首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The offset dykes of the Sudbury Igneous Complex comprise two distinct main magmatic facies, a high-temperature inclusion-free quartz diorite (QD), and a subsequently intruded lower temperature, mineralized, and inclusion-rich quartz diorite (MIQD). The MIQD facies was emplaced after QD dykes had solidified. Key controlling factors of the two injection phases were (1) the development of a coherent roof, which confined the melt sheet; and (2) the periodic increase of melt and fluid pressure within the melt sheet. For the injection of QD melt, the melt pressure exceeded the normal stress acting on fracture surfaces. For the later refracturing of QD dykes and the injection of MIQD melt, the melt pressure increased further, exceeding the tensile strength of, and the normal stress acting on, QD dykes. We associate the melt pressure increase required for both injection episodes with degassing and devolatilization of cooling melt close to the roof. Within the hydraulically connected melt column, the related pressure increase was transmitted to the base of the melt sheet where QD and MIQD melt was extracted into dykes. Residual core to rim thermal gradients in the QD dykes produced tensile strength gradients, accounting for the typically central location of MIQD dykes within QD dykes.  相似文献   

2.
Abstract— A new locality of in situ massive impact‐melt rock was discovered on the south‐southwestern rim of the Roter Kamm impact structure. While the sub‐samples from this new locality are relatively homogeneous at the hand specimen scale, and despite being from a nearby location, they do not have the same composition of the only previously analyzed impact‐melt rock sample from Roter Kamm. Both Roter Kamm impact‐melt rock samples analyzed to date, as well as several suevite samples, exhibit a granitic‐granodioritic precursor composition. Micro‐chemical analyses of glassy matrix and Al‐rich orthopyroxene microphenocrysts demonstrate rapid cooling and chemical disequilibrium at small scales. Platinum‐group element abundances and ratios indicate an ordinary chondritic composition for the Roter Kamm impactor. Laser argon dating of two sub‐samples did not reproduce the previously obtained age of 3.7 ± 0.3 (1s?) for this impact event, based on 40Ar/39Ar dating of a single vesicular impact‐melt rock. Instead, we obtained ages between 3.9 and 6.3 Ma, with an inverse isochron age of 4.7 ± 0.3 Ma for one analyzed sub‐sample and 5.1 ± 0.4 Ma for the other. Clearly a post‐5 Ma impact at Roter Kamm remains indicated, but further analytical work is required to better constrain the currently best estimate of 4–5 Ma. Both impactor and age constraints are clearly obstructed by the inherent microscopic heterogeneity and disequilibrium melting and cooling processes demonstrated in the present study.  相似文献   

3.
Abstract— Orogenic deformation, both preceding and following the impact event at Sudbury, strongly hinders a straightforward assessment of impact‐induced geological processes that generated the Sudbury impact structure. Central to understanding these processes is the state of strain of the Sudbury Igneous Complex, the solidified impact melt sheet, its underlying target rocks, overlying impact breccias and post‐impact sedimentary rocks. This review addresses (1) major structural, metamorphic and magmatic characteristics of the impact melt sheet and associated dikes, (2) attempts that have been made to constrain the primary geometry of the igneous complex, (3) modes of impact‐induced deformation as well as (4) mechanisms of pre‐ and post‐impact orogenic deformation. The latter have important consequences for estimating parameters such as magnitude of structural uplift, tilting of pre‐impact (Huronian) strata and displacement on major discontinuities which, collectively, have not yet been considered in impact models. In this regard, a mechanism for the emplacement of Offset Dikes is suggested, that accounts for the geometry of the dikes and magmatic characteristics, as well as the occurrence of sulfides in the dikes. Moreover, re‐interpretation of published paleomagnetic data suggests that orogenic folding of the solidified melt sheet commenced shortly after the impact. Uncertainties still exist as to whether the Sudbury impact structure was a peak‐ring or a multi‐ring basin and the deformation mechanisms of rock flow during transient cavity formation and crater modification.  相似文献   

4.
Metallic microspheres have been found in rocks from the Onaping Formation of the Sudbury impact structure, Canada. Microspherules are common in contact breccias, the lowest part of the Dowling Member, and rare microspherules have been found in the upper sequences of the Dowling Member. Separate microspherules are dispersed in the breccia matrix and do not form clusters. The sizes of the microspheres range from 5 to 30 μm; most commonly, they are 8–15 μm in size. The microspherules have a regular spherical shape, and in some cases show concentric zonal structures. The microspherules consist mostly of the refractory elements Cr, Co, Fe, Mo, W, and Ti, with a predominant Ni content of 40–75 wt%. The formation of the Sudbury metal microspherules by condensation in a high-temperature plume is suggested by their spherical shape, concentric-zoned structure, uniform composition, and distribution in fallback breccias of the crater-fill Onaping Formation. The content of the most refractory W in the composition of the microspheres indicates early condensation. A decrease in the content of W and an increase in the content of Ni in the microspheres of the upper layers relative to the content of these elements in the earliest microspheres of the contact layers indicate that they could have formed by fractional condensation during the expansion and cooling of the impact vapor plume. As source material, a combination of target rocks with high nickel content with a chondritic impactor is suggested.  相似文献   

5.
Abstract– Melt‐bearing impactites dominated by suevite, and with a minor content of clast‐rich impact melt rock, are found within the central part of the Gardnos structure. They are preserved as the eroded remnants in the relatively small complex impact structure with a present diameter of 5 km. These rocks have been mapped in the field and in the Branden drill core, and described according to mineralogy/petrology, including matrix, litho clast, and melt content, as well as geochemistry. Based on our extensive field mapping, a simple 3‐D model of the original crater was constructed to estimate tentative volumes for the melt‐bearing impactites. The variations in lithic and melt fragment content and chemistry of suevite matrix can mostly be explained by incorporation of mafic rocks into a dominant mixture of granitic, gneissic, and quartzitic target rocks, reflecting mixing of material from different parts of the crater. Melt fragments within suevite occur with a variety of shapes and textures, probably related to different original target rock composition, to the various temperatures the individual fragments were subjected to during the impact event and deposition processes. This study discusses the impact‐related deposits based on a sedimentological approach. Their overall composition and structures indicate dominating gravity flow processes in the final transportation and deposition of the suevite.  相似文献   

6.
Abstract— The Footwall Breccia layer in the North Range of the Sudbury impact structure is up to 150 m thick. It has been analyzed for several aspects: shock metamorphism of clasts, matrix texture, mineralogy, and geochemistry with respect to major and trace element compositions. The matrix of this heterolithic breccia contains mineral and lithic fragments, which have suffered shock pressures exceeding 10 GPa, along with clasts of breccia dikes originating from the crater basement. The matrix in a zone near the upper contact of the breccia layer is dominated by a dioritic composition with intersertal textures, whereas beneath this zone the matrix is characterized by poikilitic to granular textures and a tonalitic to granitic composition. Major and trace element analyses of adjacent slices of a thin-slab profile from the breccia show that the matrix is chemically inhomogeneous within a range of 3 mm. The breccia layer has been thermally annealed by the overlying Sudbury Igneous Complex, which is interpreted as a coherent impact melt sheet. The Rb-Sr isochron age of 1.825 ± 0.021 Ga for the matrix is a cooling age after partial melting of fine grained clastic material by the melt system. Two-pyroxene thermometry calculations give temperatures in excess of 1000 °C for this thermal overprinting. Clasts were affected by recrystallization, melting, and reactions with the surrounding matrix at that time. The crystallization of the molten matrix resulted in the observed variety of igneous textures. Results of clast population statistics for the Footwall Breccia along with both geochemical considerations and the Sr-Nd isotopic signature of the matrix indicate that the breccia constituents exclusively derived from the Levack gneiss complex, which forms the local country rock to the breccia layer in the Levack area. K-feldspar-rich domains, which tend to replace parts of matrix and felsic gneiss fragments have been formed due to metasomatic activities during the Penokean orogeny, ~ 1.7 Ga ago. The available observations suggest that the Sudbury structure represents the remnant of a multi-ring basin with an apparent diameter between 180 and 200 km and a diameter of the transient cavity of about 100 km. For a crater of the size of the Sudbury basin a maximum depth of excavation of ~21 km and a depth of shock-melted target rocks of ~27 km are obtained. In the Sudbury crater, the Footwall Breccia layer represents a part of the uplifted crater floor directly underlying the thick coherent impact melt sheet.  相似文献   

7.
Abstract— The Wanapitei impact structure is ~8 km in diameter and lies within Wanapitei Lake, ~34 km northeast of the city of Sudbury. Rocks related to the 37 Ma impact event are found only in Pleistocene glacial deposits south of the lake. Most of the target rocks are metasedimentary rocks of the Proterozoic Huronian Supergroup. An almost completely vitrified, inclusion-bearing sample investigated here represents either an impact melt or a strongly shock metamorphosed, pebbly wacke. In the second, preferred interpretation, a number of partially melted and devitrified clasts are enclosed in an equally highly shock metamorphosed arkosic wacke matrix (i.e., the sample is a shocked pebbly wacke), which records the onset of shock melting. This interpretation is based on the glass composition, mineral relicts in the glass, relict rock textures, and the similar degree of shock metamorphism and incipient melting of all sample components. Boulder matrix and clasts are largely vitrified and preserve various degrees of fluidization, vesiculation, and devitrification. Peak shock pressure of ~50–60 GPa and stress experienced by the sample were somewhat below those required for complete melting and development of a homogeneous melt. The rapid cooling and devitrification history of the analyzed sample is comparable to that reported recently from glasses in the suevite of the Ries impact structure in Germany and may indicate that the analyzed sample experienced an annealing temperature after deposition of somewhere between 650 °C and 800 °C.  相似文献   

8.
Abstract– Shock metamorphism can occur at transient pressures that reach tens of GPa and well over 1000 °C, altering the target material on both megascopic and microscopic scales. This study explores the effects of shock metamorphism on crystalline, quartzofeldspathic basement material from the Haughton impact structure on Devon Island, Arctic Canada. Shock levels were assigned to samples based on petrographic examination of main mineral phases. Conventional shock classification schemes proved to incompletely describe the Haughton samples so a modified shock classification system is presented. Fifty‐two crystalline bedrock samples from the clast‐rich impact melt rocks in the crater, and one reference site outside of the crater, were classified using this system. The shock levels range from 0 to 7 (according to the new shock stage classification proposed here, i.e., stages 0–IV after the Stöffler classification), indicating shock pressures ranging from 0 to approximately 80 GPa. The second aspect of this study involved measuring bulk physical characteristics of the shocked samples. The bulk density, grain density, and porosity were determined using a water displacement method, a bead displacement method, and a Hepycnometer. Results suggest a nonlinear, negative correlation between density and shock level such that densities of crystalline rocks with original densities of approximately 3 g cm?3 are reduced to <1.0 g cm?3 at high shock levels. The results also show a positive nonlinear correlation between porosity and shock level. These data illustrate the effect of shock on the bulk physical characteristics of crystalline rocks, and has implications for assessing the habitability of shocked rocks.  相似文献   

9.
Impact melt rocks from the 1.9 km diameter, simple bowl‐shaped Tenoumer impact crater in Mauritania have been analyzed chemically and petrologically. They are heterogeneous and can be subdivided into three types based on melt matrix color, occurrence of lithic clast components, amount of vesiculation (melt degassing), different proportions of carbonate melt mingled into silicate melt, and bulk rock chemical composition. These heterogeneities have two main causes (1) due to the small size of the impact crater, there was probably no coherent melt pool where a homogeneous mixture of melts, derived from different target lithologies, could be created; and (2) melt rock heterogeneity occurring at the thin section scale is due to fast cooling during and after the dynamic ejection and emplacement process. The overall period of crystal growth from these diverse melts was extremely short, which provides a further indication that complete chemical equilibration of the phases could not be achieved in such short time. Melt mixing processes involved in the generation of impact melts are, thus, recorded in nonequilibrium growth features. Variable mixing processes between chemically different melt phases and the formation of hybrid melts can be observed even at millimeter scales. Due to extreme cooling rates, different mixing and mingling stages are preserved in the varied parageneses of matrix minerals and in the mineral chemistry of microlites. 40Ar39Ar step‐heating chronology on specimens from three melt rock samples yielded five concordant inverse isochron ages. The inverse isochron plots show that minute amounts of inherited 40Ar* are present in the system. We calculated a weighted mean age of 1.57 ± 0.14 Ma for these new results. This preferred age represents a refinement from the previous range of 21 ka to 2.5 Ma ages based on K/Ar and fission track dating.  相似文献   

10.
Abstract— The Offset Dikes of the 1.85 Ga Sudbury Igneous Complex (SIC) constitute a key topic in understanding the chemical evolution of the impact melt, its mineralization, and the interplay between melt migration and impact‐induced deformation. The origin of the melt rocks in Offset Dikes as well as mode and timing of their emplacement are still a matter of debate. Like many other offset dikes, the Worthington is composed of an early emplaced texturally rather homogeneous quartz‐diorite (QD) phase at the dike margin, and an inclusion‐ and sulfide‐rich quartz‐diorite (IQD) phase emplaced later and mostly in the centre of the dike. The chemical heterogeneity within and between QD and IQD is mainly attributed to variable assimilation of host rocks at the base of the SIC, prior to emplacement of the melt into the dike. Petrological data suggest that the parental magma of the Worthington Dike mainly developed during the pre‐liquidus temperature interval of the thermal evolution of the impact melt sheet (>1200 °C). Based on thermal models of the cooling history of the SIC, the two‐stage emplacement of the Worthington Dike occurred likely thousands to about ten thousand years after impact. Structural analysis indicates that an alignment of minerals and host rock fragments within the Worthington Dike was caused by ductile deformation under greenschist‐facies metamorphic conditions rather than flow during melt emplacement. It is concluded that the Worthington Offset Dike resulted from crater floor fracturing, possibly driven by late‐stage isostatic readjustment of crust underlying the impact structure.  相似文献   

11.
A melt‐bearing impactite unit is preserved in the 2.7 km diameter shallow marine Ritland impact structure. The main exposure of the melt‐bearing unit is in an approximately 100 m long cliff about 700 m southwest of the center of the structure. The melt and clast content vary through this maximum 2 m thick unit, so that lithology ranges from impact melt rock to suevite. Stratigraphic variations with respect to the melt content, texture, mineralogy, and geochemistry have been studied in the field, and by laboratory analysis, including thin section microscopy. The base of the melt‐bearing unit marks the transition from the underlying lithic basement breccia, and the unit may have been emplaced by an outward flow during the excavation stage. There is an upward development from a melt matrix‐dominated lower part, that commonly shows flow structures, to an upper part characterized by more particulate matrix with patchy melt matrix domains, commonly as deformed melt slivers intermingled with small lithic clasts. Melt and lithic fragments in the upper part display a variety of shapes and compositions, some of which possibly represent fallback material from the ejecta cloud. The upper boundary of the melt‐bearing impactite unit has been placed where the deposits are mainly clastic, probably representing slump and avalanche deposits from the modification stage. These deposits are therefore considered sedimentary and not impactites, despite the component of small melt fragments and shocked minerals within the lowermost part, which was probably incorporated as the debris moved down the steep crater walls.  相似文献   

12.
Abstract— Here we present the results of a geochemical study of the projectile component in impactmelt rocks from the Lappajärvi impact structure, Finland. Main‐ and trace‐element analyses, including platinum group elements (PGEs), were carried out on twenty impact‐melt rock samples from different locations and on two shocked granite fragments. The results clearly illustrate that all the impact melt rocks are contaminated with an extraterrestrial component. An identification of the projectile type was performed by determining the projectile elemental ratios and comparing the corresponding element ratios in chondrites. The projectile elemental ratios suggest an H chondrite as the most likely projectile type for the Lappajärvi impact structure. The PGE composition of the highly diluted projectile component (?0.05 and 0.7 wt% in the impact‐melt rocks) is similar to the recent meteorite population of H chondrites reaching Earth. The relative abundance of ordinary chondrites, including H, L, and LL chondrites, as projectiles at terrestrial impact structures is most likely related to the position of their parent bodies relative to the main resonance positions. This relative abundance of ordinary chondrites suggests a strong bias of the impactor population toward inner Main Belt objects.  相似文献   

13.
Abstract— Field studies and analytical scanning electron microscopy indicate that a hydrothermal system was created by the interaction of water with hot, impact‐generated rocks following formation of the 24 km diameter, 23 Ma Haughton impact structure. Hydrothermal alteration is recognized in two settings: within polymict impact breccias overlying the central portion of the structure, and within localized pipes in impact‐generated concentric fault systems. The intra‐breccia alteration comprises three varieties of cavity and fracture filling: (a) sulfide with carbonate, (b) sulfate, and (c) carbonate. These are accompanied by subordinate celestite, barite, fluorite, quartz and marcasite. Selenite is also developed, particularly in the lower levels of the impact breccia sheet. The fault‐related hydrothermal alteration occurs in 1–7 m diameter subvertical pipes that are exposed for lengths of up 20 m. The pipes are defined by a monomict quartz‐carbonate breccia showing pronounced Fe‐hydroxide alteration. Associated sulfides include marcasite, pyrite and chalcopyrite. We propose three distinct stages in the evolution of the hydrothermal system: (1) Early Stage (>200 °C), with the precipitation of quartz (vapor phase dominated); (2) Main Stage (200‐100 °C), with the development of a two‐phase (vapor plus liquid) zone, leading to calcite, celestite, barite, marcasite and fluorite precipitation; and (3) Late Stage (<100 °C), with selenite and fibroferrite development through liquid phase‐dominated precipitation. We estimate that it took several tens of thousands of years to cool below 50 °C following impact. During this time, Haughton supported a 14 km diameter crater lake and subsurface water system, providing a warmer, wetter niche relative to the surrounding terrain. The results reveal how understanding the internal structure of impact craters is necessary in order to determine their plumbing and cooling systems.  相似文献   

14.
Abstract— The impact melt breccias from the Tenoumer crater (consisting of a fine‐grained intergrowth of plagioclase laths, pyroxene crystals, oxides, and glass) display a wide range of porosity and contain a large amount of target rock clasts. Analyses of major elements in impact melt rocks show lower contents of SiO2, Al2O3, and Na2O, and higher contents of MgO, Fe2O3, and CaO, than the felsic rocks (i.e., granites and gneisses) of the basement. In comparison with the bulk analyses of the impact melt, the glass is strongly enriched in Si‐Al, whereas it is depleted both in Mg and Fe; moreover, the impact melt rocks are variably enriched or depleted in some REE with respect to the felsic and mafic bedrock types. Gold is slightly enriched in the impact melt, and Co, Cr, and Ni abundances are possibly due to a contribution from mafic bedrock. Evidences of silicate‐carbonate liquid immiscibility, mainly as spherules and globules of calcite within the silicate glass, have been highlighted. HMX mixing calculation confirm that the impact melt rocks are derived from a mixing of at least six different target lithologies outcropping in the area of the crater. A large contribution is derived from granitoids (50%) and mica schist (17–19%), although amphibolites (?15%), cherty limestones (?10%), and ultrabasites (?6%) components are also present. The very low abundances of PGE in the melt rock seem to come mainly from some ultrabasic target rocks; therefore, the contamination from the meteoritic projectile appears to have been negligible.  相似文献   

15.
Abstract— The newly discovered Dhala structure, Madhya Pradesh State, India, is the eroded remnant of an impact structure with an estimated present‐day apparent diameter of about 11 km. It is located in the northwestern part of the Archean Bundelkhand craton. The pre‐impact country rocks are predominantly granitoids of ?2.5 Ga age, with minor 2.0–2.15 Ga mafic intrusive rocks, and they are overlain by post‐impact sediments of the presumably >1.7 Ga Vindhyan Supergroup. Thus, the age for this impact event is currently bracketed by these two sequences. The Dhala structure is asymmetrically disposed with respect to a central elevated area (CEA) of Vindhyan sediments. The CEA is surrounded by two prominent morphological rings comprising pre‐Vindhyan arenaceous‐argillaceous and partially rudaceous metasediments and monomict granitoid breccia, respectively. There are also scattered outcrops of impact melt breccia exposed towards the inner edge of the monomict breccia zone, occurring over a nearly 6 km long trend and with a maximum outcrop width of ?170 m. Many lithic and mineral clasts within the melt breccia exhibit diagnostic shock metamorphic features, including multiple sets of planar deformation features (PDFs) in quartz and feldspar, ballen‐textured quartz, occurrences of coesite, and feldspar with checkerboard texture. In addition, various thermal alteration textures have been found in clasts of initially superheated impact melt. The impact melt breccia also contains numerous fragments composed of partially devitrified impact melt that is mixed with unshocked as well as shock deformed quartz and feldspar clasts. The chemical compositions of the impact melt rock and the regionally occurring granitoids are similar. The Ir contents of various impact melt breccia samples are close to the detection limit (1–1.5 ppb) and do not provide evidence for the presence of a meteoritic component in the melt breccia. The presence of diagnostic shock features in mineral and lithic clasts in impact melt breccia confirm Dhala as an impact structure. At 11 km, Dhala is the largest impact structure currently known in the region between the Mediterranean and southeast Asia.  相似文献   

16.
Abstract— 40Ar‐39Ar analyses of a total of 26 samples from eight shock‐darkened impact melt breccias of H‐chondrite affinity (Gao‐Guenie, LAP 02240, LAP 03922, LAP 031125, LAP 031173, LAP 031308, NWA 2058, and Ourique) are reported. These appear to record impacts ranging in time from 303 ± 56 Ma (Gao‐Guenie) to 4360 ± 120 Ma (Ourique) ago. Three record impacts 300–400 Ma ago, while two others record impacts 3900–4000 Ma ago. Combining these with other impact ages from H chondrites in the literature, it appears that H chondrites record impacts in the first 100 Ma of solar system history, during the era of the “lunar cataclysm” and shortly thereafter (3500–4000 Ma ago), one or more impacts ?300 Ma ago, and perhaps an impact ?500 Ma ago (near the time of the L chondrite parent body disruption). Records of impacts on the H chondrite parent body are rare or absent between the era of planetary accretion and the “lunar cataclysm” (4400‐4050 Ma), during the long stretch between heavy bombardment and recent breakup events (3500‐1000 Ma), or at the time of final breakup into meteorite‐sized bodies (<50 Ma).  相似文献   

17.
Projectile–target interactions as a result of a large bolide impact are important issues, as abundant extraterrestrial material has been delivered to the Earth throughout its history. Here, we report results of shock‐recovery experiments with a magnetite‐quartz target rock positioned in an ARMCO iron container. Petrography, synchrotron‐assisted X‐ray powder diffraction, and micro‐chemical analysis confirm the appearance of wüstite, fayalite, and iron in targets subjected to 30 GPa. The newly formed mineral phases occur along shock veins and melt pockets within the magnetite‐quartz aggregates, as well as along intergranular fractures. We suggest that iron melt formed locally at the contact between ARMCO container and target, and intruded the sample causing melt corrosion at the rims of intensely fractured magnetite and quartz. The strongly reducing iron melt, in the form of μm‐sized droplets, caused mainly a diffusion rim of wüstite with minor melt corrosion around magnetite. In contact with quartz, iron reacted to form an iron‐enriched silicate melt, from which fayalite crystallized rapidly as dendritic grains. The temperatures required for these transformations are estimated between 1200 and 1600 °C, indicating extreme local temperature spikes during the 30 GPa shock pressure experiments.  相似文献   

18.
Abstract— The osmium isotope ratios and platinum‐group element (PGE) concentrations of impact‐melt rocks in the Chesapeake Bay impact structure were determined. The impact‐melt rocks come from the cored part of a lower‐crater section of suevitic crystalline‐clast breccia in an 823 m scientific test hole over the central uplift at Cape Charles, Virginia. The 187Os/188Os ratios of impact‐melt rocks range from 0.151 to 0.518. The rhenium and platinum‐group element (PGE) concentrations of these rocks are 30–270x higher than concentrations in basement gneiss, and together with the osmium isotopes indicate a substantial meteoritic component in some impact‐melt rocks. Because the PGE abundances in the impact‐melt rocks are dominated by the target materials, interelemental ratios of the impact‐melt rocks are highly variable and nonchondritic. The chemical nature of the projectile for the Chesapeake Bay impact structure cannot be constrained at this time. Model mixing calculations between chondritic and crustal components suggest that most impact‐melt rocks include a bulk meteoritic component of 0.01–0.1% by mass. Several impact‐melt rocks with lowest initial 187Os/188Os ratios and the highest osmium concentrations could have been produced by additions of 0.1%–0.2% of a meteoritic component. In these samples, as much as 70% of the total Os may be of meteoritic origin. At the calculated proportions of a meteoritic component (0.01–0.1% by mass), no mixtures of the investigated target rocks and sediments can reproduce the observed PGE abundances of the impact‐melt rocks, suggesting that other PGE enrichment processes operated along with the meteoritic contamination. Possible explanations are 1) participation of unsampled target materials with high PGE abundances in the impact‐melt rocks, and 2) variable fractionations of PGE during syn‐ to post‐impact events.  相似文献   

19.
In 2011, the discovery of shatter cones confirmed the 28 km diameter Tunnunik complex impact structure, Northwest Territories, Canada. This study presents the first results of ground‐based electromagnetic, gravimetric, and magnetic surveys over this impact structure. Its central area is characterized by a ~10 km wide negative gravity anomaly of about 3 mGal amplitude, roughly corresponding to the area of shatter cones, and associated with a positive magnetic field anomaly of ~120 nT amplitude and 3 km wavelength. The latter correlates well with the location of the deepest uplifted strata, an impact‐tilted Proterozoic dolomite layer of the Shaler Supergroup exposed near the center of the structure and intruded by dolerite dykes. Locally, electromagnetic field data unveil a conductive superficial formation which corresponds to an 80–100 m thick sand layer covering the impact structure. Based on the measurements of magnetic properties of rock samples, we model the source of the magnetic anomaly as the magnetic sediments of the Shaler Supergroup combined with a core of uplifted crystalline basement with enhanced magnetization. More classically, the low gravity signature is attributed to a reduction in density measured on the brecciated target rocks and to the isolated sand formations. However, the present‐day fractured zone does not extend deeper than ~1 km in our model, indicating a possible 1.5 km of erosion since the time of impact, about 430 Ma ago.  相似文献   

20.
Abstract— The 15 km diameter Ames structure in northwestern Oklahoma is located 2.75 km below surface in Cambro‐Ordovician Arbuckle dolomite, which is overlain by Middle Ordovician Oil Creek Formation shale. The feature is marked by two concentric ring structures, with the inner ring of about 5 km diameter probably representing the collapsed remnant of a structural uplift composed of brecciated Precambrian granite and Arbuckle dolomite. Wells from both the crater rim and the central uplift are oil‐ and gas‐producing, making Ames one of the economically important impact structures. Petrographic, geochemical, and age data were obtained on samples from the Nicor Chestnut 18‐4 drill core, off the northwest flank of the central uplift. These samples represent the largest and best examples of impact‐melt breccia obtained so far from the Ames structure. They contain carbonate rocks, which are derived from the target sequence. The chemical composition of the impact‐melt breccias is similar to that of target granite, with variable carbonate admixture. Some impact‐melt rocks are enriched in siderophile elements indicating the possible presence of a meteoritic component. Based on stratigraphic arguments, the age of the crater was estimated at 470 Ma. Previous 40Ar‐39Ar dating attempts of impact‐melt breccias from the Dorothy 1–19 core yielded plateau ages of about 285 Ma, which is in conflict with the stratigraphic age. The new 40Ar‐39Ar age data obtained on the melt breccias from the Nicor Chestnut core by ultraviolet (UV) laser spot analysis resulted in a range of ages with maxima around 300 Ma. These data could reflect processes related either the regional Nemaha Uplift or resetting due to hot brines active on a midcontinent‐wide scale, perhaps related to the Alleghenian and Ouachita orogenies. The age data indicate an extended burial phase associated with thermal overprint during Late Pennsylvanian‐Permian.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号