首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
In situ U‐Pb measurements on zircons of the Ries impact crater are presented for three samples from the quarry at Polsingen. The U‐Pb data of most zircons plot along a discordia line, leading to an upper intercept of Carboniferous age (331 ± 32 Ma [2σ]). Four zircons define a concordia age of 313.2 ± 4.4 Ma (2σ). This age most probably represents the age of a granite from the basement target rocks. From granular textured zircon grains (including baddeleyite and anatase/Fe‐rich phases, first identified in the Ries crater), most probably recrystallized after impact (13 analyses, 4 grains), a concordia age of 14.89 ± 0.34 Ma (2σ) and an error weighted mean 206Pb*/238U age of Ma 14.63 ± 0.43 (2σ) is derived. Including the youngest concordant ages of five porous textured zircon grains (24 spot analyses), a concordia age of 14.75 ± 0.22 Ma (2σ) and a mean 206Pb*/238U age of 14.71 ± 0.26 Ma (2σ) can be calculated. These results are consistent with previously published 40Ar/39Ar ages of impact glasses and feldspar. Our results demonstrate that even for relatively young impact craters, reliable U‐Pb ages can be obtained using in situ zircon dating by SIMS. Frequently the texture of impact shocked zircon grains is explained by decomposition at high temperatures and recrystallization to a granular texture. This is most probably the case for the observed granular zircon grains having baddeleyite/anatase/Fe‐rich phases. We also observe non‐baddeleyite/anatase/Fe‐rich phase bearing zircons. For these domains, reset to crater age is more frequently for high U,Th contents. We tentatively explain the higher susceptibility to impact resetting of high U,Th domains by enhanced Pb loss and mobilization due to higher diffusivity within former metamict domains that were impact metamorphosed more easily into porous as well as granular textures during decomposition and recrystallization, possibly supported by Pb loss during postimpact cooling and/or hydrothermal activity.  相似文献   

2.
U‐Pb ages of zircon in four different Apollo 14 breccias (14305, 14306, 14314, and 14321) were obtained by secondary ion mass spectrometry. Some of the analyzed grains occur as cogenetic, poikilitic zircon grains in lithic clasts, revealing magmatic events at ~4286 Ma, ~4200–4220 Ma, and ~4150 Ma. The age distribution of the crystal clasts in the breccias exhibits a minor peak at ~4210 Ma, which can be attributed to a magmatic event, as recorded in zircon grains located in noritic clasts. An age peak at ~4335 Ma is present in all four breccias, as well as zircon grains from different Apollo landing sites, enhancing the confidence that these grains recorded a global zircon‐forming event. The overall age distribution among the four breccias exhibits minor differences between the breccias collected farther away from the Cone Crater and the ones collected within the continuous ejecta blanket of the Cone Crater. A granular zircon grain yielded a 207Pb/206Pb age of 3936 ± 8 Ma, which is interpreted as an impact event. A similar age of 3941 ± 5 Ma (n = 17, MSWD = 0.89, P = 0.58) was obtained for a large zircon grain (~430 × 340 μm in size). This grain might have crystallized in the same impact melt sheet which formed the granular zircon or the age is representative of the final extrusion of KREEP magma. The majority of zircon grains, however, occur as isolated crystal clasts within the matrix and their ages cannot be correlated with any real events (impact or magmatic) nor can the possibility be excluded that these ages represent partial resetting of the U‐Pb system.  相似文献   

3.
The estimates of the age of the Kaali impact structure (Saaremaa Island, Estonia) provided by different authors vary by as much as 6000 years, ranging from ~6400 to ~400 before current era (BCE). In this study, a new age is obtained based on 14C dating charred plant material within the proximal ejecta blanket, which makes it directly related to the impact structure, and not susceptible to potential reservoir effects. Our results show that the Kaali crater was most probably formed shortly after 1530–1450 BCE (3237 ± 10 14C yr BP). Saaremaa was already inhabited when the bolide hit the Earth, thus, the crater‐forming event was probably witnessed by humans. There is, however, no evidence that this event caused significant change in the material culture (e.g., known archeological artifacts) or patterns of human habitation on Saaremaa.  相似文献   

4.
Field investigations in the eroded central uplift of the ≤30 km Keurusselkä impact structure, Finland, revealed a thin, dark melt vein that intersects the autochthonous shatter cone‐bearing target rocks near the homestead of Kirkkoranta, close to the center of the impact structure. The petrographic analysis of quartz in this melt breccia and the wall rock granite indicate weak shock metamorphic overprint not exceeding ~8–10 GPa. The mode of occurrence and composition of the melt breccia suggest its formation as some kind of pseudotachylitic breccia. 40Ar/39Ar dating of dark and clast‐poor whole‐rock chips yielded five concordant Late Mesoproterozoic miniplateau ages and one plateau age of 1151 ± 10 Ma [± 11 Ma] (2σ; MSWD = 0.11; = 0.98), considered here as the statistically most robust age for the rock. The new 40Ar/39Ar age is incompatible with ~1.88 Ga Svecofennian tectonism and magmatism in south‐central Finland and probably reflects the Keurusselkä impact, followed by impact‐induced hydrothermal chloritization of the crater basement. In keeping with the crosscutting relationships in the outcrop and the possible influence of postimpact alteration, the Late Mesoproterozoic 40Ar/39Ar age of ~1150 Ma should be treated as a minimum age for the impact. The new 40Ar/39Ar results are consistent with paleomagnetic results that suggested a similar age for Keurusselkä, which is shown to be one of the oldest impact structures currently known in Europe and worldwide.  相似文献   

5.
Abstract— Small terrestrial hypervelocity impact craters have a bowl-shaped form and are partially filled by an interior breccia lens, roughly parabolic in cross-section, of allochthonous material. This interior breccia volume is geometrically modelled as the volume of material slumped off the interior wall of the transient cavity during late stage crater modification. This model is tested by comparing the estimated volume of the breccia lens based on observational data with the calculated volume of slump material based on known dimensional parameters. The model fits well for Meteor Crater and Brent and is highly sensitive to changes in input parameters (e.g., a 10% increase in the input diameter for Meteor Crater produces an almost 200% increase in the model breccia lens volume). Further testing of the model with less constrained data from West Hawk Lake and Lonar leads to reasonable fits, given the sensitivity of the model to input parameters. Fits to other craters: Aouelloul, Tenoumer and Wolf Creek, where previous depth data are constrained only by gravity data, are unsatisfactory. However, revised depths can be obtained that fit both the gravity data and the model. While these tests do not provide unqualified support for the model, they do suggest that it may represent a good first order approximation. More and better quality dimensional data are required for more rigorous testing.  相似文献   

6.
Abstract The well-preserved 2.5 km diameter Roter Kamm impact crater is located in the Namib desert in Namibia. The impact has occurred in Precambrian granitic and granodioritic orthogneisses of the 1200–900 Ma old Namaqualand Metamorphic Complex which were partly covered by Gariep metasediments; the granites are invaded by quartz veins and quartz-feldspar-pegmatites. Previous geological field evidence suggested a crater age of about 5–10 Ma. In order to constrain this age, we selected a set of basement rocks (granites, granodiorites) exposed at the crater rim and studied the Rb-Sr, K-Ar, 40Ar-39Ar, and 10Be-26Al isotopic systems as well as apatite fission track ages of these samples. The Rb-Sr isotopic systematics confirm the derivation of these samples from the Namaqualand basement (age about 1.29 Ga), which underwent Damaran orogenesis at about 650 Ma. No basement rocks with Rb-Sr ages younger than about 410 Ma were identified. The K-Ar ages of pseudotachylite and melt breccia samples show that these samples are dominated by incompletely degassed fragments of basement rocks, with some retaining their original metamorphic ages of about 470 Ma. The apatite fission track ages range from 20–28 Ma, which may be interpreted as an extension of the 25 Ma Burdigalian peneplanation event, or as incomplete resetting of the apatite fission tracks during the impact event. The 10Be and 26Al exposure age of a quartz sample isolated from a quartz-pegmatite was found to be 150 ka; it is likely that the exposure of the sample began after material covering it had been removed by erosion 150 ka ago. Two glassy fractions extracted from a rim granite were dated by 40Ar-39Ar analysis. One sample gives practically a plateau age of 3.7 ± 0.3 Ma, while the other gives a minimum age of 3.6 Ma. The best available age estimate for the Roter Kamm crater is therefore 3.7 ± 0.3 Ma.  相似文献   

7.
The circa 14 km diameter Pantasma circular structure in Oligocene volcanic rocks in Nicaragua is here studied for the first time to understand its origin. Geomorphology, field mapping, and petrographic and geochemical investigations all are consistent with an impact origin for the Pantasma structure. Observations supporting an impact origin include outward‐dipping volcanic flows, the presence of former melt‐bearing polymict breccia, impact glass (with lechatelierite and low H2O, <300 ppm), and also a possible ejecta layer containing Paleozoic rocks which originated from hundreds of meters below the surface. Diagnostic evidence for impact is provided by detection in impact glass of the former presence of reidite in granular zircon as well as coesite, and extraterrestrial ε54Cr value in polymict breccia. Two 40Ar/39Ar plateau ages with a combined weighted mean age of 815 ± 11 ka (2 σ; P = 0.17) were obtained on impact glass. This age is consistent with geomorphological data and erosion modeling, which all suggest a rather young crater. Pantasma is only the fourth exposed crater >10 km found in the Americas south of N30 latitude, and provides further evidence that a significant number of impact craters may remain to be discovered in Central and South America.  相似文献   

8.
Abstract— Meteor Crater is one of the first impact structures systematically studied on Earth. Its location in arid northern Arizona has been ideal for the preservation of the structure and the surviving meteoric material. The recovery of a large amount of meteoritic material in and around the crater has allowed a rough reconstruction of the impact event: an iron object 50 m in diameter impacted the Earth's surface after breaking up in the atmosphere. The details of the disruption, however, are still debated. The final crater morphology (deep, bowl‐shaped crater) rules out the formation of the crater by an open or dispersed swarm of fragments, in which the ratio of swarm radius to initial projectile radius Cd is larger than 3 (the final crater results from the sum of the craters formed by individual fragments). On the other hand, the lack of significant impact melt in the crater has been used to suggest that the impactor was slowed down to 12 km/s by the atmosphere, implying significant fragmentation and fragments' separation up to 4 initial radii. This paper focuses on the problem of entry and motion through the atmosphere for a possible Canyon Diablo impactor as a first but necessary step for constraining the initial conditions of the impact event which created Meteor Crater. After evaluating typical models used to investigate meteoroid disruption, such as the pancake and separated fragment models, we have carried out a series of hydrodynamic simulations using the 3D code SOVA to model the impactor flight through the atmosphere, both as a continuum object and a disrupted swarm. Our results indicate that the most probable pre‐atmospheric mass of the Meteor Crater projectile was in the range of 4.108to 1.2.109kg (equivalent to a sphere 46–66 m in diameter). During the entry process the projectile lost probably 30% to 70% of its mass, mainly because of mechanical ablation and gross fragmentation. Even in the case of a tight swarm of particles (Cd < 3), small fragments can separate from the crater‐forming swarm and land on the plains (tens of km away from the crater) as individual meteorites. Starting from an impactor pre‐atmospheric velocity of ?18 km/s, which represents an average value for Earth‐crossing asteroids, we find that after disruption, the most probable impact velocity at the Earth's surface for a tight swarm is around 15 km/s or higher. A highly dispersed swarm would result in a much stronger deceleration of the fragments but would produce a final crater much shallower than observed at Meteor Crater.  相似文献   

9.
Impact melt rocks from the 1.9 km diameter, simple bowl‐shaped Tenoumer impact crater in Mauritania have been analyzed chemically and petrologically. They are heterogeneous and can be subdivided into three types based on melt matrix color, occurrence of lithic clast components, amount of vesiculation (melt degassing), different proportions of carbonate melt mingled into silicate melt, and bulk rock chemical composition. These heterogeneities have two main causes (1) due to the small size of the impact crater, there was probably no coherent melt pool where a homogeneous mixture of melts, derived from different target lithologies, could be created; and (2) melt rock heterogeneity occurring at the thin section scale is due to fast cooling during and after the dynamic ejection and emplacement process. The overall period of crystal growth from these diverse melts was extremely short, which provides a further indication that complete chemical equilibration of the phases could not be achieved in such short time. Melt mixing processes involved in the generation of impact melts are, thus, recorded in nonequilibrium growth features. Variable mixing processes between chemically different melt phases and the formation of hybrid melts can be observed even at millimeter scales. Due to extreme cooling rates, different mixing and mingling stages are preserved in the varied parageneses of matrix minerals and in the mineral chemistry of microlites. 40Ar39Ar step‐heating chronology on specimens from three melt rock samples yielded five concordant inverse isochron ages. The inverse isochron plots show that minute amounts of inherited 40Ar* are present in the system. We calculated a weighted mean age of 1.57 ± 0.14 Ma for these new results. This preferred age represents a refinement from the previous range of 21 ka to 2.5 Ma ages based on K/Ar and fission track dating.  相似文献   

10.
Dhofar 280 recorded a complex history on the Moon revealed by high‐resolution 40Ar‐39Ar dating. Thermal resetting occurred less than 1 Ga ago, and the rock was exposed to several impact events before and afterwards. The cosmic ray exposure (CRE) age spectrum indicates a 400 ± 40 Ma CRE on the lunar surface. A unique feature of this lunar sample is a partial loss of cosmogenic 38Ar, resulting in a (low‐temperature) CRE age plateau of about 1 Ma. This was likely caused by the same recent impact event that reset the (low‐temperature) 40Ar‐39Ar age spectrum and preceded the short transit phase to Earth of ≤1 Ma. Dhofar 280 may be derived from KREEP‐rich lunar frontside terrains, possibly associated with the Copernicus crater or with a recent impact event on the deposits of the South Pole–Aitken basin. Although Dhofar 280 is paired with Dhofar 081, their irradiation and thermal histories on the Moon were different. An important trapped Ar component in Dhofar 280 is “orphan” Ar with a low 40Ar/36Ar ratio. It is apparently a mixture of two components, one endmember with 40Ar/36Ar = 17.5 ± 0.2 and a second less well‐constrained endmember with 40Ar/36Ar ≤10. The presence of two endmembers of trapped Ar, their compositions, and the breccia ages seem to be incompatible with a previously suggested correlation between age or antiquity and the (40Ar/36Ar)trapped ratio (Eugster et al. 2001; Joy et al. 2011a). Alternatively, “orphan” Ar of this impact melt breccia may have an impact origin.  相似文献   

11.
The Puchezh‐Katunki impact structure, 40–80 km in diameter, located ~400 km northeast of Moscow (Russia), has a poorly constrained age between ~164 and 203 Ma (most commonly quoted as 167 ± 3 Ma). Due to its relatively large size, the Puchezh‐Katunki structure has been a prime candidate for discussions on the link between hypervelocity impacts and extinction events. Here, we present new 40Ar/39Ar data from step‐heating analysis of five impact melt rock samples that allow us to significantly improve the age range for the formation of the Puchezh‐Katunki impact structure to 192–196 Ma. Our results also show that there is not necessarily a simple relationship between the observed petrographic features of an impact melt rock sample and the obtained 40Ar/39Ar age spectra and inverse isochrons. Furthermore, a new palynological investigation of the postimpact crater lake sediments supports an age significantly older than quoted in the literature, i.e., in the interval late Sinemurian to early Pliensbachian, in accordance with the new radioisotopic age estimate presented here. The new age range of the structure is currently the most reliable age estimate of the Puchezh‐Katunki impact event.  相似文献   

12.
Abstract— Three samples of Darwin Glass, an impact glass found in Tasmania, Australia at the edge of the Australasian tektite strewn field were dated using the 40Ar/39Ar single‐grain laser fusion technique, yielding isochron ages of 796–815 ka with an overall weighted mean of 816 ± 7 ka. These data are statistically indistinguishable from those recently reported for the Australasian tektites from Southeast Asia and Australia (761–816 ka; with a mean weighted age of 803 ± 3 ka). However, considering the compositional and textural differences and the disparity from the presumed impact crater area for Australasian tektites, Darwin Glass is more likely to have resulted from a distinct impact during the same period of time.  相似文献   

13.
Martian cratering 8: Isochron refinement and the chronology of Mars   总被引:2,自引:0,他引:2  
William K. Hartmann 《Icarus》2005,174(2):294-320
This paper reviews and refines the technique of dating martian surfaces by using impact-crater isochrons (defined as size distributions of impact craters on undisturbed martian surfaces of specified ages). In the 1970s, this system identified not only abundant ancient martian volcanic surfaces, but also extensive lava plains with ages of a few 108 y-old; this dating was initially controversial but confirmed in the 1980s and 90s by martian meteorites. The present update utilizes updated estimates of the Mars/Moon cratering ratio (the most important calibration factor), improves treatment of gravity and impact velocity scaling effects, combines aspects of the crater size distribution data from earlier work by both Neukum and Hartmann, and for the first time applies a correction for loss of small meteoroids in the martian atmosphere from Popova et al. (2003, Meteorit. Planet. Sci. 38, 905-925). The updated isochrons are not radically different from the previous “2002 iteration” but fit observed data better and give somewhat older model ages for features dated from small craters (diameter D<100 m). Crater counts from young lava flows in various areas give good fits to the new isochrons over as much as 3 orders of magnitude in D, confirming the general isochron shape and giving crater retention ages in the range of some 106 to some 108 y, interpreted as lava flow ages. More complex, older units are also discussed. Uncertainties are greatest if only small craters (D?100 m) are used. Suggestions by other workers of gross uncertainties, due to local secondary craters and deposition/exhumation, are discussed; they do not refute our conclusions of significant volcanic, fluvial, and other geologic activity in the last few percent of martian geologic time or the importance of cratering as a tool for studying processes such as exhumation. Indeed, crater count data suggest certain very recent episodes of deposition, exhumation, and ice flow, possibly associated with obliquity cycles of ∼107 y timescale. Evidence from ancient surfaces suggests higher rates of volcanism, fluvial activity, glaciation, and other processes in Noachian/Hesperian time than in Amazonian time.  相似文献   

14.
We have investigated the carbonates in the impact melts and in a monolithic clast of highly shocked Coconino sandstone of Meteor Crater, AZ to evaluate whether melting or devolatilization is the dominant response of carbonates during high‐speed meteorite impact. Both melt‐ and clast‐carbonates are calcites that have identical crystal habits and that contain anomalously high SiO2 and Al2O3. Also, both calcite occurrences lack any meteoritic contamination, such as Fe or Ni, which is otherwise abundantly observed in all other impact melts and their crystallization products at Meteor Crater. The carbon and oxygen isotope systematics for both calcite deposits suggest a low temperature environment (<100 °C) for their precipitation from an aqueous solution, consistent with caliche. We furthermore subjected bulk melt beads to thermogravimetric analysis and monitored the evolving volatiles with a quadrupole mass spectrometer. CO2 yields were <5 wt%, with typical values in the 2 wt% range; also total CO2 loss is positively correlated with H2O loss, an indication that most of these volatiles derive from the secondary calcite. Also, transparent glasses, considered the most pristine impact melts, yield 100 wt% element totals by EMPA, suggesting complete loss of CO2. The target dolomite decomposed into MgO, CaO, and CO2; the CO2 escaped and the CaO and MgO combined with SiO2 from coexisting quartz and FeO from the impactor to produce the dominant impact melt at Meteor Crater. Although confined to Meteor Crater, these findings are in stark contrast to Osinski et al. (2008) who proposed that melting of carbonates, rather than devolatilization, is the dominant process during hypervelocity impact into carbonate‐bearing targets, including Meteor Crater.  相似文献   

15.
The two neighboring Suvasvesi North and South impact structures in central‐east Finland have been discussed as a possible impact crater doublet produced by the impact of a binary asteroid. This study presents 40Ar/39Ar geochronologic data for impact melt rocks recovered from the drilling into the center of the Suvasvesi North impact structure and melt rock from glacially transported boulders linked to Suvasvesi South. 40Ar/39Ar step‐heating analysis yielded two essentially flat age spectra indicating a Late Cretaceous age of ~85 Ma for the Suvasvesi North melt rock, whereas the Suvasvesi South melt sample gave a Neoproterozoic minimum (alteration) age of ~710 Ma. Although the statistical likelihood for two independent meteorite strikes in close proximity to each other is rather low, the remarkable difference in 40Ar/39Ar ages of >600 Myr for the two Suvasvesi impact melt samples is interpreted as evidence for two temporally separate, but geographically closely spaced, impacts into the Fennoscandian Shield. The Suvasvesi North and South impact structures are, thus, interpreted as a “false” crater doublet, similar to the larger East and West Clearwater Lake impact structures in Québec, Canada, recently shown to be unrelated. Our findings have implications for the reliable recognition of impact crater doublets and the apparent rate of binary asteroid impacts on Earth and other planetary bodies in the inner solar system.  相似文献   

16.
Hydrogeological modification of Meteor Crater produced a spectacular set of gullies throughout the interior wall in response to rainwater precipitation, snow melting, and possible groundwater discharge. The crater wall has an exceptionally well-developed centripetal drainage pattern consisting of individual alcoves, channels, and fans. Some of the gullies originate from the rim crest and others from the middle crater wall where a lithologic transition occurs; broad gullies occur along the crater corner radial faults. Deeply incised alcoves are well developed on the soft Coconino Sandstone exposed on the middle crater wall, beneath overlying dolomite. In general, the gully locations are along crater wall radial fractures and faults, which are favorable locales of erosion due to preferential rock breakup from faulting, and groundwater flow/discharge; these structural discontinuities are also the locales where the surface runoff from rain precipitation and snow melting can preferentially flow, causing erosion and crater degradation. Channels are well developed on the talus deposits and alluvial fans on the periphery of the crater floor. Caves exposed on the lower crater level point to percolation of surface runoff and selective discharge through fractures on the crater wall. In addition, lake sediments on the crater floor provide significant evidence of a past pluvial climate, when the water table was higher, and groundwater may have seeped from springs on the crater wall. Although these hydrological processes continue at Meteor Crater today, conditions at the crater are much more arid than they were soon after impact, reflecting a climatic shift. This climate shift and the hydrological modifications observed at Meteor Crater provide insights for landscape sculpturing on Mars during various parts of its history.  相似文献   

17.
Abstract– Despite its centennial exploration history, there are still unresolved questions about Meteor Crater, the first recognized impact crater on Earth. This theoretical study addresses some of these questions by comparing model results with field and laboratory studies of Meteor Crater. Our results indicate that Meteor Crater was formed by a high‐velocity impact of a fragmented projectile, ruling out a highly dispersed swarm as well as a very low impact velocity. Projectile fragmentation caused many fragments to fall separately from the main body of the impactor, making up the bulk of the Canyon Diablo meteorites; most of these fragments were engulfed in the expansion plume as they approached the surface without suffering high shock compression, and were redistributed randomly around the crater. Thus, the distribution of Canyon Diablo meteorites is not representative of projectile trajectory, as is usual for impactor fragments in smaller strewn fields. At least 50% of the main impactor was ejected from the crater during crater excavation and was dispersed mostly downrange of the crater as molten particles (spheroids) and highly shocked solid fragments (shrapnel). When compared with the known distribution, model results suggest an impactor from the SW. Overall, every model case produced much higher amounts of pure projectile material than observed. The projectile‐target mixing was not considered in the models; however, this process could be the main sink of projectile melt, as all analyzed melt particles have high concentrations of projectile material. The fate of the solid projectile fragments is still not completely resolved. Model results suggest that the depth of melting in the target can reach the Coconino sandstone formation. However, most of the ejected melt originates from 30–40 m depth and, thus, is limited to Moenkopi and upper Kaibab material. Some melt remains in the target; based on the estimated volume of the breccia lens at Meteor Crater, our models suggest at most a 2% content of melt in the breccia. Finally, a high water table at the time of impact could have aided strong dispersion of target and projectile melt.  相似文献   

18.
Abstract— We report the noble gas isotopic abundances of five dimict breccias and one cataclastic anorthosite that were collected at the Apollo 16 landing site. Orbital and surface photographs indicate that rays from South Ray crater, an almost 1 km wide young crater in the Cayley plains, extend several kilometers from their source into the area that was sampled by the Apollo 16 mission. Previous studies have shown that South Ray crater formed 2 Ma ago and that a large number of rocks might originate from this cratering event. On the basis of cosmic-ray produced nuclei, we find that the six rocks investigated in this work yield the same lunar surface exposure age. Using literature data, we recalculate the exposure ages of additional 16 rocks with suspected South Ray crater origin and obtain an average exposure age of 2.01 ± 0.10 Ma. In particular, all nine dimict breccias (a type of rock essentially restricted to the Apollo 16 area consisting of anorthosite and breccia phases) dated until now yield an average ejection age of 2.06 ± 0.17 Ma. We conclude that they must originate from the Cayley formation or from bedrock underlying the Cayley plain. We determined the gas retention ages for the dimict breccias based on the 40K-40Ar and U,Th-136Xe dating methods: rock 64425 yields a 40K-40Ar age of 3.96 Ga and rock 61016 a U,Th-136Xe age of 3.97 Ga. These results, together with 39Ar-40Ar ages obtained by other workers for rocks 64535 (3.98 Ga) and 64536 (3.97 Ga), show that the dimict breccias formed 3.97 Ga ago.  相似文献   

19.
Abstract– 40Ar/39Ar dating of recrystallized feldspar glass particles separated from clast‐rich impact melt rocks from the approximately 10 km Paasselkä impact structure (SE Finland) yielded a Middle to Late Triassic (Ladinian‐Karnian) pseudo‐plateau age of 228.7 ± 3.0 (3.4) Ma (2σ). This new age makes Paasselkä the first known Triassic impact structure dated by isotopic methods on the Baltic Shield. The new Paasselkä impact age is, within uncertainty, coeval with isotopic ages recently obtained for the Lake Saint Martin impact structure in Canada, indicating a new Middle to Late Triassic impact crater population on Earth. The comparatively small crater size, however, suggests no relationship between the Paasselkä impact and a postulated extinction event at the Middle/Late Triassic boundary.  相似文献   

20.
Abstract— The Ilumetsa impact craters were discovered in 1938 in the course of geological mapping. In the crater field area, the Middle Devonian bedrock consists of light‐yellow weakly cemented siltstones and sandstones of the Givetian Burtnieki Regional Stage, which are overlain by a 1–2 m thick layer of reddish‐brown loamy till. Põrguhaud, the biggest crater, has a diameter of 75–80 m at the top of the uplifted rim and is 12.5 m deep. The zone of authochtonous breccias below the apparent crater extends to 30 m deep. The crater is partly filled with a thin layer of gyttja and peat up to 2 m thick. Radiocarbon ages of 6030 ± 100 (TA‐310) and 5910 ± 100 (TA‐725) years B.P. from the lowermost organic layer and palynological evidence suggest that the age of the impact was ~6000 14C years B.P. The Sügavhaud crater has a diameter of 50 m at the top of the rim and is 4.5 m deep. Organic matter on the bottom of the crater is absent. As precise age determination of the Ilumetsa craters by direct dating methods has proved inconclusive, we proposed a method of geological correlation which is based on the occurrence of impact spherules in lake and bog sediments around the crater field. Radiocarbon dating of samples from a peat layer with glassy spherules of impact origin in the Meenikunno Bog, 6 km southwest of the Ilumetsa crater field, yielded the ages of 6542 ± 50 (Tln‐2214) for the depth interval 5.6–5.7 m and 6697 ± 50 (Tln‐2316) years B.P. for the depth interval 5.7–5.8 m. These dates suggest that the Ilumetsa craters were formed ~6600 years ago.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号