首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A relic impact structure was recognized within the strewn field of the Agoudal iron meteorite. The heavily eroded structure has preserved shatter cones in a limestone basement, and remnants of autochthonous and allochthonous breccias. Fragments of iron incorporated into the allochthonous breccia have a chemical composition (Ni = 5.16 wt%, Ir = 0.019 ppm) similar to that of the Agoudal meteorite, supporting a syngenetic origin of the strewn field and the impact structure. The total recovered mass of Agoudal meteorite fragments is estimated at approximately 500 kg. The estimated size of the SE–NW‐oriented strewn field is 6 × 2 km. Model calculations with minimal preatmospheric size show that a similar meteorite strewn field plus one small crater with observed shock effects could be formed by fragmentation of a meteoroid approximately 1.4 m in diameter with an impact angle of approximately 60° from the horizontal. However, the most probable is an impact of a larger, 3–4 m diameter meteoroid, resulting a strewn field with approximately 10 craters, 10–30 m in diameter each, plus numerous meteorite fragments. The calculated scattering area of meteorite shrapnel ejected from these impact craters could completely cover the observed strewn field of the Agoudal meteorite.  相似文献   

2.
Abstract– We detail the Kamil crater (Egypt) structure and refine the impact scenario, based on the geological and geophysical data collected during our first expedition in February 2010. Kamil Crater is a model for terrestrial small‐scale hypervelocity impact craters. It is an exceptionally well‐preserved, simple crater with a diameter of 45 m, depth of 10 m, and rayed pattern of bright ejecta. It occurs in a simple geological context: flat, rocky desert surface, and target rocks comprising subhorizontally layered sandstones. The high depth‐to‐diameter ratio of the transient crater, its concave, yet asymmetric, bottom, and the fact that Kamil Crater is not part of a crater field confirm that it formed by the impact of a single iron mass (or a tight cluster of fragments) that fragmented upon hypervelocity impact with the ground. The circular crater shape and asymmetries in ejecta and shrapnel distributions coherently indicate a direction of incidence from the NW and an impact angle of approximately 30 to 45°. Newly identified asymmetries, including the off‐center bottom of the transient crater floor downrange, maximum overturning of target rocks along the impact direction, and lower crater rim elevation downrange, may be diagnostic of oblique impacts in well‐preserved craters. Geomagnetic data reveal no buried individual impactor masses >100 kg and suggest that the total mass of the buried shrapnel >100 g is approximately 1050–1700 kg. Based on this mass value plus that of shrapnel >10 g identified earlier on the surface during systematic search, the new estimate of the minimum projectile mass is approximately 5 t.  相似文献   

3.
Abstract— The proposed Sirente crater field consists of a slightly oblong main structure (main crater) 120 m in width and about 30 smaller structures (satellite craters), all in unconsolidated but stiff carbonate mud. Here we focus on the subsurface structure of the satellite craters and compare the Sirente field with known meteorite crater fields. We present a more complete outline of the crater field than previously reported, information on the subsurface morphology of a satellite crater (C8) 8 m in width, radiocarbon and thermoluminescence (TL) ages of material from this crater, and evidence for heated material in both crater C8 and the rim of the main crater. Crater C8 has a funnel shape terminating downwards, and evidence for soil injection from the surface to a depth of 9 m. The infill contained dispersed charcoal and small, irregular, porous fragments of heated clay with a calibrated age of b.p. 1712 (13C‐corrected radiocarbon age: b.p. 1800 ± 100) and a TL age of b.p. 1825 (calculated error ± 274). Together with previous radiocarbon age (b.p. 1538) of the formation of the main crater (i.e., target surface below rim), a formation is suggested at the beginning of the first millennium a.d. Although projectile vaporization is not expected in Sirente‐sized craters in this type of target material, we used geochemistry in an attempt to detect a meteoritic component. The results gave no unequivocal evidence of meteoritic material. Nevertheless, the outline of the crater field, evidence of heated material within the craters, and subsurface structure are comparable with known meteorite crater fields.  相似文献   

4.
The Summanen structure is located in Central Finland and is one of Finland's 12 known meteorite impact structures. In 2017, the discovery of Summanen was based on numerous shatter cone boulders with planar deformation features (PDFs) and a circular electromagnetic anomaly, which is 2.6 km in diameter. The site was revisited in 2020 and 2022, and shatter cone-bearing outcrops were discovered. PDFs and feather features were identified in samples from these outcrops. A total of 38 PDF sets in 27 quartz grains resulted in rational crystallographic orientations concentrating on {10 1 ¯ 4}, {10 1 ¯ 3}, {10 1 ¯ 2}, and {11 2 ¯ 2}, implying shock pressures of 2–20 GPa. Gravity measurements were taken, and the electrical conductivity of the structure was studied. The gravimetric results revealed a circular negative anomaly of about 4 km in diameter, with an amplitude of −3.5 mGal. Excluding the gravitational effect of water and Quaternary sediments reduces the anomaly to −1.6 mGal. A bowl-shaped conductive layer, likely containing relict saline water in the impact-fractured bedrock, was identified to a depth of 240 m. Topographic and bathymetric data were combined to determine the impact's effect and interpret the level of erosion. Cobbles of sedimentary sand- and siltstones were found on the coastline of Lake Summanen. Based on their similarity to those found in the Söderfjärden impact crater with a Cambrian age, it is likely that these rocks and post-impact infill are also of a similar age.  相似文献   

5.
6.
Abstract— –The Monturaqui impact crater (350–370 m in diameter and 0.1 Ma old), located in a remote area in northern Chile, was surveyed in December 2003 with detailed geophysics (gravity and magnetics), topography, petrophysics, and geology. The geology of the Monturaqui area is characterized by a basement of Paleozoic granites overlain by Pliocene ignimbrite units. No impact breccia was found in the area. The granites are the main lithology affected by the impact. Although the granite samples analyzed did not show evidence of shock metamorphism, quartz, and to a lesser extent feldspar and biotite grains from impactite samples exhibit different degrees of shock, ranging from planar microdeformation and cleavage to the development of intense planar deformation features (PDFs) and diaplectic glasses in some grains. The differential GPS survey allowed the creation of a detailed digital elevation model of the crater. Its dimensions are 370 m along the east‐west direction, 350 m along the north‐south direction, and ~~34 m deep. The crater exhibits a circular morphology with a preferred northwest‐southeast elongation that coincides with the steepest slopes (~~35°) on the southeast edge. The newly acquired gravity data shows a negative anomaly of ~~1 mGal at the center and allowed the creation of a 3‐D model with a RMS error of <0.1 mGal, which supports the predictions of a fracturing‐induced low‐density granitic layer on top of the unfractured basement.  相似文献   

7.
Abstract— The Foelsche structure is situated in the McArthur Basin of northern Australia (16°40′ S, 136°47′ E). It comprises a roughly circular outcrop of flat‐lying Neoproterozoic Bukalara Sandstone, overlying and partly rimmed by tangentially striking, discontinuous outcrops of dipping, fractured and brecciated Mesoproterozoic Limmen Sandstone. The outcrop expression coincides with a prominent circular aeromagnetic anomaly, which can be explained in terms of the local disruption and removal or displacement of a regional mafic igneous layer within a circular area at depth. Samples of red, lithic, pebbly sandstone from the stratigraphically lowest exposed levels of the Bukalara Sandstone within the Foelsche structure contain detrital quartz grains displaying mosaicism, planar fractures (PFs) and planar deformation features (PDFs). PFs and PDFs occur in multiple intersecting sets with orientations consistent with a shock metamorphic origin. The abundance and angular nature of the shocked grains indicates a nearby provenance. Surface expression and geophysical data are consistent with a partly buried complex impact crater of ?6 km in diameter with an obscured central uplift ?2 km in diameter. The deformed outcrops of Limmen Sandstone are interpreted as relics of the original crater rim, but the central region of the crater, from which the shocked grains were likely derived, remains buried. From the best available age constraints the Foelsche structure is most likely of Neoproterozoic age.  相似文献   

8.
Abstract— Microtektites from two deep‐sea cores in the South China Sea and the West Philippine Sea are identified as belonging to the Australasian tektite strewn field based on the morphology, chronostratigraphic occurrence, and geographical location of these microtektites. The higher concentrations of microtektites (>1000/cm2) in the marginal seas of the western Pacific, with the peak concentration in the South China Sea, support the hypothesis of a large impact crater in Indochina. These two new occurrences lead to a more precise dating of the impact event at 793 ka, whereas the size of the Australasian source crater on the Indochina Peninsula is estimated to be 90–116 km.  相似文献   

9.
Abstract— The 45-km diameter Montagnais impact structure, Nova Scotia, Canada, is characterized by a positive, circular 8 mGal gravity anomaly associated with its central uplift. The negative gravity anomaly, which is expected for a complex crater of this size, is not observed within the structure, and magnetic data lack any well-defined, crater-related signature. The absence of a negative gravity anomaly implies that no low-density zone generally related to fracturing and brecciation exists. Since Montagnais appears well preserved, this zone has not been removed by erosion. Its formation may have been impeded due to the lack of competency in the target rocks. The crater was formed in a shallow marine environment where the lack of strength in the unconsolidated sediments may have prevented the preservation of voids and fractures that cause a negative gravity anomaly as observed over other impact craters. Additionally, the efficient absorption of impact energy by unconsolidated target material may have inhibited fracture/void development. Although the gravity signature of impact craters formed on land is well known, structures occurring in unconsolidated target material, such as continental shelf environments, constitute another signature that should also be recognized.  相似文献   

10.
Abstract— The 1.13-km-diameter Pretoria Saltpan impact crater is located about 40 km NNW of Pretoria, South Africa. The crater is situated in 2.05 Ga old Nebo granite of the Bushveld Complex that is locally intruded by about 1.3 Ga old volcanic rocks. In 1988, a borehole was drilled in the center of the crater. At depths >90 m, breccias were found that contained minerals with characteristic shock-metamorphic features, thus confirming the impact origin of the crater. Fragments of impact glass were recovered from the melt breccias and several hundred sub-millimeter-sized glass fragments were subjected to fission track analysis. The measurements were complicated by the inhomogeneous composition of the impact glasses, but analysis of a large number of tracks yielded an age of 220 ± 52 ka for the Saltpan crater.  相似文献   

11.
Abstract The pattern of radial and concentric offset dikes at Sudbury strongly resembles fracture patterns in certain volcanically modified craters on the Moon. Since the Sudbury dikes apparently formed shortly after the impact event, this resemblance suggests that early endogenic modification at Sudbury was comparable to deformation in lunar floor-fractured craters. Although regional deformation has obscured many details of the Sudbury Structure, such a comparison of Sudbury with lunar floor-fractured craters provides two alternative models for the original size and surface structures of the Sudbury basin. First, the Sudbury date pattern can be correlated with fractures in the central peak crater Haldane (36 km in diameter). This comparison indicates an initial Sudbury diameter of between 100 and 140 km but requires loss of a central peak complex for which there is little evidence. Alternatively, comparison of the Sudbury dikes with fractures in the two-ring basin Schrödinger indicates an initial Sudbury diameter of at least ~ 180 km, which is in agreement with other recent estimates for the size of the Sudbury Structure. In addition to constraining the size and structure of the original Sudbury crater, these comparisons also suggest that crater modification may reflect different deformation mechanisms at different sizes. Most lunar floor-fractured craters are attributed to deformation over a shallow, crater-centered intrusion; however, there is no evidence for such an intrusion at Sudbury. Instead, melts from the evolving impact melt sheet probably entered fractures formed by isostatically-induced flexure of the crater floor. Since most of the lunar floor-fractured craters are too small (<100-km diameter) to induce significant isostatic adjustment, crater modification by isostatic uplift apparently is limited to only the largest of craters, whereas deformation over igneous intrusions dominates the modification of smaller craters.  相似文献   

12.
Abstract— The late Eocene Chesapeake Bay impact structure (CBIS) on the Atlantic margin of Virginia is one of the largest and best‐preserved “wet‐target” craters on Earth. It provides an accessible analog for studying impact processes in layered and wet targets on volatile‐rich planets. The CBIS formed in a layered target of water, weak clastic sediments, and hard crystalline rock. The buried structure consists of a deep, filled central crater, 38 km in width, surrounded by a shallower brim known as the annular trough. The annular trough formed partly by collapse of weak sediments, which expanded the structure to ?85 km in diameter. Such extensive collapse, in addition to excavation processes, can explain the “inverted sombrero” morphology observed at some craters in layered targets. The distribution of crater‐fill materials in the CBIS is related to the morphology. Suevitic breccia, including pre‐resurge fallback deposits, is found in the central crater. Impact‐modified sediments, formed by fluidization and collapse of water‐saturated sand and silt‐clay, occur in the annular trough. Allogenic sediment‐clast breccia, interpreted as ocean‐resurge deposits, overlies the other impactites and covers the entire crater beneath a blanket of postimpact sediments. The formation of chaotic terrains on Mars is attributed to collapse due to the release of volatiles from thick layered deposits. Some flat‐floored rimless depressions with chaotic infill in these terrains are impact craters that expanded by collapse farther than expected for similar‐sized complex craters in solid targets. Studies of crater materials in the CBIS provide insights into processes of crater expansion on Mars and their links to volatiles.  相似文献   

13.
The estimates of the age of the Kaali impact structure (Saaremaa Island, Estonia) provided by different authors vary by as much as 6000 years, ranging from ~6400 to ~400 before current era (BCE). In this study, a new age is obtained based on 14C dating charred plant material within the proximal ejecta blanket, which makes it directly related to the impact structure, and not susceptible to potential reservoir effects. Our results show that the Kaali crater was most probably formed shortly after 1530–1450 BCE (3237 ± 10 14C yr BP). Saaremaa was already inhabited when the bolide hit the Earth, thus, the crater‐forming event was probably witnessed by humans. There is, however, no evidence that this event caused significant change in the material culture (e.g., known archeological artifacts) or patterns of human habitation on Saaremaa.  相似文献   

14.
Abstract— The Haughton impact structure has been the focus of systematic, multi‐disciplinary field and laboratory research activities over the past several years. Regional geological mapping has refined the sedimentary target stratigraphy and constrained the thickness of the sedimentary sequence at the time of impact to ?1880 m. New 40Ar–39Ar dates place the impact event at ?39 Ma, in the late Eocene. Haughton has an apparent crater diameter of ?23 km, with an estimated rim (final crater) diameter of ?16 km. The structure lacks a central topographic peak or peak ring, which is unusual for craters of this size. Geological mapping and sampling reveals that a series of different impactites are present at Haughton. The volumetrically dominant crater‐fill impact melt breccias contain a calcite‐anhydrite‐silicate glass groundmass, all of which have been shown to represent impact‐generated melt phases. These impactites are, therefore, stratigraphically and genetically equivalent to coherent impact melt rocks present in craters developed in crystalline targets. The crater‐fill impactites provided a heat source that drove a post‐impact hydrothermal system. During this time, Haughton would have represented a transient, warm, wet microbial oasis. A subsequent episode of erosion, during which time substantial amounts of impactites were removed, was followed by the deposition of intra‐crater lacustrine sediments of the Haughton Formation during the Miocene. Present‐day intra‐crater lakes and ponds preserve a detailed paleoenvironmental record dating back to the last glaciation in the High Arctic. Modern modification of the landscape is dominated by seasonal regional glacial and niveal melting, and local periglacial processes. The impact processing of target materials improved the opportunities for colonization and has provided several present‐day habitats suitable for microbial life that otherwise do not exist in the surrounding terrain.  相似文献   

15.
Abstract— Detailed field mapping has revealed the presence of a series of intra‐crater sedimentary deposits within the interior of the Haughton impact structure, Devon Island, Canadian High Arctic. Coarse‐grained, well‐sorted, pale gray lithic sandstones (reworked impact melt breccias) unconformably overlie pristine impact melt breccias and attest to an episode of erosion, during which time significant quantities of impact melt breccias were removed. The reworked impact melt breccias are, in turn, unconformably overlain by paleolacustrine sediments of the Miocene Haughton Formation. Sediments of the Haughton Formation were clearly derived from pre‐impact lower Paleozoic target rocks of the Allen Bay Formation, which form the crater rim in the northern, western, and southern regions of the Haughton structure. Collectively, these field relationships indicate that the Haughton Formation was deposited up to several million years after the formation of the Haughton crater and that they do not, therefore, represent an immediate, post‐impact crater lake deposit. This is consistent with new isotopic dating of impactites from Haughton that indicate an Eocene age for the impact event (Sherlock et al. 2005). In addition, isolated deposits of post‐Miocene intra‐crater glacigenic and fluvioglacial sediments were found lying unconformably over remnants of the Haughton Formation, impact melt breccias, and other pre‐impact target rock formations. These deposits provide clear evidence for glaciation at the Haughton crater. The wealth and complexity of geological and climatological information preserved as intra‐crater deposits at Haughton suggests that craters on Mars with intra‐crater sedimentary records might present us with similar opportunities, but also possibly significant challenges.  相似文献   

16.
Abstract— The results of a systematic field mapping campaign at the Haughton impact structure have revealed new information about the tectonic evolution of mid‐size complex impact structures. These studies reveal that several structures are generated during the initial compressive outward‐directed growth of the transient cavity during the excavation stage of crater formation: (1) sub‐vertical radial faults and fractures; (2) sub‐horizontal bedding parallel detachment faults; and (3) minor concentric faults and fractures. Uplift of the transient cavity floor toward the end of the excavation stage produces a central uplift. Compressional inward‐directed deformation results in the duplication of strata along thrust faults and folds. It is notable that Haughton lacks a central topographic peak or peak ring. The gravitational collapse of transient cavity walls involves the complex interaction of a series of interconnected radial and concentric faults. While the outermost concentric faults dip in toward the crater center, the majority of the innermost faults at Haughton dip away from the center. Complex interactions between an outward‐directed collapsing central uplift and inward collapsing crater walls during the final stages of crater modification resulted in a structural ring of uplifted, intensely faulted (sub‐) vertical and/or overturned strata at a radial distance from the crater center of ?5.0–6.5 km. Converging flow during the collapse of transient cavity walls was accommodated by the formation of several structures: (1) sub‐vertical radial faults and folds; (2) positive flower structures and chaotically brecciated ridges; (3) rollover anticlines in the hanging‐walls of major listric faults; and (4) antithetic faults and crestal collapse grabens. Oblique strike‐slip (i.e., centripetal) movement along concentric faults also accommodated strain during the final stages of readjustment during the crater modification stage. It is clear that deformation during collapse of the transient cavity walls at Haughton was brittle and localized along discrete fault planes separating kilometer‐size blocks.  相似文献   

17.
Suevite and melt breccia compositions in the boreholes Enkingen and Polsingen are compared with compositions of suevites from other Ries boreholes and surface locations and discussed in terms of implications for impact breccia genesis. No significant differences in average chemical compositions for the various drill cores or surface samples are noted. Compositions of suevite and melt breccia from southern and northeastern sectors of the Ries crater do not significantly differ. This is in stark contrast to the published variations between within‐crater and out‐of‐crater suevites from northern and southern sectors of the Bosumtwi impact structure, Ghana. Locally occurring alteration overprint on drill cores—especially strong on the carbonate‐impregnated suevite specimens of the Enkingen borehole—does affect the average compositions. Overall, the composition of the analyzed impact breccias from Ries are characterized by very little macroscopically or microscopically recognized sediment‐clast component; the clast populations of suevite and impact melt breccia are dominated consistently by granitic and intermediate granitoid components. The Polsingen breccia is significantly enriched in a dioritic clast component. Overall, chemical compositions are of intermediate composition as well, with dioritic‐granodioritic silica contents, and relatively small contributions from mafic target components. Selected suevite samples from the Enkingen core have elevated Ni, Co, Cr, and Ir contents compared with previously analyzed suevites from the Ries crater, which suggest a small meteoritic component. Platinum‐group element (PGE) concentrations for some of the enriched samples indicate somewhat elevated concentrations and near‐chondritic ratios of the most immobile PGE, consistent with an extraterrestrial contribution of 0.1–0.2% chondrite‐equivalent.  相似文献   

18.
Thermoluminescence (TL) dating has been used to determine the age of the meteorite impact crater at Gebel Kamil (Egyptian Sahara). Previous studies suggested that the 45 m diameter structure was produced by a fall in recent times (less than 5000 years ago) of an iron meteorite impactor into quartz‐arenites and siltstones belonging to the Lower Cretaceous Gilf Kebir Formation. The impact caused the complete fragmentation of the impactor, and the formation of a variety of impactites (e.g., partially vitrified dark and light materials) present as ejecta within the crater and in the surrounding area. After a series of tests to evaluate the TL properties of different materials including shocked intra‐crater target rocks and different types of ejecta, we selected a suite of light‐colored ejecta that showed evidence of strong thermal shock effects (e.g., partial vitrification and the presence of high‐temperature and ‐pressure silica phases). The abundance of quartz in the target rocks, including the vitrified impactites, allowed TL dating to be undertaken. The variability of radioactivity of the intracrateric target rocks and the lack of direct in situ dosimetric evaluations prevented precise dating; it was, however, possible to constrain the impact in the 2000 BC–500 AD range. If, as we believe, the radioactivity measured in the fallback deposits is a reliable estimate of the mean radioactivity of the site, the narrower range 1600–400 BC (at the 2σ confidence level) can be realistically proposed.  相似文献   

19.
Scott C. Mest  David A. Crown 《Icarus》2005,175(2):335-359
The geology and stratigraphy of Millochau crater (21.4° S, 275° W), located in the highlands of Tyrrhena Terra, Mars, are documented through geomorphic analyses and geologic mapping. Crater size-frequency distributions and superposition relationships are used to constrain relative ages of geologic units and determine the timing and duration of the geologic processes that modified Millochau rim materials and emplaced deposits on Millochau's floor. Crater size-frequency distributions show a Middle Noachian age for rim materials and Middle Noachian to Early Hesperian ages for most of the interior deposits. Valley networks and gullies incised within Millochau's rim materials and interior wall, respectively, indicate fluvial activity was an important erosional process. Millochau contains an interior plateau, offset northeast of Millochau's center, which rises up to 400 m above the surrounding crater floor and slopes downward to the south and west. Layers exposed along the northern and eastern scarp boundaries of the plateau are tens to hundreds of meters thick and laterally continuous in MOC images. These layers suggest most materials within Millochau were emplaced by sedimentary processes (e.g., fluvial or eolian), with the potential for lacustrine deposition in shallow transient bodies of water and contributions of volcanic airfall. Mass wasting may have also contributed significant quantities of material to Millochau's interior, especially to the deposits surrounding the plateau. Superposition relationships combined with impact crater statistics indicate that most deposition and erosion of Millochau's interior deposits is ancient, which implies that fluvial activity in this part of Tyrrhena Terra is much older than in the eastern Hellas region. Eolian processes mobilized sediment to form complicated patterns of long- and short-wavelength dunes, whose emplacement is controlled by local topography. These deposits are some of the youngest within Millochau (Amazonian) and eolian modification may be ongoing.  相似文献   

20.
The Agoudal IIAB iron meteorite exhibits only kamacite grains (~6 mm across) without any taenite. The kamacite is homogeneously enriched with numerous rhabdite inclusions of different size, shape, and composition. In some kamacite domains, this appears frosty due to micron‐scale rhabdite inclusions (~5 to 100 μm) of moderate to high Ni content (~26 to 40 wt%). In addition, all the kamacite grains in matrix are marked with a prominent linear crack formed during an atmospheric break‐up event and subsequently oxidized. This feature, also defined by trails of lowest Ni‐bearing (mean Ni: 23 wt%) mm‐scale rhabdite plates (fractured and oxidized) could be a trace of a pre‐existing γ–α interface. Agoudal experienced a very slow rate of primary cooling ~4 °C Ma?1 estimated from the binary plots of true rhabdite width against corresponding Ni wt% and the computed cooling rate curves after Randich and Goldstein (1978). Chemically, Agoudal iron (Ga: 54 ppm; Ge: 140 ppm; Ir: 0.03 ppm) resembles the Ainsworth iron, the coarsest octahedrite of the IIAB group. Agoudal contains multiple sets of Neumann bands that are formed in space and time at different scales and densities due to multiple impacts with shock magnitude up to 130 kb. Signatures of recrystallization due to postshock low temperature mild reheating at about 400 °C are also locally present.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号