首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Environmental processes are usually conceptualized as complex systems whose dynamics are best understood by examining the relationships and interactions of their constituent parts. The cellular automata paradigm, as a bottom‐up modeling approach, has been widely used to study the macroscopic behavior of these complex natural processes. However, the cellular automata models are largely restricted to the two‐dimensional spatial perspective even though the process dynamics they represent evolve in the three spatial dimensions. The objective of this study is to develop a voxel‐based automata approach for modeling the propagation of airborne pollutants in three‐dimensional space over time. The GIS‐based geo‐atom theory was used to manage the data within the automaton. The simulation results indicate the model has the capability to generate effective four‐dimensional (4D) simulations from simple transition rules that describe the processes of particle advection and diffusion. The application of voxel‐based automata and the geo‐atom concepts allows for a detailed 4D analysis and tracking of the changes in the voxel space at every time‐step. The proposed modeling approach provides new means to examine the relationships between pattern and process in 4D.  相似文献   

2.
Forests play a critical role in sustaining the human environment. Most forest fires not only destroy the natural environment and ecological balance, but also seriously threaten the security of life and property. The early discovery and forecasting of forest fires are both urgent and necessary for forest fire control. This article explores the possible applications of Spatio‐temporal Data Mining for forest fire prevention. The research pays special attention to the spatio‐temporal forecasting of forest fire areas based upon historic observations. An integrated spatio‐temporal forecasting framework – ISTFF – is proposed: it uses a dynamic recurrent neural network for spatial forecasting. The principle and algorithm of ISTFF are presented, and are then illustrated by a case study of forest fire area prediction in Canada. Comparative analysis of ISTFF with other methods shows its high accuracy in short‐term prediction. The effect of spatial correlations on the prediction accuracy of spatial forecasting is also explored.  相似文献   

3.
Forest fires are considered one of the most highly damaging and devastating of natural disasters, causing considerable casualties and financial losses every year. Hence, it is important to produce susceptibility maps for the management of forest fires so as to reduce their harmful effects. The purpose of this study is to map the susceptibility to forest fires over Nowshahr County in Iran, using an integrated approach of index of entropy (IOE) with fuzzy membership value (FMV), frequency ratio (FR), and information value (IV) with a comparison of their precision. The spatial database incorporated the inventory of forest fire and conditioning factors. As a whole, 41 forest fire locations were identified. Out of these, 29 locations (≈70%) were randomly chosen for the forest fire susceptibility modeling (FFSM), and the remaining 12 locations (≈30%) were utilized for the validation of the models. Subsequently, utilizing FMV‐IOE, FR‐IOE, and IV‐IOE models, forest fire susceptibility maps were acquired. Finally, the modeling ability of the models for FFSM was assessed using an area under the receiver operating characteristic (AUROC) curve. The results manifested that the prediction accuracy of the FMV‐IOE model is slightly higher than that of the FR‐IOE and IV‐IOE models. The incorporation of IOE with FMV, FR, and IV models had AUROC values of 0.890, 0.887, and 0.878, respectively. The resulting FFSM can be effective in fire repression resource planning, sustainable development, and primary warning in regions with similar conditions.  相似文献   

4.
森林火灾是最为常见的灾害之一,严重危及人类生命安全。及时准确监测森林火灾的发生及火场状况,对应对火灾及减少损失至关重要。当前,森林火灾卫星遥感监测主要以低空间分辨率的卫星遥感为主,空间分辨率过低导致无法探测规模较小火灾及掌握详细火场态势。针对这一问题,结合近些年中高空间分辨率卫星观测、共享及处理能力的发展,本文从森林火灾卫星遥感监测的基本原理、当前可用中高空间分辨率卫星数据及其特点、中高分辨率森林着火区监测算法,以及数据共享与云端存储与计算等4个技术环节,对森林火灾中高分辨率卫星遥感监测当前研究现状与存在问题进行了总结,阐述了近实时中高空间分辨率森林火灾监测系统的可行性。近实时中高空间分辨率森林火灾监测系统可对已有低空间分辨率森林火灾监测体系形成重要补充,依托其空间分辨率的优势有助于及早、准确发现小规模火情,进而为森林火灾的防治与管理提供更好支撑。  相似文献   

5.
This study adopts a near real‐time space‐time cube approach to portray a dynamic urban air pollution scenario across space and time. Originating from time geography, space‐time cubes provide an approach to integrate spatial and temporal air pollution information into a 3D space. The base of the cube represents the variation of air pollution in a 2D geographical space while the height represents time. This way, the changes of pollution over time can be described by the different component layers of the cube from the base up. The diurnal ambient ozone (O3) pollution in Houston, Texas is modeled in this study using the space‐time air pollution cube. Two methods, land use regression (LUR) modeling and spatial interpolation, were applied to build the hourly component layers for the air pollution cube. It was found that the LUR modeling performed better than the spatial interpolation in predicting air pollution level. With the availability of real‐time air pollution data, this approach can be extended to produce real‐time air pollution cube is for more accurate air pollution measurement across space and time, which can provide important support to studies in epidemiology, health geography, and environmental regulation.  相似文献   

6.
Three‐dimensional (3D) terrain modeling based on digital elevation models (DEMs) with the use of orthographic and perspective projections is a standard procedure implemented in many commercial and open‐source geoinformation systems. However, standard tools may be insufficient for 3D scientific visualization. In particular, single‐source illumination of 3D models may be deficient for topographically complex terrains. We present an approach for 3D terrain modeling with multiple‐source illumination in the virtual environment of the Blender free and open‐source software. The approach includes the following key stages: (1) automatic creation of a polygonal object; (2) selecting an algorithm to model the 3D geometry; (3) selecting a vertical exaggeration scale; (4) selecting types, parameters, a number, and positions of light sources; (5) selecting methods for generating shadows; (6) selecting a shading method for the 3D model; (7) selecting a material for the 3D model surface; (8) overlaying a texture on the 3D model; (9) setting a virtual camera; and (10) rendering the 3D model. To illustrate the approach, we processed a test DEM extracted from the International Bathymetric Chart of the Arctic Ocean version 3.0 (IBCAO 3.0). The approach is currently being used to develop a system for geomorphometric modeling of the Arctic Ocean floor.  相似文献   

7.
Estimates of solar radiation distribution in urban areas are often limited by the complexity of urban environments. These limitations arise from spatial structures such as buildings and trees that affect spatial and temporal distributions of solar fluxes over urban surfaces. The traditional solar radiation models implemented in GIS can address this problem only partially. They can be adequately used only for 2‐D surfaces such as terrain and rooftops. However, vertical surfaces, such as facades, require a 3‐D approach. This study presents a new 3‐D solar radiation model for urban areas represented by 3‐D city models. The v.sun module implemented in GRASS GIS is based on the existing solar radiation methodology used in the topographic r.sun model with a new capability to process 3‐D vector data representing complex urban environments. The calculation procedure is based on the combined vector‐voxel approach segmenting the 3‐D vector objects to smaller polygon elements according to a voxel data structure of the volume region. The shadowing effects of surrounding objects are considered using a unique shadowing algorithm. The proposed model has been applied to the sample urban area with results showing strong spatial and temporal variations of solar radiation flows over complex urban surfaces.  相似文献   

8.
Spatial data infrastructures, which are characterized by multi‐represented datasets, are prevalent throughout the world. The multi‐represented datasets contain different representations for identical real‐world entities. Therefore, update propagation is useful and required for maintaining multi‐represented datasets. The key to update propagation is the detection of identical features in different datasets that represent corresponding real‐world entities and the detection of changes in updated datasets. Using polygon features of settlements as examples, this article addresses these key problems and proposes an approach for multi‐represented feature matching based on spatial similarity and a back‐propagation neural network (BPNN). Although this approach only utilizes the measures of distance, area, direction and length, it dynamically and objectively determines the weight of each measure through intelligent learning; in contrast, traditional approaches determine weight using expertise. Therefore, the weight may be variable in different data contexts but not for different levels of expertise. This approach can be applied not only to one‐to‐one matching but also to one‐to‐many and many‐to‐many matching. Experiments are designed using two different approaches and four datasets that encompass an area in China. The goals are to demonstrate the weight differences in different data contexts and to measure the performance of the BPNN‐based feature matching approach.  相似文献   

9.
While cellular automata have become popular tools for modeling land‐use changes, there is a lack of studies reporting their application at very fine spatial resolutions (e.g. 5 m resolution). Traditional cell‐based CA do not generate reliable results at such resolutions because single cells might only represent components of land‐use entities (i.e. houses or parks in urban residential areas), while recently proposed entity‐based CA models usually ignore the internal heterogeneity of the entities. This article describes a patch‐based CA model designed to deal with this problem by integrating cell and object concepts. A patch is defined as a collection of adjacent cells that might have different attributes, but that represent a single land‐use entity. In this model, a transition probability map was calculated at each cell location for each land‐use transition using a weight of evidence method; then, land‐use changes were simulated by employing a patch‐based procedure based on the probability maps. This CA model, along with a traditional cell‐based model were tested in the eastern part of the Elbow River watershed in southern Alberta, Canada, an area that is under considerable pressure for land development due to its proximity to the fast growing city of Calgary. The simulation results for the two models were compared to historical data using visual comparison, Ksimulation indices, and landscape metrics. The results reveal that the patch‐based CA model generates more compact and realistic land‐use patterns than the traditional cell‐based CA. The Ksimulation values indicate that the land‐use maps obtained with the patch‐based CA are in higher agreement with the historical data than those created by the cell‐based model, particularly regarding the location of change. The landscape metrics reveal that the patch‐based model is able to adequately capture the land‐use dynamics as observed in the historical data, while the cell‐based CA is not able to provide a similar interpretation. The patch‐based approach proposed in this study appears to be a simple and valuable solution to take into account the internal heterogeneity of land‐use classes at fine spatial resolutions and simulate their transitions over time.  相似文献   

10.
Social media networks allow users to post what they are involved in with location information in a real‐time manner. It is therefore possible to collect large amounts of information related to local events from existing social networks. Mining this abundant information can feed users and organizations with situational awareness to make responsive plans for ongoing events. Despite the fact that a number of studies have been conducted to detect local events using social media data, the event content is not efficiently summarized and/or the correlation between abnormal neighboring regions is not investigated. This article presents a spatial‐temporal‐semantic approach to local event detection using geo‐social media data. Geographical regularities are first measured to extract spatio‐temporal outliers, of which the corresponding tweet content is automatically summarized using the topic modeling method. The correlation between outliers is subsequently examined by investigating their spatial adjacency and semantic similarity. A case study on the 2014 Toronto International Film Festival (TIFF) is conducted using Twitter data to evaluate our approach. This reveals that up to 87% of the events detected are correctly identified compared with the official TIFF schedule. This work is beneficial for authorities to keep track of urban dynamics and helps build smart cities by providing new ways of detecting what is happening in them.  相似文献   

11.
Synchronous geocollaboration helps geographically dispersed people to work together in a shared geospatial environment. Its real‐time nature, multiple users' interaction and diversity of work context impose some special social, organizational and technological requirements, making the development of such real‐time geocollaboration systems a challenging task. A conceptual framework is therefore needed to specify and describe what synchronous geocollaboration is, considering its social, spatial and technical aspects. The geo‐social model presented in this article describes a conceptual framework for synchronous geocollaboration systems addressing the above aspects, identifies the core elements of the system and describes how these elements collaborate with each other. This model is presented using application‐level ontology and is then applied to a multi‐agent system based prototype in which multiple users can interact and negotiate in a shared 3D geospatial environment.  相似文献   

12.
Sprawl measures have largely been neglected in land‐use forecasting models. The current approach for land‐use allocation using optimization mostly utilizes objective functions and constraints that are non‐spatial in nature. Application of spatial constraints could take care of the contiguity and compactness of land uses and can be utilized to address urban sprawl. Because a land‐use model is used as an input to transportation modeling, a better spatial allocation strategy for more compact land‐use projections will promote better transportation planning and sustainable development. This study formulates a scenario‐based approach to normative modeling of urban sprawl. In doing so, it seeks to improve the land‐use projections by employing a spatial optimization model with contiguity and compactness consideration. This study incorporates urban sprawl measures based on smart growth principles together with a mixed‐use factor, and adjacency consideration of nearby land uses. The objective function used in the study maximizes net suitability based on imposed constraints. These constraints are based on smart growth principles that enhance walkability in neighborhoods, promote better health for residents, and encourage mixed‐use development. The formulated model has been applied to Collin County, TX, a fast‐developing suburban county located to the north of the Dallas–Fort Worth metroplex. The suitability of land cells indicates the probability of conversion, which is calculated using spatial discrete choice analysis with Moran eigenvector spatial filtering for vacant cells at a resolution of 150 × 150 m employing factors of the built environment, and socioeconomic and demographic characteristics. This study demonstrates how spatial proximity between land uses, which has been ignored to date, can be used to control sprawl, resulting in better mixing of different land uses based on constraints imposed in a spatial optimization problem.  相似文献   

13.
During extreme events, like hurricanes, it is essential to position relief services for non‐evacuees throughout the affected region in optimal locations. While previous research has explored a variety of spatial optimization models to accomplish such a task, most work assumes that the population with demand is relatively static. However, this assumption neglects to account for potential feedbacks in the relief distribution system. For example, a population's behavior can both affect and be affected by the placement of relief services, resulting in a dynamic spatial distribution of demand. This article presents a hybrid modeling approach that utilizes GIS data with agent‐based and spatial optimization models to position emergency relief teams in Bay County, Florida during a hurricane event. Non‐evacuating household agents choose to remain at home or seek shelter, while relief team agents are periodically repositioned to account for changes in the spatial distribution of household agents. A total of 220 simulations are run to explore a variety of scenarios. Results show different repositioning timing strategies and the magnitude of the feedback effect drastically changes the level of access households have to relief teams. Ultimately, this work demonstrates the importance of accounting for behavioral and spatial dynamics in disaster relief distribution systems.  相似文献   

14.
Local land‐use and ‐cover changes (LUCCs) are the result of both the decisions and actions of individual land‐users, and the larger global and regional economic, political, cultural, and environmental contexts in which land‐use systems are embedded. However, the dearth of detailed empirical data and knowledge of the influences of global/regional forces on local land‐use decisions is a substantial challenge to formulating multi‐scale agent‐based models (ABMs) of land change. Pattern‐oriented modeling (POM) is a means to cope with such process and parameter uncertainty, and to design process‐based land change models despite a lack of detailed process knowledge or empirical data. POM was applied to a simplified agent‐based model of LUCC to design and test model relationships linking global market influence to agents’ land‐use decisions within an example test site. Results demonstrated that evaluating alternative model parameterizations based on their ability to simultaneously reproduce target patterns led to more realistic land‐use outcomes. This framework is promising as an agent‐based virtual laboratory to test hypotheses of how and under what conditions driving forces of land change differ from a generalized model representation depending on the particular land‐use system and location.  相似文献   

15.
Detailed population information is crucial for the micro‐scale modeling and analysis of human behavior in urban areas. Since it is not available on the basis of individual persons, it has become necessary to derive data from aggregated census data. A variety of approaches have been published in the past, yet they are not entirely suitable for use in the micro‐scale context of highly urbanized areas, due mainly to their broad spatial scale and missing temporal scale. Here we introduce an enhanced approach for the spatio‐temporal estimation of building populations in highly urbanized areas. It builds upon other estimation methodologies, but extends them by introducing multiple usage categories and the temporal dimension. This allows for a more realistic representation of human activities in highly urbanized areas and the fact that populations change over time as a result of these activities. The model makes use of a variety of micro‐scale data sets to operationalize the activities and their spatio‐temporal representations. The outcome of the model provides estimated population figures for all buildings at each time step and thereby reveals spatio‐temporal behavior patterns. It can be used in a variety of applications concerning the implications of human behavior in urban areas.  相似文献   

16.
基于MODIS的重庆森林火灾监测与应用   总被引:1,自引:0,他引:1  
利用MODIS近红外、中红外及热红外的4个波段监测森林火灾,并提出了以MODIS 7波段为主的高温火点直接判别法和非高温火点综合阈值判别法。2006年重庆市森林火灾监测实践证明,该方法在城市森林火灾监测中是可用的。  相似文献   

17.
In sharp contrast with the global trend in population growth, certain developed countries are expected to experience rapid national population declines. Considering future land use scenarios that include depopulation is necessary to evaluate changes in ecosystem services that affect human well‐being and to facilitate comprehensive strategies for balancing rural and urban development. In this study, we applied a population‐projection‐assimilated predictive land use modeling (PPAP‐LM) approach, in which a spatially explicit population projection was incorporated as a predictor in a land use model. To analyze the effects of future population distributions on land use, we developed models for five land use types and generated projections for two scenarios (centralization and decentralization) under a shrinking population in Japan during 2015–2050. Our results suggested that population centralization promotes the compaction of built‐up areas and the expansion of forest and wastelands, while population decentralization contributes to the maintenance of a mixture of forest and cultivated land.  相似文献   

18.
The dispersion of communicable diseases in a population is intrinsically spatial. In the last several decades, a range of spatial approaches has been devised to model epidemiological processes; and they differ significantly from each other. A review of spatially oriented epidemiological models is necessary to assess advances in spatial approaches to modeling disease dispersion and to help identify those most appropriate for specific research goals. The most notable difference in the design of these spatially oriented models is the scale and mobility of the modeling unit. Using two criteria, this review identifies six types of spatially oriented models. These include: (1) population‐based wave models, (2) sub‐population models, (3) individual‐based cellular automata models, (4) mobile sub‐population models, (5) individual‐based spatially implicit models, and (6) individual‐based mobile models. Each model type is evaluated in terms of its design principles, assumptions, and intended applications. For the evaluation of design, four aspects of design principles are discussed: the modeling unit, the interaction between the modeling units, the spatial process, and the temporal process utilized in a design. Insights gained from this review can be useful for devising much‐needed spatially and temporally oriented strategies to forecast, prevent, and control communicable diseases.  相似文献   

19.
Agent‐based modeling provides a means for addressing the way human and natural systems interact to change landscapes over time. Until recently, evaluation of simulation models has focused on map comparison techniques that evaluate the degree to which predictions match real‐world observations. However, methods that change the focus of evaluation from patterns to processes have begun to surface; that is, rather than asking if a model simulates a correct pattern, models are evaluated on their ability to simulate a process of interest. We build on an existing agent‐based modeling validation method in order to present a temporal variant‐invariant analysis (TVIA). The enhanced method, which focuses on analyzing the uncertainty in simulation results, examines the degree to which outcomes from multiple model runs match some reference to how land use parcels make the transition from one land use class to another over time. We apply TVIA to results from an agent‐based model that simulates the relationships between landowner decisions and wildfire risk in the wildland‐urban interface of the southern Willamette Valley, Oregon, USA. The TVIA approach demonstrates a novel ability to examine uncertainty across time to provide an understanding of how the model emulates the system of interest.  相似文献   

20.
The purpose of this work is to determine whether spatial modeling can be used to model the spread of the Black Death. The study is limited to models for the propagation of the disease in Sweden in 1350. Geographic data of Swedish water bodies and medieval road networks, historical data on the population in Swedish parishes, including their medieval boundaries, along with historical notes and disease characteristics, were used to build alternative models for spatial distribution. Three different models are presented: one radial, one cost‐based and one combining network analysis and radial propagation. Simulations were made to depict different scenarios on the spread of the disease, as well as the drastic changes in the overall population of Sweden, over a couple of hundred years. For purpose of validation the population decrease estimated in each parish is compared with independent historical documents. Results from model scenarios are visualized in maps of propagation, animated video sequences and a web map service. Our analyses clearly demonstrate the power of spatial analysis and geographic information systems to describe, model and visualize epidemiologic processes in space and time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号