. Here we report multiple (27) shocked quartz grains containing planar fractures (PFs) and planar deformation features (PDFs) in the breccia. The PFs occur in up to five sets per grain, while the PDFs occur in up to four sets per grain. Universal stage measurements of all 27 shocked quartz grains confirms that the planar microstructures occur in known crystallographic orientations in quartz corresponding to shock compression from 5 to 20 GPa. Proximity to the buried structure (~4 km) and occurrence of shocked quartz indicates that the breccia represents either primary or reworked ejecta. Ejecta distribution simulated using iSALE hydrocode predicts the same distribution of shock levels at the site as those found in the breccia, which supports a primary ejecta interpretation, although local reworking cannot be excluded. The Yallalie impact event is stratigraphically constrained to have occurred in the interval from 89.8 to 83.6 Ma based on the occurrence of Coniacian clasts in the breccia and undisturbed overlying Santonian to Campanian sedimentary rocks. Yallalie is thus the first confirmed Upper Cretaceous impact structure in Australia.  相似文献   

7.
Abstract— The distribution of sediment‐dispersed extraterrestrial chromite grains and other Cr‐rich spinels (>63 μm) has been studied in Middle Ordovician Orthoceratite Limestone from two quarries at Kinnekulle, southern Sweden. In the Thorsberg quarry, an ?3.2 m thick sequence of beds previously shown to be rich in fossil meteorites is also rich in sediment‐dispersed extraterrestrial chromite grains. Typically, 1–3 grains are found per kilogram of limestone. In the nearby Hällekis quarry, the same beds show similarly high concentrations of extraterrestrial chromite grains, but in samples representing the 9 m downward continuation of the section exposed at this site, only 5 such grains were found in a total of 379 kg of limestone. The extraterrestrial (equilibrated ordinary chondritic) chromite grains can be readily distinguished by a homogeneous and characteristic major element chemistry, including 2.0–3.5 wt% TiO2 and stable V2O3 concentrations close to 0.7 wt%. Terrestrial Cr‐rich spinels have a wide compositional range and co‐exist with extraterrestrial chromite in some beds. These grains may be derived, for example, from mafic dykes exposed and weathered at the sea floor. Considering lithologic and stratigraphic aspects variations in sedimentation rate cannot explain the dramatic increase in extraterrestrial chromite seen in the upper part of the composite section studied. Instead, the difference may be primarily related to an increase in the ancient flux of extraterrestrial matter to Earth in connection with the disruption of the L chondrite parent body in the asteroid belt at about this time. The coexistence in some beds of high concentrations of chondritic chromite and terrestrial Cr‐rich spinels, however, indicates that redistribution of heavy minerals on the sea floor, related to changes in sea level and sea‐floor erosion and currents, must also be considered.  相似文献   

8.
Shock metamorphic features at the Saarijärvi (D > 2 km) and Söderfjärden (D = 6.5 km) structures in Finland have so far only been studied tentatively, although both are considered to be proven impact structures. This work presents the first detailed universal stage study of planar deformation features (PDFs), feather feature lamellae (FFL), and planar fractures (PFs) in quartz grains from a polymict impact breccia dike from Söderfjärden, and from sedimentary crater‐fill rocks from Saarijärvi. Planar microstructures, particularly PDFs, are very rare and poorly developed or preserved in Saarijärvi, whereas in Söderfjärden they are much more common and well defined. Miller–Bravais indices of the planar microstructures in both Saarijärvi and Söderfjärden are indicative of relatively low‐shock pressure but high shear conditions, only compatible with an impact origin for these structures. Although a Proterozoic age for Saarijärvi cannot be ruled out, the observations of shock features throughout the sedimentary crater‐fill sequence and a brecciated sedimentary dike below the crater floor are more consistent with a Lower Cambrian (or younger) impact age.  相似文献   

9.
Libyan Desert Glass (LDG) is an enigmatic natural glass, about 28.5 million years old, which occurs on the floor of corridors between sand dunes of the southwestern corner of the Great Sand Sea in western Egypt, near the Libyan border. The glass occurs as centimeter‐ to decimeter‐sized, irregularly shaped, and strongly wind‐eroded pieces. The origin of the LDG has been the subject of much debate since its discovery, and a variety of exotic processes were suggested, including a hydrothermal sol‐gel process or a lunar volcanic source. However, evidence of an impact origin of these glasses included the presence of schlieren and partly or completely digested minerals, such as lechatelierite, baddeleyite (a high‐T breakdown product of zircon), and the presence of a meteoritic component in some of the glass samples. The source material of the glass remains an open question. Geochemical data indicate that neither the local sands nor sandstones from various sources in the region are good candidates to be the sole precursors of the LDG. No detailed studies of all local rocks exist, though. There are some chemical and isotopic similarity to rocks from the BP and Oasis impact structures in Libya, but no further evidence for a link between these structures and LDG was found so far. These complications and the lack of a crater structure in the area of the LDG strewn field have rendered an origin by airburst‐induced melting of surface rocks as a much‐discussed alternative. About 20 years ago, a few shocked quartz‐bearing breccias (float samples) were found in the LDG strewn field. To study this question further, several basement rock outcrops in the LDG area were sampled during three expeditions in the area. Here we report on the discovery of shock‐produced planar microdeformation features, namely planar fractures (PFs), planar deformation features (PDFs), and feather features (FFs), in quartz grains from bedrock samples. Our observations show that the investigated samples were shocked to moderate pressure, of at least 16 GPa. We interpret these observations to indicate that there was a physical impact event, not just an airburst, and that the crater has been almost completely eroded since its formation.  相似文献   

10.
Abstract– The Chesapeake Bay impact structure, approximately 85 km in diameter, has been drilled in 2005–2006 at Eyreville (Virginia, USA), to a total depth of 1766 m. In the drill cores, the abundance of shock metamorphosed material is very variable with depth. Shocked mineral and lithic clasts, as well as melt particles, are most abundant in suevitic impact breccia section (1397–1451 m depth). Shocked quartz (i.e., quartz grains with planar fractures and/or planar deformation features) and melt particles, although rare, are also dispersed in the Exmore Formation unit (444–867 m depth). Other lithologies in the Eyreville drill cores show no clear evidence of shock metamorphism. Here, we report on the investigations of 40 samples from the impact breccia section. A total of more than 27,000 quartz grains were examined in about 200 clasts. The abundance of highly shocked clasts tends to decrease with increasing depth. Crystalline clasts derived from the crystalline basement are commonly only slightly shocked (contain generally <10 rel% of shocked quartz grains). The clasts of metamorphosed sediments show a low proportion of shocked quartz grains (mostly <10 rel%). Sedimentary clasts show a wide range of proportions of shocked quartz grains, with several of them being highly shocked clasts (most values between 0 and 40 rel%). Conglomerates show the highest proportion of shocked quartz grains of all types of clasts (up to 83 rel%). Polycrystalline quartz clasts are also commonly highly shocked (contain mostly between 10 and 40 rel% of shocked quartz grains). These hard nonporous clasts are possibly more liable to show evidence of shock. The investigations suggest that the intensity of shock metamorphism is the result of several parameters, such as original position in the target (both horizontal and vertical) and the properties of each lithology (e.g., grain size, porosity, and amount of matrix). According to the universal‐stage investigations, the dominant orientations of planar deformation features in quartz are , , and also .  相似文献   

11.
Abstract— The Footwall Breccia layer in the North Range of the Sudbury impact structure is up to 150 m thick. It has been analyzed for several aspects: shock metamorphism of clasts, matrix texture, mineralogy, and geochemistry with respect to major and trace element compositions. The matrix of this heterolithic breccia contains mineral and lithic fragments, which have suffered shock pressures exceeding 10 GPa, along with clasts of breccia dikes originating from the crater basement. The matrix in a zone near the upper contact of the breccia layer is dominated by a dioritic composition with intersertal textures, whereas beneath this zone the matrix is characterized by poikilitic to granular textures and a tonalitic to granitic composition. Major and trace element analyses of adjacent slices of a thin-slab profile from the breccia show that the matrix is chemically inhomogeneous within a range of 3 mm. The breccia layer has been thermally annealed by the overlying Sudbury Igneous Complex, which is interpreted as a coherent impact melt sheet. The Rb-Sr isochron age of 1.825 ± 0.021 Ga for the matrix is a cooling age after partial melting of fine grained clastic material by the melt system. Two-pyroxene thermometry calculations give temperatures in excess of 1000 °C for this thermal overprinting. Clasts were affected by recrystallization, melting, and reactions with the surrounding matrix at that time. The crystallization of the molten matrix resulted in the observed variety of igneous textures. Results of clast population statistics for the Footwall Breccia along with both geochemical considerations and the Sr-Nd isotopic signature of the matrix indicate that the breccia constituents exclusively derived from the Levack gneiss complex, which forms the local country rock to the breccia layer in the Levack area. K-feldspar-rich domains, which tend to replace parts of matrix and felsic gneiss fragments have been formed due to metasomatic activities during the Penokean orogeny, ~ 1.7 Ga ago. The available observations suggest that the Sudbury structure represents the remnant of a multi-ring basin with an apparent diameter between 180 and 200 km and a diameter of the transient cavity of about 100 km. For a crater of the size of the Sudbury basin a maximum depth of excavation of ~21 km and a depth of shock-melted target rocks of ~27 km are obtained. In the Sudbury crater, the Footwall Breccia layer represents a part of the uplifted crater floor directly underlying the thick coherent impact melt sheet.  相似文献   

12.
Abstract— Microscopic planar deformation features (PDFs) in quartz grains are diagnostic of shock meta-morphism during hypervelocity impact cratering. Measurements of the poles of sets of PDFs and the optic axis of 25 quartz grains were carried out for a sample of the Loftarsten deposit from the Lockne area, Sweden. The most abundant PDFs observed in the sample from the Lockne area correspond to those found at known impact craters (i.e., ω (1013} and π (1012). This study confirms the previous suggestion that the Lockne structure is an impact crater. The Loftarsten is, therefore, interpreted as the final stage of resurge deposition after a marine impact at Lockne in the Middle Ordovician.  相似文献   

13.
Abstract— The osmium isotope ratios and platinum‐group element (PGE) concentrations of impact‐melt rocks in the Chesapeake Bay impact structure were determined. The impact‐melt rocks come from the cored part of a lower‐crater section of suevitic crystalline‐clast breccia in an 823 m scientific test hole over the central uplift at Cape Charles, Virginia. The 187Os/188Os ratios of impact‐melt rocks range from 0.151 to 0.518. The rhenium and platinum‐group element (PGE) concentrations of these rocks are 30–270x higher than concentrations in basement gneiss, and together with the osmium isotopes indicate a substantial meteoritic component in some impact‐melt rocks. Because the PGE abundances in the impact‐melt rocks are dominated by the target materials, interelemental ratios of the impact‐melt rocks are highly variable and nonchondritic. The chemical nature of the projectile for the Chesapeake Bay impact structure cannot be constrained at this time. Model mixing calculations between chondritic and crustal components suggest that most impact‐melt rocks include a bulk meteoritic component of 0.01–0.1% by mass. Several impact‐melt rocks with lowest initial 187Os/188Os ratios and the highest osmium concentrations could have been produced by additions of 0.1%–0.2% of a meteoritic component. In these samples, as much as 70% of the total Os may be of meteoritic origin. At the calculated proportions of a meteoritic component (0.01–0.1% by mass), no mixtures of the investigated target rocks and sediments can reproduce the observed PGE abundances of the impact‐melt rocks, suggesting that other PGE enrichment processes operated along with the meteoritic contamination. Possible explanations are 1) participation of unsampled target materials with high PGE abundances in the impact‐melt rocks, and 2) variable fractionations of PGE during syn‐ to post‐impact events.  相似文献   

14.
The Younger Dryas impact hypothesis suggests that multiple airbursts or extraterrestrial impacts occurring at the end of the Allerød interstadial resulted in the Younger Dryas cold period. So far, no reproducible, diagnostic evidence has, however, been reported. Quartz grains containing planar deformation features (known as shocked quartz grains), are considered a reliable indicator for the occurrence of an extraterrestrial impact when found in a geological setting. Although alleged shocked quartz grains have been reported at a possible Allerød‐Younger Dryas boundary layer in Venezuela, the identification of shocked quartz in this layer is ambiguous. To test whether shocked quartz is indeed present in the proposed impact layer, we investigated the quartz fraction of multiple Allerød‐Younger Dryas boundary layers from Europe and North America, where proposed impact markers have been reported. Grains were analyzed using a combination of light and electron microscopy techniques. All samples contained a variable amount of quartz grains with (sub)planar microstructures, often tectonic deformation lamellae. A total of one quartz grain containing planar deformation features was found in our samples. This shocked quartz grain comes from the Usselo palaeosol at Geldrop Aalsterhut, the Netherlands. Scanning electron microscopy cathodoluminescence imaging and transmission electron microscopy imaging, however, show that the planar deformation features in this grain are healed and thus likely to be older than the Allerød‐Younger Dryas boundary. We suggest that this grain was possibly eroded from an older crater or distal ejecta layer and later redeposited in the European sandbelt. The single shocked quartz grain at this moment thus cannot be used to support the Younger Dryas impact hypothesis.  相似文献   

15.
Granitoid rock samples from the assumed center of the Keurusselkä impact site were subjected to a systematic study of fluid‐inclusion compositions and densities in various microstructures of the shocked quartz. The results are consistent with the following impact‐induced model of formation. After cessation of all major regional tectonic activity and advanced erosional uplift of the Fennoscandian shield, a meteorite impact (approximately 1.1 Ga) caused the formation of planar fractures (PFs) and planar deformation features (PDFs) and the migration of shock‐liberated metamorphic fluid (CO2 ± H2O) to the glass in the PDFs. Postimpact annealing of the PDFs led to the formation of CO2 (±H2O) fluid‐inclusion decorated PDFs. The scarce fluid‐inclusion implosion textures (IPs) suggest a shock pressure of 7.6–10 GPa. The postimpact pressure release and associated heating initiated hydrothermal activity that caused re‐opening of some PFs and their partial filling by moderate‐salinity/high temperature (>200 °C) H2O (+ chlorite + quartz) and moderate‐density CO2. The youngest postimpact endogenic sub‐ and nonplanar microfractures (MFs) are characterized by low‐density CO2 and low‐salinity/low‐temperature (<200 °C) H2O.  相似文献   

16.
Abstract— Shock metamorphosed quartz grains have been discovered in a drill core from the central peak of the Late Jurassic, marine Mjølnir structure; this finding further corroborates the impact origin of Mjølnir. The intersected strata represent the Upper Jurassic Hekkingen Formation and underlying Jurassic and Upper Triassic formations. The appearance, orientation, and origin of shock features in quartz grains and their stratigraphic distribution within the core units have been studied by optical and transmission electron microscopy. The quartz grains contain planar fractures (PFs), planar deformation features (PDFs), and mechanical Brazil twins. The formation of PFs is the predominant shock effect and is attributed to the large impedance differences between the water‐rich pores and constituent minerals in target sediments. This situation may have strengthened tensional/extensional and shear movements during shock compression and decompression. The combination of various shock effects indicates possible shock pressures between 5 and at least 20 GPa for three core units with a total thickness of 86 m (from 74.00 m to 171.09 m core depth). Crater‐fill material from the lower part of the core typically shows the least pressures, whereas the uppermost part of the allochthonous crater deposits displays the highest pressures. The orientations of PFs in studied quartz grains seem to become more diverse as the pressure rises from predominantly (0001) PFs to a combination of (0001), , and orientations. However, the lack of experimental data on porous sedimentary rocks does not allow us to further constrain the shock conditions on the basis of PF orientations.  相似文献   

17.
Abstract— Of the only seven submarine impact craters that have been found globally, the Mjølnir crater is one of the best preserved and retains crater and ejecta. Geochemical studies (organic pyrolysis using the Rock Eval technique and XRF analysis for major, minor, and trace elements) of the Institute for Petroleum Research (IKU) core 7430/10-U-01 that was taken from a drillhole located ~30 km north-northeast of the crater rim show gradual establishment of anoxic sea floor conditions through the late Jurassic. These poorly ventilated water conditions were overturned due to the Mjølnir impact event. Waves and currents transported impact glass (which is now partly weathered to smectite) into the depositional area where the drillhole is located. The succeeding crater collapse transported impact material (e.g., shocked quartz and Ir) from the crater rim and deeper levels to the core site. Normal marine depositional conditions were established a short time after the crater collapsed.  相似文献   

18.
Abstract— Shocked quartz from the ejecta of the Ries impact structure has been investigated by analytical transmission electron microscopy (ATEM). Quartz grains display numerous planar fractures (PFs) and planar deformation features (PDFs). Both are partly or fully replaced by a mineral of the kaolinite group (likely halloysite). Its formation involves fluid circulation into the dense fracture networks, dissolution and removal of the amorphous phase initially present in PDFs, and finally, precipitation and crystallization of the kaolinite group mineral from solutions resulting from the chemical alteration of adjacent minerals (feldspars and biotite). Kaolinite group minerals are typical of hydrothermal alteration at low temperature, in humid climate, and under moderately acid conditions and, thus, this alteration may not be directly related to the impact event itself. However, the weathering features were strongly enhanced by the shock‐generated microstructure, in particular by fractures that provided pathways for fluid circulation.  相似文献   

19.
Three‐dimensional X‐ray tomographic reconstructions and petrologic studies reveal voluminous accumulations of metal in Pu?tusk H chondrite. At the contact of these accumulations, the chondritic rock is enriched in troilite. The rock contains plagioclase‐rich bands, with textures suggesting crystallization from melt. Unusually large phosphates are associated with the plagioclase and consist of assemblages of merrillite, and fluorapatite and chlorapatite. The metal accumulations were formed by impact melting, rapid segregation of metal‐sulfide melt and the incorporation of this melt into the fractured crater basement. The impact most likely occurred in the early evolution of the H chondrite parent body, when post‐impact heat overlapped with radiogenic heat. This enabled slow cooling and separation of the metallic melt into metal‐rich and sulfide‐rich fractions. This led to recrystallization of chondritic rock in contact with the metal accumulations and the crystallization of shock melts. Phosphorus was liberated from the metal and subsumed by the silicate shock melt, owing to oxidative conditions upon slow cooling. The melt was also a host for volatiles. Upon further cooling, phosphorus reacted with silicates leading to the formation of merrillite, while volatiles partitioned into the residual halogen‐rich, dry fluid. In the late stages, the fluid altered merrillite to patchy Cl/F‐apatite. The above sequence of alterations demonstrates that impact during the early evolution of chondritic parent bodies might have contributed to local metal segregation and silicate melting. In addition, postshock conditions supported secondary processes: compositional/textural equilibration, redistribution of volatiles, and fluid alterations.  相似文献   

20.
The Kamenetsk impact structure is a deeply eroded simple crater that formed in crystalline rocks of the Ukrainian Shield. This study presents structural, lithologic, and shock metamorphic evidence for an impact origin of the Kamenetsk structure, which was previously described as a paleovolcano. The Kamenetsk structure is an oval depression that is 1.0–1.2 km in diameter and 130 m deep. The structure is deeply eroded, and only the lower part of the sequence of lithic breccia has been preserved in the deepest part of the crater to recent time, while the predominant part of impact rocks and postimpact sediments was eroded. Manifestations of shock metamorphism of minerals, especially planar deformation features in quartz and feldspars, were determined by petrographic investigations of lithic breccia that allowed us to determine the impact origin of the Kamenetsk structure. The erosion of the crater and surrounding target to a minimal depth of 220 m preceded the deposition of the postimpact sediments. The time of the formation of the Kamenetsk structure is bracketed within a wide interval from 2.0 to 2.1 Ga, the age of the crystalline target rocks, to the Late Miocene age of the sediments overlaying the crater. The deep erosion of the structure suggests it is probably Paleozoic in age.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号