首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Spatio‐temporal prediction and forecasting of land surface temperature (LST) are relevant. However, several factors limit their usage, such as missing pixels, line drops, and cloud cover in satellite images. Being measured close to the Earth's surface, LST is mainly influenced by the land use/land cover (LULC) distribution of the terrain. This article presents a spatio‐temporal interpolation method which semantically models LULC information for the analysis of LST. The proposed spatio‐temporal semantic kriging (ST‐SemK) approach is presented in two variants: non‐separable ST‐SemK (ST‐SemKNSep) and separable ST‐SemK (ST‐SemKSep). Empirical studies have been carried out with derived Landsat 7 ETM+ satellite images of LST for two spatial regions: Kolkata, India and Dallas, Texas, U.S. It has been observed that semantically enhanced spatio‐temporal modeling by ST‐SemK yields more accurate prediction results than spatio‐temporal ordinary kriging and other existing methods.  相似文献   

2.
Forests play a critical role in sustaining the human environment. Most forest fires not only destroy the natural environment and ecological balance, but also seriously threaten the security of life and property. The early discovery and forecasting of forest fires are both urgent and necessary for forest fire control. This article explores the possible applications of Spatio‐temporal Data Mining for forest fire prevention. The research pays special attention to the spatio‐temporal forecasting of forest fire areas based upon historic observations. An integrated spatio‐temporal forecasting framework – ISTFF – is proposed: it uses a dynamic recurrent neural network for spatial forecasting. The principle and algorithm of ISTFF are presented, and are then illustrated by a case study of forest fire area prediction in Canada. Comparative analysis of ISTFF with other methods shows its high accuracy in short‐term prediction. The effect of spatial correlations on the prediction accuracy of spatial forecasting is also explored.  相似文献   

3.
In the process of agricultural land consolidation, the land parcels are optimally redesigned and rearranged in such a way that the dimensions of the resulting parcels are proportional to agricultural criteria such as irrigation discharge, soil texture, and cropping pattern. Besides these criteria, spatial factors like slope, road accessibility, volume of earthwork, and geometrical factors such as size and shape of parcels are also included in the design process of agricultural land partitioning. In this study, a land partitioning model was proposed using a multi‐objective artificial bee colony algorithm (MOABC‐LP) taking into consideration the mentioned factors. Initially, a feasible dimension range of parcels in a block was calculated based on irrigation efficiency. Two partitioning layouts were defined according to the topography and geometry of blocks. The proposed method was applied to a real study area and the results suggest that the land partitioning plan obtained by the MOABC‐LP model, in comparison with a designer's plan, not only makes the shape and size of parcels more compatible with the topographical and agricultural conditions of each block, but also reduces their cut‐and‐fill ratio.  相似文献   

4.
The use of cellular automata (CA) has for some time been considered among the most appropriate approaches for modeling land‐use changes. Each cell in a traditional CA model has a state that evolves according to transition rules, taking into consideration its own and its neighbors’ states and characteristics. Here, we present a multi‐label CA model in which a cell may simultaneously have more than one state. The model uses a multi‐label learning method—a multi‐label support vector machine, Rank‐SVM—to define the transition rules. The model was used with a multi‐label land‐use dataset for Luxembourg, built from vector‐based land‐use data using a method presented here. The proposed multi‐label CA model showed promising performance in terms of its ability to capture and model the details and complexities of changes in land‐use patterns. Applied to historical land use data, the proposed model estimated the land use change with an accuracy of 87.2% exact matching and 98.84% when including cells with a misclassification of a single label, which is comparably better than a classical multi‐class model that achieved 83.6%. The multi‐label cellular automata outperformed a model combining CA and artificial neural networks. All model goodness‐of‐fit comparisons were quantified using various performance metrics for predictive models.  相似文献   

5.
Simulations of intra-urban land use changes have gradually attracted more attention as these approaches are extremely helpful in regard to decision making and policy formulation. While prior studies mostly focused on methods of developing intra-urban level simulations, very little research has been conducted explain the factors driving intra-urban land use change. Urban planners are highly concerned with how inner-city structures are formed and how they function. Here, to simulate multiple intra-urban land use changes and to identify the contribution of different driving factors, we developed a random forests (RF) algorithm-based cellular automata (CA) simulation model. In this study, the model applied diverse categories of spatial variables, including traffic location factors, environmental factors, public services, and population density, as the driving factors to enhance our understanding of the dynamics of internal urban land use. The CA model was tested using data from the Huicheng district of Huizhou city in the Guangdong province of China. The Model was validated using actual historical land use data from 2000 to 2010. By applying the validated model, multiple intra-urban land use maps were simulated for 2015. Simultaneously, spatial variable importance measures (VIMs) were calculated by using the out-of-bag (OOB) error estimation approach of the RF algorithm. Based on the calculation results, we assessed and analysed the significance of each intra-urban land use driver for this region. This study provides urban planners and relevant scholars with detailed and targeted information that can aid in the formulation of specific planning strategies for different intra-urban land uses and support the future evolution of this area.  相似文献   

6.
Proper urban planning and effective implementation requires reliable urban land use statistics. In this context, satellite remote sensing data has been studied using both visual and digital techniques. A portable eight-band radiometer has been used to collect spectral signatures of surface features present in Ahmedabad city and its environs. Using these signatures a suitable approach employing visual and digital techniques has been developed for urban land use/sprawl mapping. Urban land-use maps of Ahmedabad city and its environs were prepared on 1:25,000 scale and for Ahmedabad Urban Development Authority Area on 1:50,000 scale using this methodology. It has been found that edge-enhancement techniques are useful to enhance the contrast among different urban land uses. Classification techniques such as MXL and Bayes classifiers are not successful in discriminating urban land uses. Tonal characteristics alongwith other elements of interpretation are required to classify urban land uses such as residential, industrial etc. Spatial distribution of various urban and uses and the space devoted to each urban land use has been brought out.  相似文献   

7.
As tools for collecting data continue to evolve and improve, the information available for research is expanding rapidly. Increasingly, this information is of a spatio‐temporal nature, which enables tracking of phenomena through both space and time. Despite the increasing availability of spatio‐temporal data, however, the methods for processing and analyzing these data are lacking. Existing geocoding techniques are no exception. Geocoding enables the geographic location of people and events to be known and tracked. However, geocoded information is highly generalized and subject to various interpolation errors. In addition, geocoding for spatio‐temporal data is especially challenging because of the inherent dynamism of associated data. This article presents a methodology for geocoding spatio‐temporal data in ArcGIS that utilizes several additional supporting procedures to enhance spatial accuracy, including the use of supplementary land use information, aerial photographs and local knowledge. This hybrid methodology allows for the tracking of phenomenon through space and over time. It is also able to account for reporting inconsistencies, which is a common feature of spatio‐temporal data. The utility of this methodology is demonstrated using an application to spatio‐temporal address records for a highly mobile group of convicted felons in Hamilton County, Ohio.  相似文献   

8.
This study deals with the technique of remote sensing and how far it helps in the rapid study of geographical phenomena especially land use within a very short time and accurate manner. It evaluates how well data from the Landsat - Multispectral Scanner (MSS) could be used to detect, identify and delineate land use features within the Andhra Pradesh State. The main objective was to prepare a small scale land use map from satellite imagery showing the broad distribution of land use patterns to serve as a base for monitoring land use change.  相似文献   

9.
Introducing Clifford algebra as the mathematical foundation, a unified spatio‐temporal data model and hierarchical spatio‐temporal index are constructed by linking basic data objects, like pointclouds and Spatio‐Temporal Hyper Cubes of different dimensions, within the multivector structure of Clifford algebra. The transformation from geographic space into homogeneous and conformal space means that geometric, metric and many other kinds of operators of Clifford algebra can be implemented and we then design the shortest path, high‐dimensional Voronoi and unified spatial‐temporal process analyses with spacetime algebra. Tests with real world data suggest these traditional GIS analysis algorithms can be extended and constructed under Clifford Algebra framework, which can accommodate multiple dimensions. The prototype software system CAUSTA (Clifford Algebra based Unified Spatial‐Temporal Analysis) provides a useful tool for investigating and modeling the distribution characteristics and dynamic process of complex geographical phenomena under the unified spatio‐temporal structure.  相似文献   

10.
Geographic features change over time, this change being the result of some kind of event. Most database systems used in GIS are relational in nature, capturing change by exhaustively storing all versions of data, or updates replace previous versions. This stems from the inherent difficulty of modelling geographic objects and associated data in relational tables, and this is compounded when the necessary time dimension is introduced to represent how these objects evolve. This article describes an object‐oriented (OO) spatio‐temporal conceptual data model called the Feature Evolution Model (FEM), which can be used for the development of a spatio‐temporal database management system (STDBMS). Object versioning techniques developed in the fields of Computer Aided Design (CAD) and engineering design are utilized in the design. The model is defined using the Unified Modelling Language (UML), and exploits the expressiveness of OO technology by representing both geographic entities and events as objects. Further, the model overcomes the limitations inherent in relational approaches in representing aggregation of objects to form more complex, compound objects. A management object called the evolved feature maintains a temporally ordered list of references to features thus representing their evolution. The model is demonstrated by its application to road network data.  相似文献   

11.
12.
13.
14.
Dynamic geospatial complex systems are inherently four‐dimensional (4D) processes and there is a need for spatio‐temporal models that are capable of realistic representation for improved understanding and analysis. Such systems include changes of geological structures, dune formation, landslides, pollutant propagation, forest fires, and urban densification. However, these phenomena are frequently analyzed and represented with modeling approaches that consider only two spatial dimensions and time. Consequently, the main objectives of this study are to design and develop a modeling framework for 4D agent‐based modeling, and to implement the approach to the 4D case study for forest‐fire smoke propagation. The study area is central and southern British Columbia and the western parts of Alberta, Canada for forest fires that occurred in the summer season of 2017. The simulation results produced realistic spatial patterns of the smoke propagation dynamics.  相似文献   

15.
Over the last two decades, China has introduced a series of agricultural and forestland use reforms, aiming to feed the largest population in the world and maintain ecological services locally and nationally. This paper studies the impacts of local government-driven reforestation on land use and land cover change, as well as its further impacts on livelihoods of upland farmers in Xizhuang watershed. An analysis of aerial photographs and ASTER satellite imagery from 1987 to 2002, respectively, showed that the forest has significantly increased at the expense of decreasing farmland. However, the monoculture reforestation of pine has caused both biophysical and socio-economic consequences. This case study also shows forestry decentralization in China remains incomplete. Land use and land cover change is also a political economic issue. Some of the reforms designed to protect forest resources have had a negative impact on rural livelihoods.  相似文献   

16.
Sprawl measures have largely been neglected in land‐use forecasting models. The current approach for land‐use allocation using optimization mostly utilizes objective functions and constraints that are non‐spatial in nature. Application of spatial constraints could take care of the contiguity and compactness of land uses and can be utilized to address urban sprawl. Because a land‐use model is used as an input to transportation modeling, a better spatial allocation strategy for more compact land‐use projections will promote better transportation planning and sustainable development. This study formulates a scenario‐based approach to normative modeling of urban sprawl. In doing so, it seeks to improve the land‐use projections by employing a spatial optimization model with contiguity and compactness consideration. This study incorporates urban sprawl measures based on smart growth principles together with a mixed‐use factor, and adjacency consideration of nearby land uses. The objective function used in the study maximizes net suitability based on imposed constraints. These constraints are based on smart growth principles that enhance walkability in neighborhoods, promote better health for residents, and encourage mixed‐use development. The formulated model has been applied to Collin County, TX, a fast‐developing suburban county located to the north of the Dallas–Fort Worth metroplex. The suitability of land cells indicates the probability of conversion, which is calculated using spatial discrete choice analysis with Moran eigenvector spatial filtering for vacant cells at a resolution of 150 × 150 m employing factors of the built environment, and socioeconomic and demographic characteristics. This study demonstrates how spatial proximity between land uses, which has been ignored to date, can be used to control sprawl, resulting in better mixing of different land uses based on constraints imposed in a spatial optimization problem.  相似文献   

17.
Defining a model for the representation and the analysis of spatio‐temporal dynamics remains an open domain in geographical information sciences. In this article we investigate a spatio‐temporal graph‐based model dedicated to managing and extracting sets of geographical entities related in space and time. The approach is based on spatial and temporal local relations between neighboring entities during consecutive times. The model allows us to extract sets of connected entities distant in time and space over long periods and large spaces. From GIS concepts and qualitative reasoning on space and time, we combine the graph model with a dedicated spatial database. It includes information on geometry and geomorphometric parameters, and on spatial and temporal relations. This allows us to extend classical measurements of spatial parameters, with comparisons of entities linked by complex relations in space and time. As a case study, we show how the model suggests an efficient representation of dunes dynamics on a nautical chart for safe navigation.  相似文献   

18.
Recent urban studies have used human mobility data such as taxi trajectories and smartcard data as a complementary way to identify the social functions of land use. However, little work has been conducted to reveal how multi‐modal transportation data impact on this identification process. In our study, we propose a data‐driven approach that addresses the relationships between travel behavior and urban structure: first, multi‐modal transportation data are aggregated to extract explicit statistical features; then, topic modeling methods are applied to transform these explicit statistical features into latent semantic features; and finally, a classification method is used to identify functional zones with similar latent topic distributions. Two 10‐day‐long “big” datasets from the 2,370 bicycle stations of the public bicycle‐sharing system, and up to 9,992 taxi cabs within the core urban area of Hangzhou City, China, as well as point‐of‐interest data are tested to reveal the extent to which different travel modes contribute to the detection and understanding of urban land functions. Our results show that: (1) using latent semantic features delineated from the topic modeling process as the classification input outperforms approaches using explicit statistical features; (2) combining multi‐modal data visibly improves the accuracy and consistency of the identified functional zones; and (3) the proposed data‐driven approach is also capable of identifying mixed land use in the urban space. This work presents a novel attempt to uncover the hidden linkages between urban transportation patterns with urban land use and its functions.  相似文献   

19.
This study applies a spatial fuzzy multi‐criteria evaluation model to determine agricultural feasibility in China based on physical variables (accumulated temperature, sunshine, precipitation, hydrology, elevation and soil properties). The resulting agricultural feasibility index layer is combined with nightlight images (1992‐2013) to determine the spatiotemporal variation of urban encroachment on feasible agriculture land. It reveals the severity of agricultural land losses to urbanization.  相似文献   

20.
Quantifying the aggregation patterns of urban population, economic activities, and land use are essential for understanding compact development, but little is k...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号