首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Collisions between planetesimals were common during the first approximately 100 Myr of solar system formation. Such collisions have been suggested to be responsible for thermal processing seen in some meteorites, although previous work has demonstrated that such events could not be responsible for the global thermal evolution of a meteorite parent body. At this early epoch in solar system history, however, meteorite parent bodies would have been heated or retained heat from the decay of short‐lived radionuclides, most notably 26Al. The postimpact structure of an impacted body is shown here to be a strong function of the internal temperature structure of the target body. We calculate the temperature–time history of all mass in these impacted bodies, accounting for their heating in an onion‐shell–structured body prior to the collision event and then allowing for the postimpact thermal evolution as heat from both radioactivities and the impact is diffused through the resulting planetesimal and radiated to space. The thermal histories of materials in these bodies are compared with what they would be in an unimpacted, onion‐shell body. We find that while collisions in the early solar system led to the heating of a target body around the point of impact, a greater amount of mass had its cooling rates accelerated as a result of the flow of heated materials to the surface during the cratering event.  相似文献   

2.
Thermal models of asteroids generally assume that they accreted either instantaneously or over an extended interval with a prescribed growth rate. It is conventionally assumed that the onset of accretion of chondrite parent bodies was delayed until a substantial fraction of the initial 26Al had decayed. However, this interval is not consistent with the early melting, and differentiation of parent bodies of iron meteorites. Formation time scales are tested by dynamical simulations of accretion from small primary planetesimals. Gravitational accretion yields rapid runaway growth of large planetary embryos until most smaller bodies are depleted. In a given simulation, all asteroid‐sized bodies have comparable growth times, regardless of size. For plausible parameters, growth times are shorter than the lifetime of 26Al, consistent with thermal models that assume instantaneous accretion. Rapid growth after planetesimal formation is consistent with differentiation of parent bodies of iron meteorites, but not with the assumed delay in formation of chondritic bodies. After the initial growth stage, there is an interval of slower evolution until the belt is stirred and the embryos are dynamically removed. During this interval, a fraction of asteroid‐sized bodies experience large accretional impacts, allowing bodies of the same final size to have very different histories of radius versus time. Accretion from small primary planetesimals leaves some fraction of material in bodies small enough to preserve CAIs while avoiding heating by 26Al. Unheated material can be a significant fraction of the mass that remains after large embryos are removed from the Main Belt.  相似文献   

3.
Cadmium is a highly volatile element and its abundance in meteorites may help better understand volatility‐controlled processes in the solar nebula and on meteorite parent bodies. The large thermal neutron capture cross section of 113Cd suggests that Cd isotopes might be well suited to quantify neutron fluences in extraterrestrial materials. The aims of this study were (1) to evaluate the range and magnitude of Cd concentrations in magmatic iron meteorites, and (2) to assess the potential of Cd isotopes as a neutron dosimeter for iron meteorites. Our new Cd concentration data determined by isotope dilution demonstrate that Cd concentrations in iron meteorites are significantly lower than in some previous studies. In contrast to large systematic variations in the concentration of moderately volatile elements like Ga and Ge, there is neither systematic variation in Cd concentration amongst troilites, nor amongst metal phases of different iron meteorite groups. Instead, Cd is strongly depleted in all iron meteorite groups, implying that the parent bodies accreted well above the condensation temperature of Cd (i.e., ≈650 K) and thus incorporated only minimal amounts of highly volatile elements. No Cd isotope anomalies were found, whereas Pt and W isotope anomalies for the same iron meteorite samples indicate a significant fluence of epithermal and higher energetic neutrons. This observation demonstrates that owing to the high Fe concentrations in iron meteorites, neutron capture mainly occurs at epithermal and higher energies. The combined Cd‐Pt‐W isotope results from this study thus demonstrate that the relative magnitude of neutron capture‐induced isotope anomalies is strongly affected by the chemical composition of the irradiated material. The resulting low fluence of thermal neutrons in iron meteorites and their very low Cd concentrations make Cd isotopes unsuitable as a neutron dosimeter for iron meteorites.  相似文献   

4.
We have developed a statistical framework that uses collisional evolution models, shock physics modeling, and scaling laws to determine the range of plausible collisional histories for individual meteorite parent bodies. It is likely that those parent bodies that were not catastrophically disrupted sustained hundreds of impacts on their surfaces—compacting, heating, and mixing the outer layers; it is highly unlikely that many parent bodies escaped without any impacts processing the outer few kilometers. The first 10–20 Myr were the most important time for impacts, both in terms of the number of impacts and the increase of specific internal energy due to impacts. The model has been applied to evaluate the proposed impact histories of several meteorite parent bodies: up to 10 parent bodies that were not disrupted in the first 100 Myr experienced a vaporizing collision of the type necessary to produce the metal inclusions and chondrules on the CB chondrite parent; around 1–5% of bodies that were catastrophically disrupted after 12 Myr sustained impacts at times that match the heating events recorded on the IAB/winonaite parent body; more than 75% of 100 km radius parent bodies, which survived past 100 Myr without being disrupted, sustained an impact that excavates to the depth required for mixing in the outer layers of the H‐chondrite parent body; and to protect the magnetic field on the CV chondrite parent body, the crust would have had to have been thick (approximately 20 km) to prevent it being punctured by impacts.  相似文献   

5.
A parent body of the Lovina meteorite underwent processes which yielded dentritic structures of taenite in phosphide-sulfide-metal matrix unusual for iron meteorites. Similar dendritic structures can be found also in IIE meteorites as microinclusions but are unknown in other iron meteorites. The similarity between dendritic structures in the Lovina meteorite and metal-phosphide inclusions in IIE iron meteorites implies similar processes which led to their crystallization from molten materials in chambers of various sizes. Studying physical and chemical crystallization parameters of metal-phosphide inclusions in the Elga meteorite (IIE) makes it feasible to estimate the p-T conditions required for the unique Lovina meteorite to have formed. It is shown that dendrites in the Lovina meteorite may have been crystallized from molten materials close in composition to P-FeNi and P-S-FeNi that are produced when phosphides and sulfides melt locally in metals as a result of impact events with subsequent fast cooling. The temperature of homogeneous melting is likely to have been more than 1450°C, and the starting temperature of crystallization of such molten materials is estimated to have been between 1050 and 1150°C. The cooling rate of inclusions can be estimated to be 10−3 °C s−1, based on the structural and chemical concordance between samples obtained experimentally (Chabot et al., 2000) and metal-phosphide inclusions (P-FeNi and P-S-FeNi) in the Elga meteorite. Large-sized dendrites in the Lovina meteorite imply cooling rates that are considerably less than 10−3 °C s−1.  相似文献   

6.
Stony-iron meteorites formed at the core/mantle interfaces of small asteroidal parents. The mesosiderites formed when the thick crust of a largely molten parent body (100–200 km in diameter) foundered and sank through the mantle to the core. Pallasites formed in smaller parent bodies (50–100 km) in which olivine crystals from the partially molten mantle sank to the core/mantle interface and rafted there. Subsequent collisions stripped away the rocky mantles of both kinds of parent bodies, exposing the stony-iron surfaces of their cores to direct impacts, which continue to knock off meteorite fragments.  相似文献   

7.
The acapulcoite‐lodranite meteorites are members of the primitive achondrite class. The observation of partial melting and resulting partial removal of Fe‐FeS indicates that this meteorite group could be an important link between achondrite and iron meteorites, on the one hand, and chondrite meteorites, on the other. Thus, a better understanding of the thermomechanical evolution of the parent body of this meteorite group can help improve our understanding of the evolution of early planetesimals. Here, we use 2‐D and 3‐D finite‐difference numerical models to determine the formation time, initial radius of the parent body of the acapulcoite‐lodranite meteorites, and their formation depth inside the body by applying available geochronological, thermal, and textural constraints to our numerical data. Our results indicate that the best fit to the data can be obtained for a parent body with 25–65 km radius, which formed around 1.3 Ma after calcium‐aluminum‐rich inclusions. The 2‐D and 3‐D results considering various initial temperatures and the effect of porosity indicate possible formation depths of the acapulcoite‐lodranite meteorites of 9–19 and 14–25 km, respectively. Our data also suggest that other meteorite classes could form at different depths inside the same parent body, supporting recently proposed models (Elkins‐Tanton et al. 2011 ; Weiss and Elkins‐Tanton 2013 ).  相似文献   

8.
Abstract— Motivated by recent observations of T-Tauri stars and the interpretation of these observations in terms of the properties of circumstellar disks, we derive internal (midplane) temperatures for disks around mature (age ~1 Ma) T-Tauri stars. The estimates are obtained by combining published results for disk masses, sizes, accretion rates, and surface temperatures. For 26 stars (for which adequate data are available), we derive midplane temperatures at 1 AU primarily in the range 200–800 K, and 100–400 K at 2.5 AU. It is likely that the solar nebula, at the same stage of evolution, contained planetesimals and objects destined to become meteorite parent bodies. Observations of young stellar objects at earlier stages of evolution (age ~0.1 Ma) imply that accretion rates were, on the average, at least two orders of magnitude greater than the 10?8 M/year rates typical for mature T-Tauri stars. Such high values would result in midplane temperatures at or near the silicate vaporization temperature in the terrestrial planet region. If cooling of the solar nebula from such a hot epoch was responsible for establishing the pervasive elemental fractionation patterns found in chondritic meteorites, then objects in the asteroid belt must have grown rapidly (within 0.1 Ma) to sizes of ~1 km, a conclusion consistent with current theories of planetesimal formation. However, the fact that primitive meteorite parent bodies escaped being melted by the decay of 26Al then implies that further growth of at least some objects was essentially delayed for 2 Ma or more. Such a diminished growth rate appears to be consistent with simulations of the dynamics of solid bodies in the asteroid belt. Other hypotheses seem less attractive. One might assume that the final cooling occurred only after the decay of 26Al (i.e., more than a million years after calcium-aluminum rich inclusion formation), or that 26Al was not ubiquitous in the early solar system. But the first of these conjectures is incompatible with astronomical observations of T-Tauri systems, and the second appears to be contradicted by the evidence for 26Al in diverse meteoritic components. The remaining alternative would then appear to be that, despite a lack of supporting evidence, chondritic fractionation patterns reflect the net effect of many local heating and cooling events and have nothing to do with global nebular cooling. We conclude that the most plausible hypothesis is that both nebular cooling and coagulation of solids to kilometer-sized objects occurred rapidly and that a substantial number of planetesimals in the asteroid belt remained smaller than a few kilometers in radius for at least 2 Ma.  相似文献   

9.
Abstract— Widespread evidence exists for heating that caused melting, thermal metamorphism, and aqueous alteration in meteorite parent bodies. Previous simulations of asteroid heat transfer have assumed that accretion was instantaneous. For the first time, we present a thermal model that assumes a realistic (incremental) accretion scenario and takes into account the heat budget produced by decay of 26Al during the accretion process. By modeling 6 Hebe (assumed to be the H chondrite parent body), we show that, in contrast to results from instantaneous accretion models, an asteroid may reach its peak temperature during accretion, the time at which different depth zones within the asteroid attain peak metamorphic temperatures may increase from the center to the surface, and the volume of high‐grade material in the interior may be significantly less than that of unmetamorphosed material surrounding the metamorphic core. We show that different times of initiation and duration of accretion produce a spectrum of evolutionary possibilities, and thereby, highlight the importance of the accretion process in shaping an asteroid's thermal history. Incremental accretion models provide a means of linking theoretical models of accretion to measurable quantities (peak temperatures, cooling rates, radioisotope closure times) in meteorites that were determined by their thermal histories.  相似文献   

10.
K.L. Rasmussen 《Icarus》1982,52(3):444-453
Cooling rates and nucleation histories of six low-Ni and two high-Ni members of group IVA iron meteorites were calculated by a mid-taenite concentration-taenite lamella width method that included the effects of local bulk Ni and P variation. The local bulk Ni is determined experimentally as described in K. L. Rasmussen [Icarus45, 564–576 (1981)]. The local bulk P parameter, included for the first time in the present work, is estimated from the phase diagram during the simulation. Two parent bodies are suggested for group IVA. The body containing the high-Ni members had a cooling rate (~2°K/My) lower than earlier cooling rate determinations on IVA members. The variable (by a factor of 4) cooling rates found for the low-Ni members imply a raisin origin. The nucleation histories of the meteorites are interpreted as reflecting the very early shock histories of the meteorite parent bodies.  相似文献   

11.
Low‐temperature specific heat capacities of meteorites provide valuable data for understanding the composition and evolution of meteorites and modeling the thermal behavior of their source asteroids. By liquid nitrogen immersion, we measured average low‐temperature heat capacities for 60 ordinary chondrite falls from the Vatican collection. We further characterized the temperature dependence of ordinary chondrite by direct measurement of Cp(T) over the range 5–320 K for five OC falls, coupled by composition‐based models for 94 ordinary chondrites. We find that the heat capacity as a function of temperature for typical ordinary chondrites can be closely approximated by a third‐order polynomial in temperature. Furthermore, those polynomial coefficients can be estimated from the single‐value average heat capacity measurement. These measurements have important implications for the orbital and spin evolution of S‐ and Q‐type asteroids via the various Yarkovsky effects and the thermal evolution of meteorite parent bodies.  相似文献   

12.
Abstract— The S(IV)-type asteroid 6 Hebe is identified as the probable parent body of the H-type ordinary chondrites and of the IIE iron meteorites. The ordinary chondrites are the most common type of meteorites falling to Earth; but prior to the present study, no large mainbelt source bodies have been confirmed. Hebe is located adjacent to both the v6 and 3:1 resonances and has been previously suggested as a major potential source of the terrestrial meteorite flux. Hebe exhibits subtle rotational spectral variations, indicating the presence of some compositional variations across its surface. The silicate portion of the surface assemblage of Hebe is consistent (both in overall average and in its range of variation) with the silicate components in the suite of H-type chondrites. The high albedo of Hebe rules out a lunar-style space weathering process to produce the weakened absorption features and reddish spectral slope in the S-type spectrum of Hebe. Linear unmixing models show that a typical Ni-Fe metal spectrum is consistent with the component that modifies an H-chondrite spectrum to produce the S-type spectrum of Hebe. On the basis of the association between the H chondrites and the HE iron meteorites, our model suggests that large impacts onto the relatively metal-rich H-chondrite target produced melt bodies (sheets or pods) that differentiated to form thin, laterally extensive near-surface layers of Ni-Fe metal. Fragments of the upper silicate portions of these melt bodies are apparently represented by some of the igneous inclusions in H-chondrite breccias. Alternately, masses of metal could have been deposited on the surface of Hebe by the impact of a core or core fragment from a differentiated parent body of H-chondrite composition. Subsequent impacts preferentially eroded and depleted the overlying silicate and regolith components, exposing and maintaining large masses of metal at the optical surface of Hebe. In this interpretation, the nonmagmatic IIE iron meteorites are samples of the Ni-Fe metal masses on the surface of Hebe, whereas the H chondrites are samples from between and/or beneath the metal masses.  相似文献   

13.
Abstract— The complete (or near complete) differentiation of a chondritic parent body is believed to result in an object with an Fe-Ni core, a thick olivine-dominated mantle and a thin plagioclase/pyroxene crust. Compositional groupings of iron meteorites give direct evidence that at least 60 chondritic parent bodies have been differentiated and subsequently destroyed. A long standing problem has been that our meteorite collections, and apparently our asteroid observations as well, show a great absence of olivine-dominated metal-free mantle material. While the basaltic achondrites (HED meteorites) represent metal-free pyroxene-dominated crustal samples, the isotopic and geochemical evidence implies that this class is derived from only one parent body (perhaps Vesta). Thus the meteoritic (and perhaps astronomical) evidence also suggests a great absence of crustal material resulting from the collisional disruption of numerous parent bodies. One explanation for the rarity of olivine-dominated metal-free and basaltic asteroids that fits all the available evidence is that all differentiated parent bodies, with the exception of Vesta, were either disrupted or had their crusts and mantles stripped very early in the age of the solar system. The resulting basaltic and olivine-dominated metal-free fragments were continually broken down until their sizes dropped at least below our current astronomical measurement limit (~5–10 km for inner-belt objects) and perhaps completely comminuted such that meteorite samples are no longer delivered. Because of their greater strengths and longer survival time in interplanetary space, only the iron and the stony-iron meteorites remain as the final tracers of this differentiation and collisional history. However, other scenarios remain plausible such as those which invoke “space weathering” processes that effectively disguise the distinctive basaltic and olivine spectra of possible remnant crustal and mantle material within the main asteroid belt.  相似文献   

14.
Abstract— Keil and Wilson (1993) proposed that, during partial melting of some asteroidal meteorite parent bodies, explosive pyroclastic volcanism accelerated S-rich Fe, Ni-FeS cotectic partial melts into space. These authors argued that this process was responsible for the S-depletion of many of the magmas from which the magmatic iron meteorites formed. This process only requires the presence of a few hundred to thousand ppm of volatiles in asteroids < ~100 km in radius. If the precursor materials of these magmatic iron meteorite groups were similar in composition to unequilibrated ordinary chondrites, then the volatile contents of the latter may be a measure of the potential effectiveness of the process. Analysis of volatile contents of seven unequilibrated ordinary chondrite falls by dynamic high-temperature mass spectrometry revealed that thousands of ppm of indigeneous volatiles, mostly CO, Cl, Na and S, are released at temperatures near the Fe, Ni-FeS cotectic melting temperature of ~980 °C. If these volatiles are largely retained in the asteroidal parent bodies until onset of partial melting, S depletion of the residual melt might have been achieved by ejection of S-rich partial Fe, Ni-FeS melts by pyroclastic volcanism.  相似文献   

15.
Impact events have played a central role in the life of meteorites. They compacted and lithified the dust from which meteorites are made; produced shock minerals, shock melting, and shock blackening of meteoritic minerals on their parent bodies; turned their parent bodies into rubble; and dispersed at least some pieces of this rubble, sending them to Earth as meteorites. Thus, as well as owing their very existence to the occurrence of catastrophic disruptions, meteorites contain physical ground truth concerning the impact and disruption environment of the solar system. Reviewing these aspects of the impact-meteorite connection, we conclude that impacts severe enough to disrupt asteroids were rare in the earliest stages of the solar nebula, when meteorite parent bodies accreted and were lithified. Likewise, though catastrophic disruptions clearly have occurred over the past several billion years, the small number of exposure events seen in the meteoritic cosmic ray age record indicates that such disruptions at these times also were rare. However, catastrophic disruptions must have been very prevalent during the first billion years of the solar system, resulting in the widespread asteroid macroporosity inferred from the comparison of asteroid bulk densities to meteorite grain densities.  相似文献   

16.
《Icarus》1987,69(1):1-13
If chondritic meteorites were internally heated after accretion had ended, then the hottest material would have been buried the deepest and should have cooled the slowest. If this is correct, there ought to be a correlation between cooling rate and petrographic type, a measure of the extent to which chondrites were metamorphosed (i.e., heated). Published and new cooling rates derived from the compositions of metallic iron-nickel grains do not display this correlation, implying either that chondrite parent asteroids never had onion-shell structures or that bodies with onion-shell structures were broken up and reassembled prior to cooling to below 500°C, the temperature at which cooling-rate information is recorded in metallic iron-nickel. Chondritic regolith breccias formed from materials that resided on the surfaces of their parent asteroids. Metallic iron-nickel grains in H- and L-chondrite regolith breccias indicate that the breccia constituents cooled at rates ranging from 1 to > 1000°K/myr. Based on thermal calculations, these cooling rates suggest that the materials spread out on the surfaces of H- and L-chondrite parent asteroids originated at depths ranging from about one kilometer to several tens of kilometers. Craters deep enough to excavate tens of kilometers cannot form on typical asteroidal bodies only 100 to 300 km in diameter without disrupting them. Therefore, it appears that at least some asteroids, namely, the parent bodies of H and L chondrites, were disrupted after cooling to below 300°C, and then reassembled to create surfaces containing rocks that originated at a wide range of depths. These results support theoretical calculations suggesting that many asteroids were broken up and subsequently reassembled into gravitationally bound rubble piles.  相似文献   

17.
Abstract— We give a nonmathematical review of recent work regarding the Yarkovsky effect on asteroidal fragments. This effect may play a critical, but underappreciated, role in delivering meteorites to Earth. Two variants of the effect cause drifts in orbital elements, notably semimajor axes. The “classic” or “diurnal” Yarkovsky effect is associated with diurnal rotation at low obliquity. More recently, a “seasonal” effect has also been described, associated with high obliquity. Studies of these Yarkovsky effects are combined with studies of resonance effects to clarify meteorite delivery. If there were no Yarkovsky drift, asteroid fragments could reach a resonance only if produced very near that resonance. However, objects in resonances typically reach Earth-crossing orbits within a few million years, which is inconsistent with stone meteorites' cosmic-ray exposure (CRE) ages (5–50 Ma) and iron meteorites' CRE ages (100–1000 Ma). In the new view, on the other hand, large objects in the asteroid belt are “fixed” in semimajor axis, but bodies up to 100 m in diameter are in a constant state of mixing and flow, especially if the thermal conductivity of their surface layers is low. Thus, small asteroid fragments may reach the resonances after long periods of drift in the main belt. Yarkovsky drift effects, combined with resonance effects, appear to explain many meteorite properties, including: (1) the long CRE ages of iron meteorites (due to extensive drift lifetimes in the belt); (2) iron meteorites' sampling of numerous parent bodies; (3) the shorter CRE ages of most stone meteorites (due to faster drift, coupled with weaker strength and more rapid collisional erosion); and (4) the abundance of falls from discrete impact events near resonances, such as the 8 Ma CRE age of H chondrites. Other consequences include: the delivery of meteorite parent bodies to resonances is enhanced; proportions of stone and iron meteorites delivered to Earth may be different from the proportions at the same sizes left in the belt, which in turn may differ from the ratio produced in asteroidal collisions; Rabinowitz's 10–100 m objects may be preferentially delivered to near-Earth space; and the delivery of C-class fragments from the outer belt may be inhibited, compared to classes in other parts of the belt. Thus, Yarkovsky effects may have important consequences in meteoritics and asteroid science.  相似文献   

18.
Abstract— Mn‐Cr systematics in phosphates (sarcopside, graftonite, beusite, galileiite, and johnsomervilleite) in IIIAB iron meteorites were investigated by secondary ion mass spectrometry (SIMS). In most cases, excesses in 53Cr are found and δ53Cr is well correlated with Mn/Cr ratios, suggesting that 53Mn was alive at the time of IIIAB iron formation. The inferred Mn‐Cr “ages” are different for different phosphate minerals. This is presumably due to a combined effect of the slow cooling rates of IIIAB iron meteorites and the difference in the diffusion properties of Cr and Mn in the phosphates. The ages of sarcopside are the same for the IIIAB iron meteorites. Johnsomervilleite shows apparent old ages, probably because of a gain of Cr enriched in 53Cr during the closure process. Apparently, old Mn‐Cr ages reported in previous studies can also be explained in a similar way. Therefore, the IIIAB iron meteorites probably experienced identical thermal histories and thus derived from the core of a parent body. Thermal histories of the parent body of IIIAB iron meteorites that satisfy the Mn‐Cr chronology and metallographic cooling rates were constructed by computer simulation. The thermal history at an early stage (<10 Ma after CAI formation) is well determined, though later history may be more model‐dependent. It is suggested that relative timing of various events in the IIIAB parent body may be estimated with the aid of the thermal history. There is a systematic difference in Mn and Cr concentrations in various minerals (phosphates, sulfide, etc.) among the IIIAB iron meteorites, which seems to be mainly controlled by redox conditions.  相似文献   

19.
Ordinary chondrite meteorites contain silicates, Fe,Ni‐metal grains, and troilite (FeS). Conjoined metal‐troilite grains would be the first phase to melt during radiogenic heating in the parent body, if temperatures reached over approximately 910–960 °C (the Fe,Ni‐FeS eutectic). On the basis of two‐pyroxene thermometry of 13 ordinary chondrites, we argue that peak temperatures in some type 6 chondrites exceeded the Fe,Ni‐FeS eutectic and thus conjoined metal‐troilite grains would have begun to melt. Melting reactions consume energy, so thermal models were constructed to investigate the effect of melting on the thermal history of the H, L, and LL parent asteroids. We constrained the models by finding the proportions of conjoined metal‐troilite grains in ordinary chondrites using high‐resolution X‐ray computed tomography. The models show that metal‐troilite melting causes thermal buffering and inhibits the onset of silicate melting. Compared with models that ignore the effect of melting, our models predict longer cooling histories for the asteroids and accretion times that are earlier by 61, 124, or 113 kyr for the H, L, and LL asteroids, respectively. Because the Ni/Fe ratio of the metal and the bulk troilite/metal ratio is higher in L and LL chondrites than H chondrites, thermal buffering has the greatest effect in models for the L and LL chondrite parent bodies, and least effect for the H chondrite parent. Metal‐troilite melting is also relevant to models of primitive achondrite parent bodies, particularly those that underwent only low degrees of silicate partial melting. Thermal models can predict proportions of petrologic types formed within an asteroid, but are systematically different from the statistics of meteorite collections. A sampling bias is interpreted to explain these differences.  相似文献   

20.
G.P. Horedt 《Icarus》1980,43(2):215-221
Accretional energy can be retained with sufficient efficiency in the outer layers of the Moon due to the considerable amount of debris falling back into large craters.Heating of meteorite parent bodies occurs mainly after their accretion, by destructive collisions. The heating was generally not sufficient to differentiate the parent bodies completely so that iron meteorites would originate from the mantle, rather than from the core of a meteorite parent body. Assuming that the Earth and Moon accreted from material of similar chemical composition, we suggest that only from the outer lunar shell is there a loss of gases and volatiles due to accretional melting. The Earth melted completely and degassing was efficient for the whole mass of the Earth leading to its ≈20% higher uncompressed mean density in comparison to the Moon. Because of its lower gravitational field, gases and volatiles escaped much more easily from the lunar atmosphere than from the terrestrial one, leading to the observed depletion in volatiles of the outer parts of the Moon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号