首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
The Martian meteorites record a wide diversity of environments, processes, and ages. Much work has been done to decipher potential mantle sources for Martian magmas and their interactions with crustal and surface environments. Chlorine isotopes provide a unique opportunity to assess interactions between Martian mantle‐derived magmas and the crust. We have measured the Cl‐isotopic composition of 17 samples that span the range of known ages, Martian environments, and mantle reservoirs. The 37Cl of the Martian mantle, as represented by the olivine‐phyric shergottites, NWA 2737 (chassignite), and Shergotty (basaltic shergottite), has a low value of approximately ?3.8‰. This value is lower than that of all other planetary bodies measured thus far. The Martian crust, as represented by regolith breccia NWA 7034, is variably enriched in the heavy isotope of Cl. This enrichment is reflective of preferential loss of 35Cl to space. Most basaltic shergottites (less Shergotty), nakhlites, Chassigny, and Allan Hills 84001 lie on a continuum between the Martian mantle and crust. This intermediate range is explained by mechanical mixing through impact, fluid interaction, and assimilation‐fractional crystallization.  相似文献   

2.
We present noble gas data for 16 shergottites, 2 nakhlites (NWA 5790, NWA 10153), and 1 angrite (NWA 7812). Noble gas exposure ages of the shergottites fall in the 1–6 Ma range found in previous studies. Three depleted olivine‐phyric shergottites (Tissint, NWA 6162, NWA 7635) have exposure ages of ~1 Ma, in agreement with published data for similar specimens. The exposure age of NWA 10153 (~12.2 Ma) falls in the range of 9–13 Ma reported for other nakhlites. Our preferred age of ~7.3 Ma for NWA 5790 is lower than this range, and it is possible that NWA 5790 represents a distinct ejection event. A Tissint glass sample contains Xe from the Martian atmosphere. Several samples show a remarkably low (21Ne/22Ne)cos ratio < 0.80, as previously observed in a many shergottites and in various other rare achondrites. This was explained by solar cosmic ray‐produced Ne (SCR Ne) in addition to the commonly found galactic cosmic ray‐produced Ne, implying very low preatmospheric shielding and ablation loss. We revisit this by comparing measured (21Ne/22Ne)cos ratios with predictions by cosmogenic nuclide production models. Indeed, several shergottites, acalpulcoites/lodranites, angrites (including NWA 7812), and the Brachina‐like meteorite LEW 88763 likely contain SCR Ne, as previously postulated for many of them. The SCR contribution may influence the calculation of exposure ages. One likely reason that SCR nuclides are predominantly detected in meteorites from rare classes is because they usually are analyzed for cosmogenic nuclides even if they had a very small (preatmospheric) mass and hence low ablation loss.  相似文献   

3.
Here we present the isotopic concentrations of He, Ne, Ar, Kr, and Xe for the three Martian meteorites, namely Grove Mountains 99027 (GRV 99027), Northwest Africa 7906 (NWA 7906), and Northwest Africa 7907 (NWA 7907). The cosmic ray exposure (CRE) age for GRV 99027 of 5.7 ± 0.4 Ma (1σ) is consistent with CRE ages for other poikilitic basaltic shergottites and suggests that all were ejected in a single event ~5.6 Ma ago. After correcting for an estimated variable sodium concentration, the CRE ages for NWA 7906 and NWA 7907 of 5.4 ± 0.4 and 4.9 ± 0.4 Ma (1σ), respectively, are in good agreement with the CRE age of ~5 Ma favored by Cartwright et al. ( 2014 ) for NWA 7034. The data, therefore, support the conclusion that all three basaltic regolith breccias are paired. The 40Ar gas retention age for NWA 7907 of ~1.3 Ga is in accord with Cartwright et al. ( 2014 ). For NWA 7906, we were unable to determine a 40Ar gas retention age. The 4He gas retention ages for NWA 7906 and 7907 are in the range of 200 Ma and are much shorter than the 40Ar gas retention age of NWA 7907, indicating that about 86–88% of the radiogenic 4He has been lost. The Kr and Xe isotopic concentrations in GRV 99027 are composed almost exclusively of Martian interior (MI) gases, while for NWA 7906 and NWA 7907, they indicate gases from the MI, elementally fractionated air, and possibly Martian atmosphere.  相似文献   

4.
Martian meteorites, in particular shergottites, contain darkened olivine (so‐called “brown olivine”) whose color is induced by iron nanoparticles formed in olivine during a shock event. The formation process and conditions of brown olivine have been discussed in the Northwest Africa 2737 (NWA 2737) chassignite. However, formation conditions of brown olivine in NWA 2737 cannot be applied to shergottites because NWA 2737 has a different shock history from that of shergottites. Therefore, this study observed brown olivine in the NWA 1950 shergottite and discusses the general formation process and conditions of brown olivine in shergottites. Our observation of NWA 1950 revealed that olivine is heterogeneously darkened between and within grains different from brown olivine in NWA 2737. XANES analysis showed that brown olivine contains small amounts of Fe3+ and TEM/STEM observation revealed that there is no SiO‐rich phase around iron metal nanoparticles. These observations indicate that iron nanoparticles were formed by a disproportionation reaction of olivine (3Fe2+olivine → Fe0metal + 2Fe3+olivine + Volivine, where Volivine means a vacancy in olivine). Some parts of brown olivine show lamellar textures in SEM observation and Raman peaks in addition to those expected for olivine, implying that brown olivine experienced a phase transition (to e.g., ringwoodite). In order to induce heterogeneous darkening, heterogeneous high temperature of about 1500–1700 K and shock duration of at least ~90 ms are required. This heterogeneous high temperature resulted in high postshock temperature (>900 K) inducing back‐transformation of most high‐pressure phases. Therefore, in spite of lack of high‐pressure phases, NWA 1950 (= Martian meteorites with brown olivine) experienced higher pressure and temperature compared to other highly shocked meteorite groups.  相似文献   

5.
Northwest Africa (NWA) 1950 is a new member of the lherzolitic shergottite clan of the Martian meteorites recently found in the Atlas Mountains. The petrological, mineralogical, and geochemical data are very close to those of the other known lherzolitic shergottites. The meteorite has a cumulate gabbroic texture and its mineralogy consists of olivine (Fo66 to Fo75), low and high‐Ca pyroxenes (En78Fs19Wo2‐En60Fs26W14; En53Fs16Wo31‐En45Fs14Wo41), and plagioclase (An57Ab41Or1 to An40Ab57Or3; entirely converted into maskelynite during intense shock metamorphism). Accessory minerals include phosphates (merrillite), chromite and spinels, sulfides, and a glass rich in potassium. The oxygen isotopic values lie on the fractional line defined by the other SNC meteorites (Δ17O = 0.312 %o). The composition of NWA 1950 is very similar to the other lherzolitic shergottites and suggests an origin from the same magmatic system, or at least crystallization from a close parental melt. Cosmogenic ages indicate an ejection age similar to those of the other lherzolitic shergottites. The intensity of the shock is similar to that observed in other shergottites, as shown by the occurrence of small melt pockets containing glass interwoven with stishovite.  相似文献   

6.
Abstract— We report noble gas data for the second chassignite, Northwest Africa (NWA) 2737, which was recently found in the Moroccan desert. The cosmic ray exposure (CRE) age based on cosmogenic 3He, 21Ne, and 38Ar around 10–11 Ma is comparable to the CRE ages of Chassigny and the nakhlites and indicates ejection of meteorites belonging to these two families during a discrete event, or a suite of discrete events having occurred in a restricted interval of time. In contrast, U‐Th/He and K/Ar ages <0.5 Ga are in the range of radiometric ages of shergottites, despite a Sm‐Nd signature comparable to that of Chassigny and the nakhlites (Misawa et al. 2005). Overall, the noble gas signature of NWA 2737 resembles that of shergottites rather than that of Chassigny and the nakhlites: NWA 2737 does not contain, in detectable amount, the solar‐like xenon found in Chassigny and thought to characterize the Martian mantle nor apparently fission xenon from 244Pu, which is abundant in Chassigny and some of the nakhlites. In contrast, NWA 2737 contains Martian atmospheric noble gases trapped in amounts comparable to those found in shergottite impact glasses. The loss of Martian mantle noble gases, together with the trapping of Martian atmospheric gases, could have occurred during assimilation of Martian surface components, or more likely during shock metamorphism, which is recorded in the petrology of this meteorite.  相似文献   

7.
We report precise triple oxygen isotope data of bulk materials and separated fractions of several Shergotty–Nakhla–Chassigny (SNC) meteorites using enhanced laser‐assisted fluorination technique. This study shows that SNCs have remarkably identical Δ17O and a narrow range in δ18O values suggesting that these meteorites have assimilated negligibly small surface materials (<5%), which is undetectable in the oxygen isotope compositions reported here. Also, fractionation factors in coexisting silicate mineral pairs (px‐ol and mask‐ol) further demonstrate isotopic equilibrium at magmatic temperatures. We present a mass‐dependent fractionation line for bulk materials with a slope of 0.526 ± 0.016 (1SE) comparable to the slope obtained in an earlier study (0.526 ± 0.013; Franchi et al. 1999). We also present a new Martian fractionation line for SNCs constructed from separated fractions (i.e., pyroxene, olivine, and maskelynite) with a slope of 0.532 ± 0.009 (1SE). The identical fractionation lines run above and parallel to our terrestrial fractionation line with Δ17O = 0.318 ± 0.016‰ (SD) for bulk materials and 0.316 ± 0.009‰ (SD) for separated fractions. The conformity in slopes and Δ17O between bulk materials and separated fractions confirm oxygen isotope homogeneity in the Martian mantle though recent studies suggest that the Martian lithosphere may potentially have multiple oxygen isotope reservoirs.  相似文献   

8.
Abstract— The newly found meteorite Northwest Africa 6234 (NWA 6234) is an olivine (ol)‐phyric shergottite that is thought, based on texture and mineralogy, to be paired with Martian shergottite meteorites NWA 2990, 5960, and 6710. We report bulk‐rock major‐ and trace‐element abundances (including Li), abundances of highly siderophile elements, Re‐Os isotope systematics, oxygen isotope ratios, and the lithium isotope ratio for NWA 6234. NWA 6234 is classified as a Martian shergottite, based on its oxygen isotope ratios, bulk composition, and bulk element abundance ratios, Fe/Mn, Al/Ti, and Na/Al. The Li concentration and δ7Li value of NWA 6234 are similar to that of basaltic shergottites Zagami and Shergotty. The rare earth element (REE) pattern for NWA 6234 shows a depletion in the light REE (La‐Nd) compared with the heavy REE (Sm‐Lu), but not as extreme as the known “depleted” shergottites. Thus, NWA 6234 is suggested to belong to a new category of shergottite that is geochemically “intermediate” in incompatible elements. The only other basaltic or ol‐phyric shergottite with a similar “intermediate” character is the basaltic shergottite NWA 480. Rhenium‐osmium isotope systematics are consistent with this intermediate character, assuming a crystallization age of 180 Ma. We conclude that NWA 6234 represents an intermediate compositional group between enriched and depleted shergottites and offers new insights into the nature of mantle differentiation and mixing among mantle reservoirs in Mars.  相似文献   

9.
Among the many ungrouped meteorites, Acfer 370, NWA 7135, and El Médano 301—probably along with the chondritic inclusion in Cumberland Falls and ALHA 78113—represent a homogeneous grouplet of strongly reduced forsterite‐rich chondrites characterized by common textural, chemical, mineralogical, and isotopic features. All of these meteorites are much more reduced than OCs, with a low iron content in olivine and low‐Ca pyroxene. In particular, Acfer 370 is a type 4 chondrite that has olivine and low‐Ca pyroxene compositional ranges of Fa 5.2–5.8 and Fs 9.4–33.4, respectively. The dominant phase is low‐Ca pyroxene (36.3 vol%), followed by Fe‐Ni metal (16.3 vol%) and olivine (15.5 vol%); nevertheless, considering the Fe‐oxyhydroxide (due to terrestrial weathering), the original metal content was around 29.6 vol%. Finally, the mean oxygen isotopic composition Δ17O = +0.68‰ along with the occurrence of a silica phase, troilite, Ni‐rich phosphides, chromite, and oldhamite confirms that these ungrouped meteorites have been affected by strong reduction and are different from any other group recognized so far.  相似文献   

10.
We determined the chlorine isotope composition of 16 Martian meteorites using gas source mass spectrometry on bulk samples and in situ secondary ion microprobe analysis on apatite grains. Measured δ37Cl values range from ?3.8 to +8.6‰. The olivine‐phyric shergottites are the isotopically lightest samples, with δ37Cl mostly ranging from ?4 to ?2‰. Samples with evidence for a crustal component have positive δ37Cl values, with an extreme value of 8.6‰. Most of the basaltic shergottites have intermediate δ37Cl values of ?1 to 0‰, except for Shergotty, which is similar to the olivine‐phyric shergottites. We interpret these data as due to mixing of a two‐component system. The first component is the mantle value of ?4 to ?3‰. This most likely represents the original bulk Martian Cl isotope value. The other endmember is a 37Cl‐enriched crustal component. We speculate that preferential loss of 35Cl to space has resulted in a high δ37Cl value for the Martian surface, similar to what is seen in other volatile systems. The basaltic shergottites are a mixture of the other two endmembers. The low δ37Cl value of primitive Mars is different from Earth and most chondrites, both of which are close to 0‰. We are not aware of any parent‐body process that could lower the δ37Cl value of the Martian mantle to ?4 to ?3‰. Instead, we propose that this low δ37Cl value represents the primordial bulk composition of Mars inherited during accretion. The higher δ37Cl values seen in many chondrites are explained by later incorporation of 37Cl‐enriched HCl‐hydrate.  相似文献   

11.
Enstatite chondrites and aubrites are meteorites that show the closest similarities to the Earth in many isotope systems that undergo mass‐independent and mass‐dependent isotopic fractionations. Due to the analytical challenges to obtain high‐precision K isotopic compositions in the past, potential differences in K isotopic compositions between enstatite meteorites and the Earth remained uncertain. We report the first high‐precision K isotopic compositions of eight enstatite chondrites and four aubrites and find that there is a significant variation of K isotopic compositions among enstatite meteorites (from ?2.34‰ to ?0.18‰). However, K isotopic compositions of nearly all enstatite meteorites scatter around the bulk silicate earth (BSE) value. The average K isotopic composition of the eight enstatite chondrites (?0.47 ± 0.57‰) is indistinguishable from the BSE value (?0.48 ± 0.03‰), thus further corroborating the isotopic similarity between Earth's building blocks and enstatite meteorite precursors. We found no correlation of K isotopic compositions with the chemical groups, petrological types, shock degrees, and terrestrial weathering conditions; however, the variation of K isotopes among enstatite meteorite can be attributed to the parent‐body processing. Our sample of the main‐group aubrite MIL 13004 is exceptional and has an extremely light K isotopic composition (δ41K = ?2.34 ± 0.12‰). We attribute this unique K isotopic feature to the presence of abundant djerfisherite inclusions in our sample because this K‐bearing sulfide mineral is predicted to be enriched in 39K during equilibrium exchange with silicates.  相似文献   

12.
We present a study of the petrology and geochemistry of basaltic shergottite Northwest Africa 2975 (NWA 2975). NWA 2975 is a medium‐grained basalt with subophitic to granular texture. Electron microprobe (EMP) analyses show two distinct pyroxene compositional trends and patchy compositional zoning patterns distinct from those observed in other meteorites such as Shergotty or QUE 94201. As no bulk sample was available to us for whole rock measurements, we characterized the fusion crust and its variability by secondary ion mass spectrometer (SIMS) measurements and laser ablation inductively coupled plasma spectroscopy (LA‐ICP‐MS) analyses as a best‐available proxy for the bulk rock composition. The fusion crust major element composition is comparable to the bulk composition of other enriched basaltic shergottites, placing NWA 2975 within that sample group. The CI‐normalized REE (rare earth element) patterns are flat and also parallel to those of other enriched basaltic shergottites. Merrillite is the major REE carrier and has a flat REE pattern with slight depletion of Eu, parallel to REE patterns of merrillites from other basaltic shergottites. The oxidation state of NWA 2975 calculated from Fe‐Ti oxide pairs is NNO‐1.86, close to the QFM buffer. NWA 2975 represents a sample from the oxidized and enriched shergottite group, and our measurements and constraints on its origin are consistent with the hypothesis of two distinct Martian mantle reservoirs: a reduced, LREE‐depleted reservoir and an oxidized, LREE‐enriched reservoir. Stishovite, possibly seifertite, and dense SiO2 glass were also identified in the meteorite, allowing us to infer that NWA 2975 experienced a realistic shock pressure of ~30 GPa.  相似文献   

13.
Abstract– The oxygen fugacities recorded in the nakhlites Nakhla, Yamato‐000593 (Y‐000593), Lafayette, and NWA998 were studied by applying the Fe,Ti‐oxide oxybarometer. Oxygen fugacities obtained cluster closely around the FMQ (Fayalite–Magnetite–Quartz) buffer (NWA998 = FMQ ? 0.8; Y‐000593 = FMQ ? 0.7; Nakhla = FMQ; Lafayette = FMQ + 0.1). The corresponding equilibration temperatures are 810 °C for Nakhla and Y‐000593, 780 °C for Lafayette and 710 °C for NWA998. All nakhlites record oxygen fugacities significantly higher and with a tighter range than those determined for Martian basalts, i.e., shergottites whose oxygen fugacities vary from FMQ ? 1 to FMQ ? 4. It has been known for some time that nakhlites are different from other Martian meteorites in chemistry, mineralogy, and crystallization age. The present study adds oxygen fugacity to this list of differences. The comparatively large variation in fO2 recorded by shergottites was interpreted by Herd et al. (2002) as reflecting variable degrees of contamination with crustal fluids that would also carry a light rare earth element (REE)‐enriched component. The high oxygen fugacities and the large light REE enrichment of nakhlites fit qualitatively in this model. In detail, however, it is found that the inferred contaminating phase in nakhlites must have been different from those in shergottites. This is supported by unique 182W/184W and 142Nd/144Nd ratios in nakhlites, which are distinct from other Martian meteorites. It is likely that the differences in fO2 between nakhlites and other Martian meteorites were established very early in the history of Mars. Parental trace element rich and trace element poor regions (reservoirs) of Mars mantle ( Brandon et al. 2000 ) must have been kept isolated throughout Martian history. Our results further show significant differences in closure temperature among the different nakhlites. The observed range in equilibration temperatures together with similar fO2 values is attributable to crystallization of nakhlites in the same cumulate pile or lava layer at different burial depths from 0.5 to 30 m below the Martian surface in agreement with Mikouchi et al. (2003) and is further confirmed by similar crystallization ages of about 1.3 Ga ago (e.g., Misawa et al. 2003 ).  相似文献   

14.
NWA 2737, a Martian meteorite from the Chassignite subclass, contains minute amounts (0.010 ± 0.005 vol%) of metal‐saturated Fe‐Ni sulfides. These latter bear evidence of the strong shock effects documented by abundant Fe nanoparticles and planar defects in Northwest Africa (NWA) 2737 olivine. A Ni‐poor troilite (Fe/S = 1.0 ± 0.01), sometimes Cr‐bearing (up to 1 wt%), coexists with micrometer‐sized taenite/tetrataenite‐type native Ni‐Fe alloys (Ni/Fe = 1) and Fe‐Os‐Ir‐(Ru) alloys a few hundreds of nanometers across. The troilite has exsolved flame‐like pentlandite (Fe/Fe + Ni = 0.5–0.6). Chalcopyrite is almost lacking, and no pyrite has been found. As a hot desert find, NWA 2737 shows astonishingly fresh sulfides. The composition of troilite coexisting with Ni‐Fe alloys is completely at odds with Chassigny and Nahkla sulfides (pyrite + metal‐deficient monoclinic‐type pyrrhotite). It indicates strongly reducing crystallization conditions (close to IW), several log units below the fO2 conditions inferred from chromites compositions and accepted for Chassignites (FMQ‐1 log unit). It is proposed that reduction in sulfides into base and precious metal alloys is operated via sulfur degassing, which is supported by the highly resorbed and denticulated shape of sulfide blebs and their spongy textures. Shock‐related S degassing may be responsible for considerable damages in magmatic sulfide structures and sulfide assemblages, with concomitant loss of magnetic properties as documented in some other Martian meteorites.  相似文献   

15.
Zircons and apatites in clasts and matrix from the Martian breccia NWA 7034 are well documented, timing ancient geologic events on Mars. Furthermore, in this study, zircon trace elemental content, apatite volatile content, and apatite volatile isotopic compositions measured in situ could constrain the evolution of those geologic events. The U‐Pb dates of zircons in basalt, basaltic andesite, trachyandesite igneous clasts, and the matrix are similar (4.4 Ga) suggesting intense volcanism on ancient Mars. However, two metamict zircon grains found in the matrix have an upper intercept date of ~4465 Ma in crystalline, whereas amorphous areas have a lower intercept date of 1634 ± 93 Ma. The younger date is consistent with the date of apatites (1530 ± 65 Ma), suggesting a metamorphic event that completely reset the U‐Pb system in both the amorphous areas of zircon and all apatites. δD values in all apatites negatively correlate with water content in a two‐endmember mixing trend. The D (δD up to 2459‰) and 37Cl heavy core (3.8‰) of a large apatite grain suggest a D‐, 37Cl‐rich fluid during the metamorphic event ~1.6 Ga ago, consistent with the trace elements Y, Hf and Ti and P in zircons. The fluid was also therefore P‐rich. The D‐, 37Cl‐poor H2O‐rich rim (<313‰) suggests the degassing of water from the Martian Cl‐poor interior at a later time. This D‐, 37Cl‐poor Martian mantle reservoir could have derived from volcanic intrusions postdating the younger metamorphic event recorded in NWA 7034.  相似文献   

16.
High‐precision isotope data of meteorites show that the long‐standing notion of a “chondritic uniform reservoir” is not always applicable for describing the isotopic composition of the bulk Earth and other planetary bodies. To mitigate the effects of this “isotopic crisis” and to better understand the genetic relations of meteorites and the Earth‐forming reservoir, we performed a comprehensive petrographic, elemental, and multi‐isotopic (O, Ca, Ti, Cr, Ni, Mo, Ru, and W) study of the ungrouped achondrites NWA 5363 and NWA 5400, for both of which terrestrial O isotope signatures were previously reported. Also, we obtained isotope data for the chondrites Pillistfer (EL6), Allegan (H6), and Allende (CV3), and compiled available anomaly data for undifferentiated and differentiated meteorites. The chemical compositions of NWA 5363 and NWA 5400 are strikingly similar, except for fluid mobile elements tracing desert weathering. We show that NWA 5363 and NWA 5400 are paired samples from a primitive achondrite parent‐body and interpret these rocks as restite assemblages after silicate melt extraction and siderophile element addition. Hafnium‐tungsten chronology yields a model age of 2.2 ± 0.8 Myr after CAI, which probably dates both of these events within uncertainty. We confirm the terrestrial O isotope signature of NWA 5363/NWA 5400; however, the discovery of nucleosynthetic anomalies in Ca, Ti, Cr, Mo, and Ru reveals that the NWA5363/NWA 5400 parent‐body is not the “missing link” that could explain the composition of the Earth by the mixing of known meteorites. Until this “missing link” or a direct sample of the terrestrial reservoir is identified, guidelines are provided of how to use chondrites for estimating the isotopic composition of the bulk Earth.  相似文献   

17.
The bulk chlorine concentrations and isotopic compositions of a suite of non‐carbonaceous (NC) and carbonaceous (CC) iron meteorites were measured using gas source mass spectrometry. The δ37Cl values of magmatic irons range from ?7.2 to 18.0‰ versus standard mean ocean chloride and are unrelated to their chlorine concentrations, which range from 0.3 to 161 ppm. Nonmagmatic IAB irons are comparatively Cl‐rich containing >161 ppm with δ37Cl values ranging from ?6.1 to ?3.2‰. The anomalously high and low δ37Cl values are inconsistent with a terrestrial source, and as Cl contents in magmatic irons are largely consistent with derivation from a chondrite‐like silicate complement, we suggest that Cl is indigenous to iron meteorites. Two NC irons, Cape York and Gibeon, have high cooling rates with anomalously high δ37Cl values of 13.4 and 18.0‰. We interpret these high isotopic compositions to result from Cl degassing during the disruption of their parent bodies, consistent with their low volatile contents (Ga, Ge, Ag). As no relevant mechanisms in iron meteorite parent bodies are expected to decrease δ37Cl values, whereas volatilization is known to increase δ37Cl values by the preferential loss of light isotopes, we interpret the low isotope values of <?5‰ and down to ?7.2‰ to most closely represent the primordial isotopic composition of Cl in the solar nebula. Similar conclusions have been derived from low δ37Cl values down to ?6, and ?3.8‰ measured in Martian and Vestan meteorites, respectively. These low δ37Cl values are in contrast to those of chondrites which average around 0‰ previously explained by the incorporation of isotopically heavy HCl clathrate into chondrite parent bodies. The poor retention of low δ37Cl values in many differentiated planetary materials suggest that extensive devolatilization occurred during planet formation, which can explain Earth's high δ37Cl value by the loss of approximately 60% of the initial Cl content.  相似文献   

18.
Northwest Africa (NWA) 4734 is an unbrecciated basaltic lunar meteorite that is nearly identical in chemical composition to basaltic lunar meteorites NWA 032 and LaPaz Icefield (LAP) 02205. We have conducted a geochemical, petrologic, mineralogic, and Sm‐Nd, Rb‐Sr, and Ar‐Ar isotopic study of these meteorites to constrain their petrologic relationships and the origin of young mare basalts. NWA 4734 is a low‐Ti mare basalt with a low Mg* (36.5) and elevated abundances of incompatible trace elements (e.g., 2.00 ppm Th). The Sm‐Nd isotope system dates NWA 4734 with an isochron age of 3024 ± 27 Ma, an initial εNd of +0.88 ± 0.20, and a source region 147Sm/144Nd of 0.201 ± 0.001. The crystallization age of NWA 4734 is concordant with those of LAP 02205 and NWA 032. NWA 4734 and LAP 02205 have very similar bulk compositions, mineral compositions, textures, and ages. Their source region 147Sm/144Nd values indicate that they are derived from similar, but distinct, source materials. They probably do not sample the same lava flow, but rather are similarly sourced, but isotopically distinct, lavas that probably originate from the same volcanic complex. They may have experienced slightly different assimilation histories in route to eruption, but can be source‐crater paired. NWA 032 remains enigmatic, as its source region 147Sm/144Nd definitively precludes a simple relationship with NWA 4734 and LAP 02205, despite a similar bulk composition. Their high Ti/Sm, low (La/Yb)N, and Cl‐poor apatite compositions rule out the direct involvement of KREEP. Rather, they are consistent with low‐degree partial melting of late‐formed LMO cumulates, and indicate that the geochemical characteristics attributed to urKREEP are not unique to that reservoir. These and other basaltic meteorites indicate that the youngest mare basalts originate from multiple sources, and suggest that KREEP is not a prerequisite for the most recent known melting in the Moon.  相似文献   

19.
The petrologic and oxygen isotopic characteristics of calcium‐aluminum‐rich inclusions (CAIs) in CO chondrites were further constrained by studying CAIs from six primitive CO3.0‐3.1 chondrites, including two Antarctic meteorites (DOM 08006 and MIL 090010), three hot desert meteorites (NWA 10493, NWA 10498, and NWA 7892), and the Colony meteorite. The CAIs can be divided into hibonite‐bearing inclusions (spinel‐hibonite spherules, monomineralic grains, hibonite‐pyroxene microspherules, and irregular/nodular objects), grossite‐bearing inclusions (monomineralic grains, grossite‐melilite microspherules, and irregular/nodular objects), melilite‐rich inclusions (fluffy Type A, compact type A, monomineralic grains, and igneous fragments), spinel‐pyroxene inclusions (fluffy objects resembling fine‐grained spinel‐rich inclusions in CV chondrites and nodular/banded objects resembling those in CM chondrites), and pyroxene‐anorthite inclusions. They are typically small (98.4 ± 54.4 µm, 1SD) and comprise 1.54 ± 0.43 (1SD) area% of the host chondrites. Melilite in the hot desert and Colony meteorites was extensively replaced by a hydrated Ca‐Al‐silicate during terrestrial weathering and converted melilite‐rich inclusions into spinel‐pyroxene inclusions. The CAI populations of the weathered COs are very similar to those in CM chondrites, suggesting that complete replacement of melilite by terrestrial weathering, and possibly parent body aqueous alteration, would make the CO CAIs CM‐like, supporting the hypothesis that CO and CM chondrites derive from similar nebular materials. Within the CO3.0‐3.1 chondrites, asteroidal alteration significantly resets oxygen isotopic compositions of CAIs in CO3.1 chondrites (?17O: ?25 to ?2‰) but left those in CO3.0‐3.05 chondrites mostly unchanged (?17O: ?25 to ?20‰), further supporting the model whereby thermal metamorphism became evident in CO chondrites of petrologic type ≥3.1. The resistance of CAI minerals to oxygen isotope exchange during thermal metamorphism follows in the order: melilite + grossite < hibonite + anorthite < spinel + diopside + forsterite. Meanwhile, terrestrial weathering destroys melilite without changing the chemical and isotopic compositions of melilite and other CAI minerals.  相似文献   

20.
The petrogenesis of the Northwest Africa (NWA) 7635 Martian meteorite involved the entrainment of xenocrystic olivine grains into a relatively magnesian and oxidized melt, followed by a redox-dependent reaction between olivine and melt that resulted in the crystallization of orthopyroxene and magnetite. Subsequent crystallization of the melt began with augite, plagioclase, and magnetite phenocrysts, and was followed by crystallization of augite, plagioclase, magnetite, ilmenite, and pyrrhotite in the groundmass, which took place under more rapid conditions of cooling, as reflected in the groundmass grain size. The petrogenetic history of NWA 7635 is similar in many ways to that of NWA 8159; this observation, coupled with similarities in geochemical and isotopic characteristics from other studies, suggests that the parent melts of the two rocks—as represented by all minerals except the xenocrystic olivine—were one and the same. The main distinctions between the two rocks are that their parent melts entrained xenocrystic olivine of different composition, and the cooling rate of the groundmass of NWA 7635 was more rapid than that of NWA 8159. The conclusion that the redox reaction took place between olivine and melt is in contrast to other work that suggests the reaction took place in the subsolidus, and has implications for the nature of the reaction in both NWA 7635 and NWA 8159.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号