首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract— The radicals in the insoluble organic matter (IOM) from the Tagish Lake meteorite were studied by electron paramagnetic resonance and compared to those existing in the Orgueil and Murchison meteorites. As in the Orgueil and Murchison meteorites, the radicals in the Tagish Lake meteorite are heterogeneously distributed and comprise a substantial amount (?42%) of species with a thermally accessible triplet state and with the same singlet‐triplet gap, ΔE ?0.1 eV, as in the Orgueil and Murchison meteorites. These species were identified as diradicaloid moieties. The existence of similar diradicaloid moieties in three different carbonaceous chondrites but not in terrestrial IOM strongly suggests that these moieties could be “fingerprints” of the extraterrestrial origin of meteoritic IOM and markers of its synthetic pathway before its inclusion into a parent body.  相似文献   

2.
Abstract– The insoluble organic matter (IOM) of an unequilibrated enstatite chondrite Sahara (SAH) 97096 has been investigated using a battery of analytical techniques. As the enstatite chondrites are thought to have formed in a reduced environment at higher temperatures than carbonaceous chondrites, they constitute an interesting comparative material to test the heterogeneities of the IOM in the solar system and to constrain the processes that could affect IOM during solar system evolution. The SAH 97096 IOM is found in situ: as submicrometer grains in the network of fine‐grained matrix occurring mostly around chondrules and as inclusions in metallic nodules, where the carbonaceous matter appears to be more graphitized. IOM in these two settings has very similar δ15N and δ13C; this supports the idea that graphitized inclusions in metal could be formed by metal catalytic graphitization of matrix IOM. A detailed comparison between the IOM extracted from a fresh part and a terrestrially weathered part of SAH 97096 shows the similarity between both IOM samples in spite of the high degree of mineral alteration in the latter. The isolated IOM exhibits a heterogeneous polyaromatic macromolecular structure, sometimes highly graphitized, without any detectable free radicals and deuterium‐heterogeneity and having mean H‐ and N‐isotopic compositions in the range of values observed for carbonaceous chondrites. It contains some submicrometer‐sized areas highly enriched in 15N (δ15N up to 1600‰). These observations reinforce the idea that the IOM found in carbonaceous chondrites is a common component widespread in the solar system. Most of the features of SAH 97096 IOM could be explained by the thermal modification of this main component.  相似文献   

3.
Raman spectroscopy was used to investigate insoluble organic matter (IOM) from a range of chondritic meteorites, and a suite of interplanetary dust particles (IDPs). Three monochromatic excitation wavelengths (473 nm, 514 nm, 632 nm) were applied sequentially to assess variations in meteorite and IDP Raman peak parameters (carbon D and G bands) as a function of excitation wavelength (i.e., dispersion). Greatest dispersion occurs in CVs > OCs > CMs > CRs with type 3 chondrites compared at different excitation wavelengths displaying conformable relationships, in contrast to type 2 chondrites. These findings indicate homogeneity in the structural nature of type 3 chondrite IOM, while organic matter (OM) in type 2 chondrites appears to be inherently more heterogeneous. If type 2 and type 3 chondrite IOM shares a common source, then thermal metamorphism may have a homogenizing effect on the originally more heterogeneous OM. IDP Raman G bands fall on an extension of the trend displayed by chondrite IOM, with all IDPs having Raman parameters indicative of very disordered carbon, with almost no overlap with IOM. The dispersion effect displayed by IDPs is most similar to CMs for the G band, but intermediate between CMs and CRs for the D band. The existence of some overlapping Raman features in the IDPs and IOM indicates that their OM may share a common origin, but the IDPs preserve more pristine OM that may have been further disordered by ion irradiation. H, C, and N isotopic data for the IDPs reveal that the disordered carbon in IDPs corresponds with higher δ15N and lower δ13C.  相似文献   

4.
The CI1 Orgueil meteorite is a highly aqueously altered carbonaceous chondrite. It has been extensively studied, and despite its extensive degree of aqueous alteration and some documented instances of contamination, several indigenous organic compounds including amino acids, carboxylic acids, and nucleobases have been detected in its carbon‐rich matrix. We recently developed a novel gas chromatographic method for the enantiomeric and compound‐specific isotopic analyses of meteoritic aliphatic monoamines in extracts and have now applied this method to investigate the monoamine content in Orgueil. We detected 12 amines in Orgueil, with concentrations ranging from 1.1 to 332 nmol g?1 of meteorite and compared this amine content in Orgueil with that of the CM2 Murchison meteorite, which experienced less parent‐body aqueous alteration. Methylamine is four times more abundant in Orgueil than in Murchison. As with other species, the amine content in Orgueil extracts shows less structural diversity than that in Murchison extracts. We measured the compound‐specific stable carbon isotopic ratios (δ13C) for 5 of the 12 monoamines detected in Orgueil and found a range of δ13C values from –20 to +59‰. These δ13C values fall into the range of other meteoritic organic compounds, although they are 13C‐depleted relative to their counterparts extracted from the Murchison meteorite. In addition, we measured the enantiomeric composition for the chiral monoamines (R)‐ and (S)‐sec‐butylamine in Orgueil, and found it was racemic within experimental error, in contrast with the l ‐enantiomeric excess found for its amino acid structural analog isovaline. The racemic nature of sec‐butylamine in Orgueil was comparable to that previously observed in Murchison, and to other CM2 and CR2 carbonaceous chondrites measured in this work (ALH 83100 [CM1/2], LON 94101 [CM2], LEW 90500 [CM2], LAP 02342 [CR2], and GRA 95229 [CR2]). These results allow us to place some constraints on the effects of aqueous alteration observed over the monoamine concentrations in Orgueil and Murchison, and to evaluate the primordial synthetic relationships between meteoritic monoamines and amino acids.  相似文献   

5.
Abstract– The insoluble carbonaceous matter from 12 chondrites (CI, CM, CO, CV, EH, and UOC), was characterized by high resolution transmission electron microscopy (HRTEM). Besides ubiquitous nanoglobules, the insoluble organic matter from petrologic type 1 and 2 chondrites and Semarkona (LL 3.0) is composed of a highly disordered polyaromatic component. No structural differences were observed between these IOMs, in agreement with the limited thermal metamorphism they all experienced. In chondrites of petrologic type >3.0, the evolution of the IOM is controlled by the extent of thermal metamorphism. The polyaromatic layers, shorter than 1 nm in petrologic type ≤3.0 chondrites, grow up to sizes between 5 and 10 nm in petrologic type >3.6 chondrites, contributing to the increase of the degree of structural order. In addition, we find rare, but ubiquitous onion‐like carbons, which may be the product of nanodiamond graphitization. The insoluble carbonaceous matter of the enstatite chondrite Sahara 97096 (EH 3) is different from the other meteorites studied here. It is more heterogeneous and displays a high abundance of graphitized particles. This may be the result of a mixture between (1) the disordered carbon located in the matrix, and (2) catalytic graphitized phases associated with metal, potentially originating from partial melting events. The structural and nanostructural evolution are similar in all IOMs. This suggests that the structure of the accreted precursors and the parent body conditions of their secondary thermal modifications (temperature, duration, and pressure) were similar. The limited degree of organization of the most metamorphosed IOMs compared with terrestrial rocks submitted to similar temperature suggests that the conditions are not favorable to graphitization processes, due to the chemical nature of the precursor or the lack of confinement pressure.  相似文献   

6.
The Paris carbonaceous chondrite represents the most pristine carbonaceous chondrite, providing a unique opportunity to investigate the composition of early solar system materials prior to the onset of significant aqueous alteration. A dual origin (namely from the inner and outer solar system) has been demonstrated for water in the Paris meteorite parent body (Piani et al. 2018 ). Here, we aim to evaluate the contribution of outer solar system (cometary‐like) water ice to the inner solar system water ice using Xe isotopes. We report Ar, Kr, and high‐precision Xe isotopic measurements within bulk CM 2.9 and CM 2.7 fragments, as well as Ne, Ar, Kr, and Xe isotope compositions of the insoluble organic matter (IOM). Noble gas signatures are similar to chondritic phase Q with no evidence for a cometary‐like Xe component. Small excesses in the heavy Xe isotopes relative to phase Q within bulk samples are attributed to contributions from presolar materials. CM 2.7 fragments have lower Ar/Xe relative to more pristine CM 2.9 fragments, with no systematic difference in Xe contents. We conclude that Kr and Xe were little affected by aqueous alteration, in agreement with (1) minor degrees of alteration and (2) no significant differences in the chemical signature of organic matter in CM 2.7 and CM 2.9 areas (Vinogradoff et al. 2017 ). Xenon contents in the IOM are larger than previously published data of Xe in chondritic IOM, in line with the Xe component in Paris being pristine and preserved from Xe loss during aqueous alteration/thermal metamorphism.  相似文献   

7.
Abstract— The trapped noble gas record of 57 enstatite chondrites (E chondrites) has been investigated. Basically, two different gas patterns have been identified dependent on the petrologic type. All E chondrites of type 4 to 6 show a mixture of trapped common chondritic rare gases (Q) and a subsolar component (range of elemental ratios for E4–6 chondrites: 36Ar/132Xe = 582 ± 270 and 36Ar/84Kr = 242 ± 88). E3 chondrites usually contain Q gases, but also a composition with lower 36Ar/132Xe and 36Ar/84Kr ratios, which we call sub‐Q (36Ar/132Xe = 37.0 ± 18.0 and 36Ar/84Kr = 41.7 ± 18.1). The presence of either the subsolar or the sub‐Q signature in particular petrologic types cannot be readily explained by parent body metamorphism as postulated for ordinary chondrites. We therefore present a different model that can explain the bimodal distribution and composition of trapped heavy noble gases in E chondrites. Trapped solar noble gases have been observed only in some E3 chondrites. About 30% of each group, EH3 and EL3 chondrites, amounting to 9% of all analyzed E chondrites show the solar signature. Notably, only one of those meteorites has been explicitly described as a regolith breccia.  相似文献   

8.
The hornblende‐ and biotite‐bearing R chondrite LAP 04840 is a rare kind of meteorite possibly containing outer solar system water stored during metamorphism or postshock annealing deep within an asteroid. Because little is known regarding its age and origin, we determined 40Ar/39Ar ages on hornblende‐rich separates of the meteorite, and obtained plateau ages of 4340(±40) to 4380(±30) Ma. These well‐defined plateau ages, coupled with evidence for postshock annealing, indicate this meteorite records an ancient shock event and subsequent annealing. The age of 4340–4380 Ma (or 4.34–4.38 Ga) for this and other previously dated R chondrites is much older than most impact events recorded by ordinary chondrites and points to an ancient event or events that predated the late heavy bombardment that is recorded in so many meteorites and lunar samples.  相似文献   

9.
Abstract— We have carried out noble gas measurements on graphite from a large graphite‐metal inclusion in Canyon Diablo. The Ne data of the low‐temperature fractions lie on the mixing line between air and the spallogenic component, but those of high temperatures seem to lie on the mixing line between Ne‐HL and the spallogenic component. The Ar isotope data indicate the presence of Q in addition to air, spallogenic component and Ar‐HL. As the elemental concentration of Ne in Q is low, we could not detect the Ne‐Q from the Ne data. On the other hand, we could not observe Xe‐HL in our Xe data. As the Xe concentration and the Xe/Ne ratio in Q is much higher than that in the HL component, it is likely that only the contribution of Q is observed in the Xe data. Xenon isotopic data can be explained as a mixture of Q, air, and “El Taco Xe.” The Canyon Diablo graphite contains both HL and Q, very much like carbonaceous chondrites, retaining the signatures of various primordial noble gas components. This indicates that the graphite was formed in a primitive nebular environment and was not heated to high, igneous temperatures. Furthermore, a large excess of 129Xe was observed, which indicates that the graphite was formed at a very early stage of the solar system when 129I was still present. The HL/Q ratios in the graphite in Canyon Diablo are lower than those in carbonaceous chondrites, indicating that some thermal metamorphism occurred on the former. We estimated the temperature of the thermal metamorphism to about 500–600 °C from the difference of thermal retentivities of HL and Q. It is also noted that “El Taco Xe” is commonly observed in many IAB iron meteorites, but its presence in carbonaceous chondrites has not yet been established.  相似文献   

10.
Ar‐Ar isochron ages of EL chondrites suggest closure of the K‐Ar system at 4.49 ± 0.01 Ga for EL5 and 6 chondrites, and 4.45 ± 0.01 Ga for EL3 MAC 88136. The high‐temperature release regimes contain a mixture of radiogenic 40Ar* and trapped primordial argon (solar or Q‐type) with 40Ar/36ArTR ~ 0 , which does not affect the 40Ar budget. The low‐temperature extractions show evidence of an excess 40Ar component. The 40Ar/36Ar is 180–270; it is defined by intercept values of isochron regression. Excess 40Ar is only detectable in petrologic types >4/5. These lost most of their primordial 36Ar from low‐temperature phases during metamorphism and retrapped excess 40Ar. The origin of this excess 40Ar component is probably related to metamorphic Ar mobilization, homogenization of primordial and in situ radiogenic Ar, and trapping of Ar by distinct low‐temperature phases. Ar‐Ar ages of EH chondrites are more variable and show clear evidence of a major impact‐induced partial resetting at about 2.2 Ga ago or alternatively, prolonged metamorphic decomposition of major K carrier phases. EH impact melt LAP 02225 displayed the highest Ar‐Ar isochron age of 4.53 ± 0.01 Ga. This age sets a limit of about 25–45 Ma for the age bias between the K‐Ar and U‐Pb decay systems.  相似文献   

11.
Abstract— We studied the elemental and isotopic abundances of noble gases (He, Ne, Ar in most cases, and Kr, Xe also in some cases) in individual chondrules separated from six ordinary, two enstatite, and two carbonaceous chondrites. Most chondrules show detectable amounts of trapped 20Ne and 36Ar, and the ratio (36Ar/20Ne)t (from ordinary and carbonaceous chondrites) suggests that HL and Q are the two major trapped components. A different trend between (36Ar/20Ne)t and trapped 36Ar is observed for chondrules in enstatite chondrites indicating a different environment and/or mechanism for their formation compared to chondrules in ordinary and carbonaceous chondrites. We found that a chondrule from Dhajala chondrite (DH‐11) shows the presence of solar‐type noble gases, as suggested by the (36Ar/20Ne)t ratio, Ne‐isotopic composition, and excess of 4He. Cosmic‐ray exposure (CRE) ages of most chondrules are similar to their host chondrites. A few chondrules show higher CRE age compared to their host, suggesting that some chondrules and/or precursors of chondrules have received cosmic ray irradiation before accreting to their parent body. Among these chondrules, DH‐11 (with solar trapped gases) and a chondrule from Murray chondrite (MRY‐1) also have lower values of (21Ne/22Ne)c, indicative of SCR contribution. However, such evidences are sporadic and indicate that chondrule formation event may have erased such excess irradiation records by solar wind and SCR in most chondrules. These results support the nebular environment for chondrule formation.  相似文献   

12.
Abstract– To evaluate kinetic parameters for thermal degradation of organic matter, in situ heating experiments of insoluble organic matter (IOM) and bulk of Murchison (CM2) meteorite were conducted under Fourier transform infrared micro‐spectroscopy combined with a heating stage. Decreases of aliphatic C–H band area under Ar flow were well fitted with Ginstling‐Brounshtein three‐dimensional diffusion model, and the rate constants for decreases of aliphatic C–H were determined. Activation energies Ea and frequency factors A obtained from these rate constants at different temperatures using the Arrhenius equation were Ea = 109 ± 3 kJ mol?1 and A = 8.7 × 104 s?1 for IOM, and Ea = 61 ± 6 kJ mol?1 and A = 3.8 s?1 for bulk, respectively. Activation energy values of aliphatic C–H decrease are larger for IOM than bulk. Hence, the mineral assemblage of the Murchison meteorite might have catalytic effects for the organic matter degradation. Using obtained kinetic expressions, the time scale for metamorphism can be estimated for a given temperature with aliphatic C–H band area, or the temperature of metamorphism can be estimated for a given time scale. For example, using the obtained kinetic parameters of IOM, aliphatic C–H is lost approximately within 200 years at 100 °C and 100 Myr at 0 °C. Assuming alteration period of 7.5 Myr, alteration temperatures could be calculated to be <15 ± 12 °C. Aliphatic C–H decrease profiles in a parent body can be estimated using time–temperature history model. The kinetic expression obtained by the infrared spectral band of aliphatic C–H could be used as an alternative method to evaluate thermal processes of organic matter in carbonaceous chondrites.  相似文献   

13.
Abstract— We have analyzed the chemically and isotopically well‐characterized insoluble organic matter (IOM) extracted from 51 unequilibrated chondrites (8 CR, 9 CM, 1 CI, 3 ungrouped C, 9 CO, 9 CV, 10 ordinary, 1 CB and 1 E chondrites) using confocal imaging Raman spectroscopy. The average Raman properties of the IOM, as parameterized by the peak characteristics of the so‐called D and G bands, which originate from aromatic C rings, show systematic trends that are correlated with meteorite (sub‐) classification and IOM chemical compositions. Processes that affect the Raman and chemical properties of the IOM, such as thermal metamorphism experienced on the parent bodies, terrestrial weathering and amorphization due to irradiation in space, have been identified. We established separate sequences of metamorphism for ordinary, CO, oxidized, and reduced CV chondrites. Several spectra from the most primitive chondrites reveal the presence of organic matter that has been amorphized. This amorphization, usually the result of sputtering processes or UV or particle irradiation, could have occurred during the formation of the organic material in interstellar or protoplanetary ices or, less likely, on the surface of the parent bodies or during the transport of the meteorites to Earth. D band widths and peak metamorphic temperatures are strongly correlated, allowing for a straightforward estimation of these temperatures.  相似文献   

14.
The kinetics of the release of the Xe‐P3 component from coarse‐grained fractions of Orgueil (CI) meteorite nanodiamonds has been investigated using stepped and isothermal pyrolysis. It has been shown that a first‐order chemical reaction diffusion model with a single activation energy cannot provide a satisfactory explanation for the observed retention of Xe‐P3 during parent body thermal metamorphism and the kinetics of Xe‐P3 release from nanodiamonds during isothermal pyrolysis. Using the activation energy and frequency factor calculated according to this model, it is shown that in the course of thermal metamorphism of the Orgueil meteorite almost the entire Xe‐P3 component must have been lost in a very short time (<4 yr at approximately 100 °C). However, the calculated retention of Xe‐P3 increases significantly if a diffusion model with a spectrum of activation energies is used. In this case, the model can explain not only a high retention of Xe‐P3 in the Orgueil nanodiamonds but also the release pattern of the Xe‐P3 from Semarkona and Bishunpur nanodiamonds that have experienced a significant gas loss during parent body metamorphism as well as the release of Xe‐P3 during isothermal pyrolysis of the Orgueil nanodiamonds. The energetically complicated Xe‐P3 distribution is most likely caused by structural damage to the nanodiamond grains or a complex phase composition of carbon in the surface layer of the diamond grains. It is supposed that the structural damage of the diamond grains can have a radiation origin, while the variations of the carbon phase composition in the grain's mantle can be caused by the radiation‐induced reactions and/or a thermal effect.  相似文献   

15.
The valence of iron has been used in terrestrial studies to trace the hydrolysis of primary silicate rocks. Here, we use a similar approach to characterize the secondary processes, namely thermal metamorphism and aqueous alteration, that have affected carbonaceous chondrites. X‐ray absorption near‐edge structure spectroscopy at the Fe‐K‐edge was performed on a series of 36 CM, 9 CR, 10 CV, and 2 CI chondrites. While previous studies have focused on the relative distribution of Fe0 with respect to oxidized iron (Feox = Fe2+ + Fe3+) or the iron distribution in some specific phases (e.g., Urey–Craig diagram; Urey and Craig 1953), our measurements enable us to assess the fractions of iron in each of its three oxidation states: Fe0, Fe2+, and Fe3+. Among the four carbonaceous chondrites groups studied, a correlation between the iron oxidation index (IOI = [2(Fe2+) + 3(Fe3+)]/[FeTOT]) and the hydrogen content is observed. However, within the CM group, for which a progressive alteration sequence has been defined, a conversion of Fe3+ to Fe2+ is observed with increasing degree of aqueous alteration. This reduction of iron can be explained by an evolution in the mineralogy of the secondary phases. In the case of the few CM chondrites that experienced some thermal metamorphism, in addition to aqueous alteration, a redox memory of the aqueous alteration is present: a significant fraction of Fe3+ is present, together with Fe2+ and sometimes Fe0. From our data set, the CR chondrites show a wider range of IOI from 1.5 to 2.5. In all considered CR chondrites, the three oxidation states of iron coexist. Even in the least‐altered CR chondrites, the fraction of Fe3+ can be high (30% for MET 00426). This observation confirms that oxidized iron has been integrated during formation of fine‐grained amorphous material in the matrix (Le Guillou and Brearley 2014; Le Guillou et al. 2015; Hopp and Vollmer 2018). Last, the IOI of CV chondrites does not reflect the reduced/oxidized classification based on metal and magnetite proportions, but is strongly correlated with petrographic types. The valence of iron in CV chondrites therefore appears to be most closely related to thermal history, rather than aqueous alteration, even if these processes can occur together (Krot et al. 2004; Brearley and Krot 2013).  相似文献   

16.
Abstract— We have studied the carbon and nitrogen stable isotope geochemistry of a small pristine sample of the Tagish Lake carbonaceous chondrite by high‐resolution stepped‐combustion mass spectrometry, and compared the results with data from the Orgueil (CI1), Elephant Moraine (EET) 83334 (CM1) and Murchison (CM2) chondrites. The small chip of Tagish Lake analysed herein had a higher carbon abundance (5.81 wt%) than any other chondrite, and a nitrogen content (?1220 ppm) between that of CI1 and CM2 chondrites. Owing to the heterogeneous nature of the meteorite, the measured carbon abundance might be artificially high: the carbon inventory and whole‐rock carbon isotopic composition (δ13C ? +24.4%o) of the chip was dominated by 13C‐enriched carbon from the decomposition of carbonates (between 1.29 and 2.69 wt%; δ13C ? +67%o and δ18O ? +35%o, in the proportions ?4:1 dolomite to calcite). In addition to carbonates, Tagish Lake contains organic carbon (?2.6 wt%, δ13C ? ?9%o; 1033 ppm N, δ15N ? +77%o), a level intermediate between CI and CM chondrites. Around 2% of the organic material is thermally labile and solvent soluble. A further ?18% of the organic species are liberated by acid hydrolysis. Tagish Lake also contains a complement of presolar grains. It has a higher nanodiamond abundance (approximately 3650–4330 ppm) than other carbonaceous chondrites, along with ?8 ppm silicon carbide. Whilst carbon and nitrogen isotope geochemistry is not diagnostic, the data are consistent with classification of Tagish Lake as a CI2 chondrite.  相似文献   

17.
The goal of this paper is to summarize 150 yr of history of a very special meteorite. The Orgueil meteorite fell near Montauban in southwestern France on May 14, 1864. The bolide, which was the size of the full Moon, was seen across Western France, and almost immediately made the news in local and Parisian newspapers. Within a few weeks of the fall, a great diversity of analyses were performed under the authority of Gabriel Auguste Daubrée, geology professor at the Paris Museum, and published in the Comptes Rendus de l'Académie des Sciences. The skilled scientists reported the presence of iron sulfides, hydrated silicates, and carbonates in Orgueil. They also characterized ammonium salts which are now gone, and observed sulfates being remobilized at the surface of the stone. They identified the high water and carbon contents, and noted similarities with the Alais meteorite, which had fallen in 1806, 300 km away. While Daubrée and his colleagues noted the similarity of the Orgueil organic matter with some terrestrial humus, they were cautious not to make a direct link with living organisms. One century later, Nagy and Claus were less prudent and announced the discovery of “organized” elements in some samples of Orgueil. Their observations were quickly discredited by Edward Anders and others who also discovered that some pollen grains were intentionally placed into the rock back in the 1860s. Orgueil is now one of the most studied meteorites, indeed one of the most studied rocks of any kind. Not only does it contain a large diversity of carbon‐rich compounds, which help address the question of organo‐synthesis in the early solar system but its chemical composition is also close to that of the Sun's photosphere and serves as a cosmic reference. Secondary minerals, which make up 99% of the volume of Orgueil, were probably formed during hydrothermal alteration on the parent‐body within the first few million years of the solar system; their study is essential to our understanding of fluid–rock interaction in asteroids and comets. Finally, the Orgueil meteorite probably originated from a volatile‐rich “cometary” outer solar system body as indicated by its orbit. Because it bears strong similarities to other carbonaceous chondrites that originated on dark asteroids, this cometary connection supports the idea of a continuum between dark asteroids and comets.  相似文献   

18.
Abstract— Mid‐infrared absorption spectra for all types of carbonaceous chondrites were obtained in this study to establish a versatile method for spectroscopic classification of carbonaceous chondrites. Infrared spectra were measured using a conventional KBr pellet method and diamond press method. Spectra of hydrous carbonaceous chondrites exhibit intense O‐H stretching vibrations. CI chondrites are identifiable by a characteristic sharp absorption band appearing at 3685 cm?1, which is mainly attributable to serpentine. X‐ray diffraction analysis showed the presence of serpentine. However, Yamato (Y‐) 82162 (C1) does not have the band at 3685 cm?1 because of its thermal metamorphism. CM and CR chondrites have an intense absorption band at approximately 3600 cm?1. This absorption tends to appear in CM chondrites more strongly than CR chondrites because the intensity ratios of an OH stretching mode at 3520 cm?1 compared to 3400 cm?1 for CM chondrites are in the range of 0.95–1.04, which is systematically higher than those of CR chondrites (0.86–0.88). Therefore, the two types of chondrites are distinguishable by their respective infrared spectra. The spectrum feature of the Tagish Lake meteorite is attributable to neither CI nor CM chondrites. CO chondrites are characterized by weak and broad absorption at 3400 cm?1. CV chondrites have weak or negligible absorption of water. CK chondrites also have no water‐induced absorption. CH and CB chondrites have a sharp absorption at 3692 cm?1 indicating the presence of chrysotile, which is also supported by observations of X‐ray diffraction and TEM. The combination of spectroscopic classification and the diamond press method allows classification of carbonaceous chondrites of very valuable samples with small quantities. As one example, carbonaceous chondrite clasts in brecciated meteorites were classified using our technique. Infrared spectra for a fragment of carbonaceous clasts (<1 μg) separated from Willard (b) and Tsukuba were measured. The 3685 cm?1 band found in CI chondrites was clearly detected in the clasts, indicating that they are CI‐like clasts.  相似文献   

19.
Marrocchi et al. (2005) reported that low‐temperature fractions of heavy noble gases were largely removed upon pyridine treatment of the Orgueil CI meteorite. As pyridine is known to induce the swelling of the macromolecular network of organic matter, they concluded that the low‐temperature phase Q is macromolecular organic carbon. However, Busemann et al. (2008) showed that pyridine had no significant effect on the noble gas contents for other very primitive meteorites, such as CM and CR. Therefore, we prepared an HF–HCl residue and the pyridine‐treated residue of Orgueil, and re‐examined the results of Marrocchi et al. (2005) by analyzing all noble gases. We confirmed that heavy noble gases are surely removed by the pyridine treatment, but the degree of the loss of heavy noble gases is generally small, and is even smaller for the lighter noble gases. Furthermore, we could not observe the evidence of Xe isotopic ratios by removing only phase Q after the pyridine treatment. We further prepared the HF–HCl residue and the pyridine‐treated residue of the Allende CV3 meteorite and performed noble gas analyses. For Allende, there is no significant change in the elemental abundances after the pyridine treatment. These results suggest that only Orgueil is special, and it is likely that the gas loss of the Orgueil residue is due to the loss of some kind of organic matter that was formed and that adsorbed the fractionated Q and HL gases during the aqueous alteration within the parent body of Orgueil.  相似文献   

20.
About 17% of L6 chondrites (15/87) show significant reduction features in BSE images in thin section. Because some thin sections of these meteorites do not show reduction features, this percentage is a lower limit. Reduction features include: (1) 4–5-μm-thick BSE-dark reduction rims on olivine and orthopyroxene grains and along fracture boundaries in these grains, (2) 4–12-μm-thick dark bands (probably poorly crystalline pyrrhotite) at the margins and along fractures in troilite grains, and (3) 2–5-μm-thick dark rinds of kamacite around some taenite grains. Only one of 70 L-group chondrites (1.4%) of lower petrologic type exhibits minor reduction. The L6 chondrites showing major reduction have 40Ar/39Ar plateau ages ranging from 156 ± 1 Ma for Guangnan to 4543 ± 3 Ma for Thamaniyat Ajras. Reduction occurred after silicate, sulfide, and metal grains had attained their present sizes during parent-body thermal metamorphism (and had been fractured by parent-body collisions). The precise plateau age of Thamaniyat Ajras probably marks the timing of the L6 reduction event. It seems likely the reductant was a low-viscosity fluid, plausibly CO, derived from oxidation of poorly graphitized and amorphous carbon within fine-grained matrix. Water-ice that had accreted to the L-chondrite asteroid was heated and mobilized during metamorphism, causing oxidation. After peak metamorphism, ~75% of the water had been used up or lost; the remaining water facilitated continuing graphite oxidation so that, after this point, overall reduction effects exceeded those of oxidation. L chondrites of lower petrologic type were less affected by reduction due to their lower metamorphic temperatures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号