首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
High‐precision secondary ion mass spectrometry (SIMS) was employed to investigate oxygen three isotopes of phenocrysts in 35 chondrules from the Yamato (Y) 82094 ungrouped 3.2 carbonaceous chondrite. Twenty‐one of 21 chondrules have multiple homogeneous pyroxene data (?17O 3SD analytical uncertainty: 0.7‰); 17 of 17 chondrules have multiple homogeneous pyroxene and plagioclase data. Twenty‐one of 25 chondrules have one or more olivine data matching coexisting pyroxene data. Such homogeneous phenocrysts (1) are interpreted to have crystallized from the final chondrule melt, defining host O‐isotope ratios; and (2) suggest efficient O‐isotope exchange between ambient gas and chondrule melt during formation. Host values plot within 0.7‰ of the primitive chondrule mineral (PCM) line. Seventeen chondrules have relict olivine and/or spinel, with some δ17O and δ18O values approaching ?40‰, similar to CAI or AOA‐like precursors. Regarding host chondrule data, 22 of 34 have Mg#s of 98.8–99.5 and ?17O of ?3.9‰ to ?6.1‰, consistent with most Acfer 094, CO, CR, and CV chondrite chondrules, and suggesting a common reduced O‐isotope reservoir devoid of 16O‐poor H2O. Six Y‐82094 chondrules have ?17O near ?2.5‰, with Mg#s of 64–97, consistent with lower Mg# chondrules from Acfer 094, CO, CR, and CV chondrites; their signatures suggest precursors consisting of those forming Mg# ~99, ?17O: ?5‰ ± 1‰ chondrules plus 16O‐poor H2O, at high dust enrichments. Three type II chondrules plot slightly above the PCM line, near the terrestrial fractionation line (?17O: ~+0.1‰). Their O‐isotopes and olivine chemistry are like LL3 type II chondrules, suggesting they sampled ordinary chondrite‐like chondrule precursors. Finally, three Mg# >99 chondrules have ?17O of ?6.7‰ to ?8.1‰, potentially due to 16O‐rich refractory precursor components. The predominance of Mg# ~99, ?17O: ?5‰ ± 1‰ chondrules and a high chondrule‐to‐matrix ratio suggests bulk Y‐82094 characteristics are closely related to anhydrous dust sampled by most carbonaceous chondrite chondrules.  相似文献   

2.
Here, we report the mineralogy, petrography, C‐N‐O‐stable isotope compositions, degree of disorder of organic matter, and abundances of presolar components of the chondrite Roberts Massif (RBT) 04133 using a coordinated, multitechnique approach. The results of this study are inconsistent with its initial classification as a Renazzo‐like carbonaceous chondrite, and strongly support RBT 04133 being a brecciated, reduced petrologic type >3.3 Vigarano‐like carbonaceous (CV) chondrite. RBT 04133 shows no evidence for aqueous alteration. However, it is mildly thermally altered (up to approximately 440 °C); which is apparent in its whole‐rock C and N isotopic compositions, the degree of disorder of C in insoluble organic matter, low presolar grain abundances, minor element compositions of Fe,Ni metal, chromite compositions and morphologies, and the presence of unequilibrated silicates. Sulfides within type I chondrules from RBT 04133 appear to be pre‐accretionary (i.e., did not form via aqueous alteration), providing further evidence that some sulfide minerals formed prior to accretion of the CV chondrite parent body. The thin section studied contains two reduced CV3 lithologies, one of which appears to be more thermally metamorphosed, indicating that RBT 04133, like several other CV chondrites, is a breccia and thus experienced impact processing. Linear foliation of chondrules was not observed implying that RBT 04133 did not experience high velocity impacts that could lead to extensive thermal metamorphism. Presolar silicates are still present in RBT 04133, although presolar SiC grain abundances are very low, indicating that the progressive destruction or modification of presolar SiC grains begins before presolar silicate grains are completely unidentifiable.  相似文献   

3.
Volatile organic compounds (VOCs) are carbon-containing chemicals that may evaporate rapidly at room temperature and standard pressure. Such organic compounds can be preserved inside carbonaceous chondrite matrices. However, unlike meteoritic soluble organic matter (SOM) and insoluble organic matter (IOM), VOCs are typically lost (at least in part) during sample processing (meteorite crushing) and exposure to terrestrial atmosphere and/or solvents. Like SOM and IOM, VOCs can provide valuable insights into the chemical inventory of the meteorite parent body and even the presolar cloud from which our solar system formed, as well as the composition and processes that occurred during the early formation of our solar system and the asteroidal stage. Thus, in this work, we designed and built an instrument that allowed us to access the VOCs present in samples of the carbonaceous chondrites Murchison and Sutter's Mill after mineral disaggregation by means of freeze–thaw cycling. We simultaneously evaluated the abundances and compound-specific 13C-distributions of the volatiles evolving after meteorite powdering at ~20, 60, and 100°C. Carbon monoxide (CO) and methane (CH4) were released from these meteorites as the most abundant VOCs. They were combusted together for analysis and showed positive δ13C values, indicative of their extraterrestrial origins. Carbon dioxide (CO2) was also an abundant VOC in both meteorites, and its isotopic values suggest that it was mainly formed from dissolved carbonates in the samples. We also detected aldehydes, ketones, and aromatic compounds in low amounts. Contrary to Murchison, which mostly yielded VOCs with positive δ13C values, Sutter's Mill yielded VOCs with negative δ13C values. The less enriched 13C isotope composition of the VOCs detected in Sutter's Mill suggest that they are either terrestrial contaminants, such as VOCs in compressed gas dusters and common laboratory solvents, or compounds disconnected from interstellar sources and/or formed through parent body processing. Understanding the relative abundances and determining the molecular distributions and isotopic compositions of free meteoritic VOCs are key in assessing their extraterrestrial origins and those of chondritic SOM and IOM. Our newly developed technique will be valuable in the study of the samples brought to the Earth from carbonaceous asteroid Bennu by NASA's OSIRIS-REx mission.  相似文献   

4.
Jbilet Winselwan is one of the largest CM carbonaceous chondrites available for study. Its light, major, and trace elemental compositions are within the range of other CM chondrites. Chondrules are surrounded by dusty rims and set within a matrix of phyllosilicates, oxides, and sulfides. Calcium‐ and aluminum‐rich inclusions (CAIs) are present at ≤1 vol% and at least one contains melilite. Jbilet Winselwan is a breccia containing diverse lithologies that experienced varying degrees of aqueous alteration. In most lithologies, the chondrules and CAIs are partially altered and the metal abundance is low (<1 vol%), consistent with petrologic subtypes 2.7–2.4 on the Rubin et al. ( 2007 ) scale. However, chondrules and CAIs in some lithologies are completely altered suggesting more extensive hydration to petrologic subtypes ≤2.3. Following hydration, some lithologies suffered thermal metamorphism at 400–500 °C. Bulk X‐ray diffraction shows that Jbilet Winselwan consists of a highly disordered and/or very fine‐grained phase (73 vol%), which we infer was originally phyllosilicates prior to dehydration during a thermal metamorphic event(s). Some aliquots of Jbilet Winselwan also show significant depletions in volatile elements such as He and Cd. The heating was probably short‐lived and caused by impacts. Jbilet Winselwan samples a mixture of hydrated and dehydrated materials from a primitive water‐rich asteroid. It may therefore be a good analog for the types of materials that will be encountered by the Hayabusa‐2 and OSIRIS‐REx asteroid sample‐return missions.  相似文献   

5.
The abundances, distributions, enantiomeric ratios, and carbon isotopic compositions of amino acids in two fragments of the Aguas Zarcas CM2 type carbonaceous chondrite fall and a fragment of the CM2 Murchison meteorite were determined via liquid chromatography time‐of‐flight mass spectrometry and gas chromatography isotope ratio mass spectrometry. A suite of two‐ to six‐carbon aliphatic primary amino acids was identified in the Aguas Zarcas and Murchison meteorites with abundances ranging from ~0.1 to 158 nmol/g. The high relative abundances of α‐amino acids found in these meteorites are consistent with a Strecker‐cyanohydrin synthesis on these meteorite parent bodies. Amino acid enantiomeric and carbon isotopic measurements in both fragments of the Aguas Zarcas meteorites indicate that both samples experienced some terrestrial protein amino acid contamination after their fall to Earth. In contrast, similar measurements of alanine in Murchison revealed that this common protein amino acid was both racemic (D ≈ L) and heavily enriched in 13C, indicating no measurable terrestrial alanine contamination of this meteorite. Carbon isotope measurements of two rare non‐proteinogenic amino acids in the Aguas Zarcas and Murchison meteorites, α‐aminoisobutyric acid and D‐ and L‐isovaline, also fall well outside the typical terrestrial range, confirming they are extraterrestrial in origin. The detections of non‐terrestrial L‐isovaline excesses of ~10–15% in both the Aguas Zarcas and Murchison meteorites, and non‐terrestrial L‐glutamic acid excesses in Murchison of ~16–40% are consistent with preferential enrichment of circularly polarized light generated L‐amino acid excesses of conglomerate enantiopure crystals during parent body aqueous alteration and provide evidence of an early solar system formation bias toward L‐amino acids prior to the origin of life.  相似文献   

6.
Carbonaceous chondrites are classified into several groups. However, some are ungrouped. We studied one such ungrouped chondrite, Y‐82094, previously classified as a CO. In this chondrite, chondrules occupy 78 vol%, and the matrix is distinctly poor in abundance (11 vol%), compared with CO and other C chondrites. The average chondrule size is 0.33 mm, different from that in C chondrites. Although these features are similar to those in ordinary chondrites, Y‐82094 contains 3 vol% Ca‐Al‐rich inclusions and 5% amoeboid olivine aggregates (AOAs). Also, the bulk composition resembles that of CO chondrites, except for the volatile elements, which are highly depleted. The oxygen isotopic composition of Y‐82094 is within the range of CO and CV chondrites. Therefore, Y‐82094 is an ungrouped C chondrite, not similar to any other C chondrite previously reported. Thin FeO‐rich rims on AOA olivine and the mode of occurrence of Ni‐rich metal in the chondrules indicate that Y‐82094 is petrologic type 3.2. The extremely low abundance of type II chondrules and high abundance of Fe‐Ni metal in the chondrules suggest reducing condition during chondrule formation. The depletion of volatile elements indicates that the components formed under high‐temperature conditions, and accreted to the parent body of Y‐82094. Our study suggests a wider range of formation conditions than currently recorded by the major C chondrite groups. Additionally, Y‐82094 may represent a new, previously unsampled, asteroidal body.  相似文献   

7.
Organic matter (OM) was widespread in the early solar nebula and might have played an important role for the delivery of prebiotic molecules to the early Earth. We investigated the textures, isotopic compositions, and functional chemistries of organic grains in the Renazzo carbonaceous chondrite by combined high spatial resolution techniques (electron microscopy–secondary ion mass spectrometry). Morphologies are complex on a submicrometer scale, and some organics exhibit a distinct texture with alternating layers of OM and minerals. These layered organics are also characterized by heterogeneous 15N isotopic abundances. Functional chemistry investigations of five focused ion beam‐extracted lamellae by electron energy loss spectroscopy reveal a chemical complexity on a nanometer scale. Grains show absorption at the C‐K edge at 285, 286.6, 287, and 288.6 eV due to polyaromatic hydrocarbons, different carbon‐oxygen, and aliphatic bonding environments with varying intensity. The nitrogen K‐edge functional chemistry of three grains is shown to be highly complex, and we see indications of amine (C‐NHx) or amide (CO‐NR2) chemistry as well as possible N‐heterocycles and nitro groups. We also performed low‐loss vibrational spectroscopy with high energy resolution and identified possible D‐ and G‐bands known from Raman spectroscopy and/or absorption from C=C and C‐O stretch modes known from infrared spectroscopy at around 0.17 and 0.2 eV energy loss. The observation of multiglobular layered organic aggregates, heterogeneous 15N‐anomalous compositions, and indication of NHx‐(amine) functional chemistry lends support to recent ideas that 15N‐enriched ammonia (NH3) was a powerful agent to synthesize more complex organics in aqueous asteroidal environments.  相似文献   

8.
9.
Abstract– Although it has been suggested that the ungrouped carbonaceous chondrite Adelaide and the K chondrite Kakangari could be considered highly primitive, our study of their presolar grain abundances shows that both have experienced more secondary processing than other primitive chondrites with high presolar grain abundances. Presolar grains are rare in Kakangari and are present in reduced abundances in Adelaide (approximately 70 ppm for O‐anomalous grains). Thermal annealing has led to widespread crystallization of their fine‐grained matrices, and accounts for the partial to complete destruction of presolar grains. In addition, presolar silicates in Adelaide show elevated Fe abundances and Fe‐rich rims indicative of infiltration of Fe into the grains from the surrounding matrix. This process probably also took place during annealing, most likely in the solar nebula, in a region with an enhanced dust‐to‐gas ratio. The most primitive meteorites, with the highest presolar grain abundances, appear to be those whose matrices contain abundant amorphous material that has escaped any significant thermal or aqueous alteration.  相似文献   

10.
The rapid recovery of the Winchcombe meteorite offers a valuable opportunity to study the soluble organic matter (SOM) profile in pristine carbonaceous astromaterials. Our interests in the biologically relevant molecules, amino acids—monomers of protein, and the most prevalent meteoritic organics—polycyclic aromatic hydrocarbons (PAHs) are addressed by analyzing the solvent extracts of a Winchcombe meteorite stone using gas chromatography mass spectrometry. The Winchcombe sample contains an amino acid abundance of ~1132 parts-per-billion that is about 10 times lower than other CM2 meteorites. The detection of terrestrially rare amino acids, including α-aminoisobutyric acid (AIB); isovaline; β-alanine; α-, β-, and γ-amino-n-butyric acids; and 5-aminopentanoic acid, and the racemic enantiomeric ratios (D/L = 1) observed for alanine and isovaline indicate that these amino acids are indigenous to the meteorite and not terrestrial contaminants. The presence of predominantly α-AIB and isovaline is consistent with their formation via the Strecker-cyanohydrin synthetic pathway. The L-enantiomeric excesses in isovaline previously observed for aqueously altered meteorites were viewed as an indicator of parent body aqueous processing; thus, the racemic ratio of isovaline observed for Winchcombe, alongside the overall high free:total amino acid ratio, and the low amino acid concentration suggest that the analyzed stone is derived from a lithology that has experienced brief episode(s) of aqueous alteration. Winchcombe also contains 2- to 6-ring alkylated and nonalkylated PAHs. The low total PAHs abundance (6177 ppb) and high nonalkylated:alkylated ratio are distinct from that observed for heavily aqueously altered CMs. The weak petrographic properties of Winchcombe, as well as the discrepancies observed for the Winchcombe SOM content—a low total amino acid abundance comparable to heavily altered CMs, and yet the high free:total amino acid and nonalkylated:alkylated PAH ratios are on par with the less altered CMs—suggest that Winchcombe could represent a class of weak, poorly lithified meteorite not been previously studied.  相似文献   

11.
Abstract– We used the electron microprobe to study matrix in the ungrouped type 3.0 carbonaceous chondrite Acfer 094 using 7 × 7‐point, focused‐beam arrays; data points attributable to mineral clasts were discarded. The grid areas show resolvable differences in composition, but differences are less pronounced than we observed in studies of CR2 LaPaz Icefield (LAP) 02342 (Wasson and Rubin [2009]) and CO3.0 Allan Hills A77307 (Brearley [1993]). A key question is why Acfer shows an anomalously uniform composition of matrix compared with these other carbonaceous chondrites. Both whole‐rock and matrix samples of Acfer 094 show enhancements of Ca and K; it appears that these reflect contamination during hot desert weathering. By contrast, the whole‐rock abundance of Na is low. Although weathering effects are responsible for some fractionations, it appears that nebular effects are also resolvable in matrix compositions in Acfer 094. As with LAP 02342, we infer that the observed differences among different areas were inherited from the solar nebula and may have been carried by porous chondrules that experienced low (about 20%) degrees of melting. Acfer 094 has been comminuted by one or more impact events that may also have caused volatile loss. Thus, despite preserving evidence (e.g., an exceptionally high content of presolar SiC) implying a high degree of pristinity, Acfer 094 is far from pristine in other respects. This evidence of comminution and an O‐isotopic composition similar to values measured in metamorphosed CM chondrites suggest that Acfer was hydrated before being outgassed by the inferred impact event. Convection within the plume associated with the impact event probably also contributed to the homogenization of the Acfer 094 matrix.  相似文献   

12.
Abstract— A petrologic and TEM study of a remarkable dark inclusion (DI) in the Ningqiang CV3 chondrite reveals that it is a mixture of highly primitive solar nebula materials. The DI contains two lithologies. The first, lithology A, contains micron‐sized olivine and pyroxene grains rimmed by amorphous materials with compositions similar to the underlying crystalline grains. The second, lithology B, appears to preserve the mineralogy of lithology A before formation of the amorphous rims. Overall, the Ningqiang DI appears to record the following processes: 1) formation (condensation and Fe‐enrichment) of olivine crystals in the nebula with compositions of Fo42–62; 2) irradiation, resulting in amorphitization of the olivine and pyroxene to varying degrees; 3) partial annealing, resulting in formation of fairly large, euhedral olivine and pyroxene grains with remnant amorphous sharply‐bounded rims; 4) in some cases, prolonged annealing, resulting in the formation of microcrystalline olivine or pyroxene rims. The latter annealing would have been a natural consequence of irradiation near the critical temperature for olivine; and 5) mixture of the above materials (lithology A) with nebular condensate high‐Ca pyroxene and olivine, which escaped nebular processing, to become lithology B. We suggest that the amorphous rims in lithology A formed in an energetic solar event such as a bi‐polar outflow or FU‐orionis flare.  相似文献   

13.
Abstract— We report detailed chemical, petrological, and mineralogical studies on the Ningqiang carbonaceous chondrite. Ningqiang is a unique ungrouped type 3 carbonaceous chondrite. Its bulk composition is similar to that of CV and CK chondrites, but refractory lithophile elements (1.01 × CI) are distinctly depleted relative to CV (1.29 × CI) and CK (1.20 × CI) chondrites. Ningqiang consists of 47.5 vol% chondrules, 2.0 vol% Ca,Al‐rich inclusions (CAIs), 4.5 vol% amoeboid olivine aggregates (AOAs), and 46.0 vol% matrix. Most chondrules (95%) in Ningqiang are Mg‐rich. The abundances of Fe‐rich and Al‐rich chondrules are very low. Al‐rich chondrules (ARCs) in Ningqiang are composed mainly of olivine, plagioclase, spinel, and pyroxenes. In ARCs, spinel and plagioclase are enriched in moderately volatile elements (Cr, Mn, and Na), and low‐Ca pyroxenes are enriched in refractory elements (Al and Ti). The petrology and mineralogy of ARCs in Ningqiang indicate that they were formed from hybrid precursors of ferromagnesian chondrules mixed with refractory materials during chondrule formation processes. We found 294 CAIs (55.0% type A, 39.5% spinel‐pyroxene‐rich, 4.4% hibonite‐rich, and several type C and anorthite‐spinel‐rich inclusions) and 73 AOAs in 15 Ningqiang sections (equivalent to 20 cm2surface area). This is the first report of hibonite‐rich inclusions in Ningqiang. They are texturally similar to those in CM, CH, and CB chondrites, and exhibit three textural forms: aggregates of euhedral hibonite single crystals, fine‐grained aggregates of subhedral hibonite with minor spinel, and hibonite ± Al,Ti‐diopside ± spinel spherules. Evidence of secondary alteration is ubiquitous in Ningqiang. Opaque assemblages, formed by secondary alteration of pre‐existing alloys on the parent body, are widespread in chondrules and matrix. On the other hand, nepheline and sodalite, existing in all chondritic components, formed by alkali‐halogen metasomatism in the solar nebula.  相似文献   

14.
Abstract— We report in situ magnesium isotope measurements of 7 porphyritic magnesium‐rich (type I) chondrules, 1 aluminum‐rich chondrule, and 16 refractory inclusions (14 Ca‐Al‐rich inclusions [CAIs] and 2 amoeboid olivine aggregates [AOAs]) from the ungrouped carbonaceous chondrite Acfer 094 using a Cameca IMS 6f ion microprobe. Both AOAs and 9 CAIs show radiogenic 26Mg excesses corresponding to initial 26Al/27Al ratios between ~5 × 10?5 ~7 × 10?5 suggesting that formation of the Acfer 094 CAIs may have lasted for ~300,000 years. Four CAIs show no evidence for radiogenic 26Mg; three of these inclusions (a corundum‐rich, a grossite‐rich, and a pyroxene‐hibonite spherule CAI) are very refractory objects and show deficits in 26Mg, suggesting that they probably never contained 26Al. The fourth object without evidence for radiogenic 26Mg is an anorthite‐rich, igneous (type C) CAI that could have experienced late‐stage melting that reset its Al‐Mg systematics. Significant excesses in 26Mg were observed in two chondrules. The inferred 26Al/27Al ratios in these two chondrules are (10.3 ± 7.4) × 10?6 (6.0 ± 3.8) × 10?6 (errors are 2σ), suggesting formation 1.6+1.2‐0.6 and 2.2+0.4‐0.3 Myr after CAIs with the canonical 26Al/27Al ratio of 5 × 10?5. These age differences are consistent with the inferred age differences between CAIs and chondrules in primitive ordinary (LL3.0–LL3.1) and carbonaceous (CO3.0) chondrites.  相似文献   

15.
Abstract— A fine‐grained dark inclusion in the Ningqiang carbonaceous chondrite consists of relatively pristine solar nebular materials and has high concentrations of heavy primordial rare gases. Trapped 36Ar concentration amounts to 6 times 10?6 cc STP/g, which is higher than that of Ningqiang host by a factor of three. Light HF‐HCl etching of the dark inclusion removed 86, 73, and 64% of the primordial 36Ar, 84Kr, and 132Xe, respectively. Thus, the majority of the noble gases in this inclusion are located in very acid‐susceptive material. Based on the elemental composition, the noble gases lost from the dark inclusion during the acid‐treatments are Ar‐rich, and the noble gases remaining in the inclusion are Q and HL gases. Transmission electron microscopy showed that the acid treatments removed thin Si, Mg, and Fe‐rich amorphous rims present around small olivine and pyroxene grains in the dark inclusion, suggesting that the Ar‐rich gases reside in the amorphous layers. A possible origin of the Ar‐rich gases is the acquisition of noble‐gas ions with a composition fractionated relative to solar abundance favoring the heavy elements by the effect of incomplete ionization under plasma conditions at 8000 K electron temperature.  相似文献   

16.
Abstract— Oxygen isotopes have been measured by ion microprobe in individual minerals (spinel, Al‐Ti‐diopside, melilite, and anorthite) within four relatively unaltered, fine‐grained, spinel‐rich Ca‐Al‐rich inclusions (CAIs) from the reduced CV chondrite Efremovka. Spinel is uniformly 16O‐rich (Δ17O ≤ ?20‰) in all four CAIs; Al‐Ti‐diopside is similarly 16O‐rich in all but one CAI, where it has smaller 16O excesses (‐15‰ ≤ Δ17O ≤ ?10‰). Anorthite and melilite vary widely in composition from 16O‐rich to 16O‐poor (‐22‰ ≤ Δ17O ≤ ?5‰). Two of the CAIs are known to have group II volatility‐fractionated rare‐earth‐element patterns, which is typical of this variety of CAI and which suggests formation by condensation. The association of such trace element patterns with 16O‐enrichment in these CAIs suggests that they formed by gas‐solid condensation from an 16O‐rich gas. They subsequently experienced thermal processing in an 16O‐poor reservoir, resulting in partial oxygen isotope exchange. Within each inclusion, oxygen isotope variations from mineral to mineral are consistent with solid‐state oxygen self‐diffusion at the grain‐to‐grain scale, but such a model is not consistent with isotopic variations at a larger scale in two of the CAIs. The spatial association of 16O depletions with both elevated Fe contents in spinel and the presence of nepheline suggests that late‐stage iron‐alkali metasomatism played some role in modifying the isotopic patterns in some CAIs. One of the CAIs is a compound object consisting of a coarse‐grained, melilite‐rich (type A) lithology joined to a fine‐grained, spinel‐rich one. Melilite and anorthite in the fine‐grained portion are mainly 16O‐rich, whereas melilite in the type A portion ranges from 16O‐rich to 16O‐poor, suggesting that oxygen isotope exchange predated the joining together of the two parts and that both 16O‐rich and 16O‐poor gaseous reservoirs existed simultaneously in the early solar nebula.  相似文献   

17.
Abstract— We report the study of an unusual compact type A refractory inclusion, named the White Angel, from the Leoville CV3 meteorite. The petrologic, mineral chemical, isotopic, and trace‐element signatures of this once‐molten Ca‐Al‐rich inclusion (CAI), which contains large, equant wollastonite crystals, indicate a short multistage history that occurred very early, before substantial decay of 26Al. Magnesium in the inclusion is isotopically heavy, with FMg reaching 18‰/amu, in the range of fractionated and with unidentified nuclear effects (FUN) inclusions. However, the absence of any nuclear anomalies in Ca and Ti and an inferred 26Al/27Al ratio of (5.5 ± 0.9) × 10?5 indicate that the White Angel belongs to the F inclusions. Silicon and oxygen are also mass fractionated in favor of the heavy isotopes, but to a lesser extent. The O isotopes show a range in 16O excesses. On an O three‐isotope plot, data points lie on a line parallel and to the right of the carbonaceous chondrite anhydrous mineral mixing line, with wollastonite being the most 16O‐rich phase. The chondrite‐normalized rare earth and trace‐element pattern of the whole inclusion is the complement of an ultrarefractory pattern indicating that precursor phases of the CAI must have condensed in an Al‐, heavy rare earth element (HREE)‐depleted reservoir. Melting of those precursor phases in an 16O‐rich environment and evaporation led to mass‐dependent isotopic fractionation of Mg, Si, and O. Partial isotopic exchange with a reservoir containing unfractionated Mg took place at a later stage but before any measurable decay of 26Al. Some minerals (melilite and perovskite) in the White Angel equilibrated oxygen isotopes with a relatively 16O‐poor reservoir that was also mass‐fractionated toward the heavy isotopes, different from that with which the normal or FUN inclusions interacted.  相似文献   

18.
Bulk major element composition, petrography, mineralogy, and oxygen isotope compositions of twenty Al‐rich chondrules (ARCs) from five CV3 chondrites (Northwest Africa [NWA] 989, NWA 2086, NWA 2140, NWA 2697, NWA 3118) and the Ningqiang carbonaceous chondrite were studied and compared with those of ferromagnesian chondrules and refractory inclusions. Most ARCs are marginally Al‐richer than ferromagnesian chondrules with bulk Al2O3 of 10–15 wt%. ARCs are texturally similar to ferromagnesian chondrules, composed primarily of olivine, pyroxene, plagioclase, spinel, Al‐rich glass, and metallic phases. Minerals in ARCs have intermediate compositions. Low‐Ca pyroxene (Fs0.6–8.8Wo0.7–9.3) has much higher Al2O3 and TiO2 contents (up to 12.5 and 2.3 wt%, respectively) than that in ferromagnesian chondrules. High‐Ca pyroxene (Fs0.3–2.0Wo33–54) contains less Al2O3 and TiO2 than that in Ca,Al‐rich inclusions (CAIs). Plagioclase (An77–99Ab1–23) is much more sodic than that in CAIs. Spinel is enriched in moderately volatile element Cr (up to 6.7 wt%) compared to that in CAIs. Al‐rich enstatite coexists with anorthite and spinel in a glass‐free chondrule, implying that the formation of Al‐enstatite was not due to kinetic reasons but is likely due to the high Al2O3/CaO ratio (7.4) of the bulk chondrule. Three ARCs contain relict CAIs. Oxygen isotope compositions of ARCs are also intermediate between those of ferromagnesian chondrules and CAIs. They vary from ?39.4‰ to 13.9‰ in δ18O and yield a best fit line (slope = 0.88) close to the carbonaceous chondrite anhydrous mineral (CCAM) line. Chondrules with 5–10 wt% bulk Al2O3 have a slightly more narrow range in δ18O (?32.5 to 5.9‰) along the CCAM line. Except for the ARCs with relict phases, however, most ARCs have oxygen isotope compositions (>?20‰ in δ18O) similar to those of typical ferromagnesian chondrules. ARCs are genetically related to both ferromagnesian chondrules and CAIs, but the relationship between ARCs and ferromagnesian chondrules is closer. Most ARCs were formed during flash heating and rapid cooling processes like normal chondrules, only from chemically evolved precursors. ARCs extremely enriched in Al and those with relict phases could have had a hybrid origin (Krot et al. 2002) which incorporated refractory inclusions as part of the precursors in addition to ferromagnesian materials. The occurrence of melilite in ARCs indicates that melilite‐rich CAIs might be present in the precursor materials of ARCs. The absence of melilite in most ARCs is possibly due to high‐temperature interactions between a chondrule melt and the solar nebula.  相似文献   

19.
Abstract– We report on mineralogy, petrography, and whole‐rock 26Al‐26Mg systematics of eight amoeboid olivine aggregates (AOAs) from the oxidized CV chondrite Allende. The AOAs consist of forsteritic olivine, opaque nodules, and variable amounts of Ca,Al‐rich inclusions (CAIs) of different types, and show evidence for alteration to varying degrees. Melilite and anorthite are replaced by nepheline, sodalite, and grossular; spinel is enriched in FeO; opaque nodules are replaced by Fe,Ni‐sulfides, ferroan olivine and Ca,Fe‐rich pyroxenes; forsteritic olivine is enriched in FeO and often overgrown by ferroan olivine. The AOAs are surrounded by fine‐grained, matrix‐like rims composed mainly of ferroan olivine and by a discontinuous layer of Ca,Fe‐rich silicates. These observations indicate that AOAs experienced in situ elemental open‐system iron‐alkali‐halogen metasomatic alteration during which Fe, Na, Cl, and Si were introduced, whereas Ca was removed from AOAs and used to form the Ca,Fe‐rich silicate rims around AOAs. The whole‐rock 26Al‐26Mg systematics of the Allende AOAs plot above the isochron of the whole‐rock Allende CAIs with a slope of (5.23 ± 0.13) × 10?5 reported by Jacobsen et al. (2008) . In contrast, whole‐rock 26Al‐26Mg isotope systematics of CAIs and AOAs from the reduced CV chondrite Efremovka define a single isochron with a slope of (5.25± 0.01) × 10?5 ( Larsen et al. 2011 ). We infer that the excesses in 26Mg* present in Allende AOAs are due to their late‐stage open‐system metasomatic alteration. Thus, the 26Al‐26Mg isotope systematics of Allende CAIs and AOAs are disturbed by parent body alteration processes, and may not be suitable for high‐precision chronology of the early solar system events and processes.  相似文献   

20.
Abstract– We have carried out a sample‐correlated spectroscopic and mineralogical investigation of samples from seven different collection sites of the Tagish Lake C2 chondrite. Rietveld refinement of high‐resolution powder X‐ray diffraction (XRD) data was used to determine quantitative major mineral abundances. Thermal infrared (400–4500 cm−1, 2.2–25.0 μm) spectra of the same samples were obtained using diffuse (biconical) reflectance infrared Fourier transform spectroscopy (DRIFTS). Our results are in good agreement with previous studies of the mineralogy of the Tagish Lake meteorite; we find however that Tagish Lake is more varied in major mineralogy than has previously been reported. In particular, we observed two new distinct lithologies, an inclusion‐poor magnetite‐ and sulfide‐rich lithology, and a carbonate‐rich, siderite‐dominated lithology in addition to the previously documented carbonate‐rich and carbonate‐poor lithologies. Grain density for each Tagish Lake sample was calculated from the measured mineral modal abundances and known mineral densities. For powders from three originally intact inclusion‐rich samples, the calculated grain density is 2.77 ± 0.05 g cm−3, in excellent agreement with those reported in the literature for other intact inclusion‐rich Tagish Lake samples. Tagish Lake disaggregated samples have a significantly higher calculated grain density due to their lower saponite‐serpentine content, likely a result of mineral separation in the meltwater holes from which they were collected; the disaggregated samples may not therefore adequately represent bulk samples of the Tagish Lake meteorite. The predominance of very fine‐grained material in the Tagish Lake samples investigated in this study is expected to produce infrared spectra representative of asteroidal regolith. Gypsum and talc have been found by XRD in powders from the inclusion‐rich, intact Tagish Lake samples in this study, and may have been present in the parent body; if present, these hydrous sulfates would complicate the interpretation of possible hydrated mineral features in asteroid infrared spectra.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号