共查询到20条相似文献,搜索用时 15 毫秒
1.
R. HOCHLEITNER K. T. FEHR G. SIMON J. POHL E. SCHMIDBAUER 《Meteoritics & planetary science》2004,39(10):1643-1648
Abstract— This study presents compositional data and 57Fe Mössbauer spectra, taken at 295 K and 85 K, of two fragments of the enstatite (EL6) chondrite Neuschwanstein that fell near the famous Neuschwanstein castle (Bavaria, southern Germany) on April 6, 2002. Main silicate minerals are enstatite (Fs 2) and plagioclase (An 20), the main opaque minerals are kamacite and troilite. Small amounts of oldhamite, daubreelite, and schreibersite have been found. The presented Mössbauer data are the first data gathered for an EL6 chondrite. The dominant parts of each Mössbauer spectrum consist of two six‐line patterns due to the presence of ferromagnetic phases kamacite and troilite. In contrast to other chondrites, peaks of other iron species in the central parts of the spectra are missing due to an extremely low content of Fe‐bearing paramagnetic components. The hyperfine interaction parameters for kamacite are internal magnetic hyperfine field Hhf = 333.2 kOe, isomer shift (relative to a metallic Fe foil) IS = 0.01 mm/s, quadrupole splitting QS = 0 mm/s, line width W = 0.41 mm/s. The data for troilite are Hhf = 305.5 kOe, IS = 0.75 mm/s, QS = ?0.85 mm/s, W = 0.34 mm/s. 相似文献
2.
Christian Schrder Brad Bailey Gstar Klingelhfer Hubert Staudigel 《Planetary and Space Science》2006,54(15):1622-1634
The element Fe and Fe-bearing minerals occur ubiquitously throughout the field of astrobiology. Cycling between the various oxidation states of Fe provides a source of energy available for life. Banded iron formations may record the rise of oxygenic photosynthesis. The distribution of Fe between Fe-bearing minerals and its oxidation states can help to characterize and understand ancient environments with respect to the suitability for life by constraining the primary rock type and the redox conditions under which it crystallized, the extent of alteration and weathering, the type of alteration and weathering products, and the processes and environmental conditions for alteration and weathering. Fe Mössbauer spectroscopy is a powerful tool to investigate Fe-bearing compounds. It can identify Fe-bearing minerals, determine Fe oxidation states with high accuracy, quantify the distribution of Fe between mineralogical phases, and provide clues about crystallinity and particle sizes. Two miniaturized Mössbauer spectrometers are on board of the NASA Mars Exploration Rovers Spirit and Opportunity. The Fe-bearing minerals goethite, an iron oxide-hydroxide, and jarosite, an iron hydroxide sulfate, were identified by Mössbauer spectroscopy in Gusev Crater and at Meridiani Planum, respectively, providing in situ proof of an aqueous history of the two landing sites and constraints on their habitability. Hematite identified by Mössbauer spectroscopy at both landing sites adds further evidence for an aqueous history. On Earth, Mössbauer spectroscopy was used to monitor possibly microbially-induced changes of Fe-oxidation states in basaltic glass samples exposed at the Loihi Seamount, a deep sea hydrothermal vent system, which might be analogous to possible extraterrestrial habitats on ancient Mars or the Jovian moon Europa today. 相似文献
3.
Abstract— Mössbauer spectra showed the CV3 oxidized subgroup meteorites Allende and Axtell to be similar in olivine content and in a surprising lack of pronounced magnetic components, but different in Fe3+ phases. One atypical Allende sample showed an 8% area under the curve for magnetite, which is still less than a reported value for a CV3 reduced subgroup member. Allende's unusual Fe3+ spectral region distinguishes it from most other stony meteorites and is difficult to fit to known mineral parameters. 相似文献
4.
Abstract— We conducted Mössbauer spectroscopic studies on the Ghubara meteorite which had been described as at least two‐generation regolith breccia on the macro scale. The isomer shift and quadrupole splitting of the Fe‐Ni part are quite different from those obtained in ordinary chondrites, reflecting shock effects. We observed a large amount of magnetite that may have come from weathering of, primarily, the silicate fraction. We found very similar iron mineralogy in the Densmore meteorite. 相似文献
5.
Xuchao Zhao Yangting Lin Qing‐Zhu Yin Jianchao Zhang Jialong Hao Michael Zolensky Peter Jenniskens 《Meteoritics & planetary science》2014,49(11):2038-2046
The Sutter's Mill (SM) carbonaceous chondrite is a regolith breccia, composed predominantly of CM2 clasts with varying degrees of aqueous alteration and thermal metamorphism. An investigation of presolar grains in four Sutter's Mill sections, SM43, SM51, SM2‐4, and SM18, was carried out using NanoSIMS ion mapping technique. A total of 37 C‐anomalous grains and one O‐anomalous grain have been identified, indicating an abundance of 63 ppm for presolar C‐anomalous grains and 2 ppm for presolar oxides. Thirty‐one silicon carbide (SiC), five carbonaceous grains, and one Al‐oxide (Al2O3) were confirmed based on their elemental compositions determined by C‐N‐Si and O‐Si‐Mg‐Al isotopic measurements. The overall abundance of SiC grains in Sutter's Mill (55 ppm) is consistent with those in other CM chondrites. The absence of presolar silicates in Sutter's Mill suggests that they were destroyed by aqueous alteration on the parent asteroid. Furthermore, SM2‐4 shows heterogeneous distributions of presolar SiC grains (12–54 ppm) in different matrix areas, indicating that the fine‐grained matrix clasts come from different sources, with various thermal histories, in the solar nebula. 相似文献
6.
R. P. TRIPATHI S. K. SHARMA K. L. SHRIVASTAVA H. C. VERMA 《Meteoritics & planetary science》2000,35(1):201-204
Abstract— Two meteorites belonging to the howardite‐eucrite‐diogenite (HED) group fell recently in Rajasthan, India. One of these, Piplia Kalan, was classified as a eucrite and the other, Lohawat, as a howardite. In this study, we present the results of Mössbauer spectroscopic investigations of these two meteorites. We also compare the results with the Mössbauer experiments reported for the Kapoeta howardite and look for systematics in the Mössbauer spectra of HED meteorites. 相似文献
7.
Abstract— Samples of Holbrook (an L6 chondrite that fell in Arizona in 1912) were analysed by 57Fe Mössbauer spectroscopy to determine the proportion of the total Fe that had been converted to Fe3+ by weathering processes. Although samples recovered in 1912 showed negligible (<1%) alteration, a spectrum recorded from a specimen recovered in 1968 showed that 9.7% of the total Fe was present as Fe3+. Given the existence of samples in similar semiarid environments with terrestrial ages >40 ka, a linear rate of weathering is unrealistic, rapidly producing very high levels of oxidation in samples with low terrestrial ages. However if weathering follows an approximate power law, then we can model a rapid initial phase and the levels of oxidation that are more typical in samples with much longer terrestrial residence times recovered from Roosevelt County. Our analysis, together with work on terrestrial age dated samples, indicates that hot desert weathering of ordinary chondrites is at least a two-stage process, with an initial rapid phase lasting <500 years before oxidation is passivated. 相似文献
8.
Roger G. Burns Thomas H. Burbine Duncan S. Fisher Richard P. Binzel 《Meteoritics & planetary science》1995,30(6):625-633
Abstract— Mössbauer spectroscopy is a very useful tool for identifying ferric iron weathering products in meteorites because of the capability to quantify the relative amounts of ferric iron in them. Mössbauer measurements were made of 33 Antarctic H chondrites (predominately H5) and two paired Antarctic CR chondrites. The primary goals of this study are to determine if Mössbauer spectroscopy can be used to determine which phases are weathering in Antarctic meteorites and if the relative amounts of ferric iron correlate with terrestrial age. Determining which minerals are weathering in ordinary chondrites appears very difficult due to variations in composition for different ordinary chondrites of the same meteorite class and possible problems in preparing homogeneous samples. The analysis of the two paired CR chondrites appears to indicate that metallic iron is predominately weathering to produce ferric iron for this class of meteorite. No correlation is seen between the relative amounts of ferric iron and terrestrial age for ordinary chondrites. One Antarctic H5 chondrite (ALHA77294) with a short 14C age of 135 ± 200 years from the dating of interior carbonate weathering products does have a relatively low amount of ferric iron, which is consistent with this meteorite being exposed on the surface for a relatively short time. 相似文献
9.
Abstract— Carbonaceous chondrites are among the most analyzed geological materials on Earth. However, despite this attention, and unlike most terrestrial rocks, little is known on the abundance of individual phases within them. Here, we show how a combination of several novel X‐ray diffraction (XRD) techniques (including a high‐brightness X‐ray MicroSource®), and Mössbauer spectroscopy, allows a complete modal mineralogy to be ascertained from even the most highly unequilibrated, fine‐grained chondrites for all minerals of abundance >1 wt%. Knowledge of the modal mineralogy of a sample also allows us to calculate grain density. We analyzed Allende, Murchison, Tagish Lake, and Orgueil. Based on our modal data, the grain density estimates for Allende, Murchison, and Orgueil are close to literature values. In the case of Tagish Lake, there is no published grain density, although a bulk density measurement does exist. Taking our estimate of grain density, and the measured bulk density, we calculate an exceptionally high porosity of 41% for this meteorite, similar to some chondritic IDPs and in line with a porosity calculated from an entry model for the Tagish Lake fireball. Although it is an oxidized CV, magnetite is present in Allende at a level of <0.5 wt% or <0.3 vol%, a result that is substantiated by several other instrumental studies. This may be an oxidized meteorite, but that oxidation is not manifested in abundant magnetite. In addition, we note appreciable fayalitic olivine in Orgueil, detected by both XRD and Mössbauer. We employed MicroSource® XRD to look at heterogeneity in mineral abundance in Orgueil and found substantial variation, with phyllosilicates varying inversely with olivine. The data suggest that Orgueil was initially composed primarily of anhydrous materials, which have been partially, but not completely, altered. Although the data are preliminary, comparison between our XRD modal assessment, bulk chemistry, grain density, and Mössbauer data, suggests that our estimates of mineral abundance are robust. The advent of MicroSource® XRD allows similar modal data to be acquired from samples as small as a few hundred micrograms. 相似文献
10.
B. S. PALIWAL R. P. TRIPATHI H. C. VERMA S. K. SHARMA 《Meteoritics & planetary science》2000,35(3):639-642
Abstract— Mössbauer spectroscopic studies of the Didwana‐Rajod chondrite, which fell on 1991 August 12 in western Rajasthan, India, are presented. The results are compared with the Mössbauer data of several enstatite and ordinary chondrites including the Dhajala chondrite for which Mössbauer data were acquired during the present study. The Didwana‐Rajod chondrite's iron phases and its oxidation states strongly suggest that it should be classified as an H‐type ordinary chondrite instead of the earlier suggestion (based on petrographic studies) that it could be an enstatite chondrite. The present study demonstrates that Mössbauer spectroscopy is a very powerful technique for aiding in the classification of meteorites. 相似文献
11.
M. I. OSHTRAKH E. V. PETROVA V. I. GROKHOVSKY V. A. SEMIONKIN 《Meteoritics & planetary science》2008,43(5):941-958
Abstract— An improvement in the velocity resolution and quality of Mössbauer spectra has been applied to a group of ordinary chondrites. This improvement permitted us to carry out a more detailed study of the iron bearing phases in these samples than has previously been possible. Mössbauer spectra of 11 ordinary chondrites of L and H chemical groups were measured using 4096 channels and presented for further analysis in 1024 channels. Subspectra of the metal grains of several chondrites demonstrated the presence of at least two magnetic sextets related to the main Fe(Ni, Co) phases. Moreover, Mössbauer study of extracted metal grains from Tsarev L5 revealed three sextets and one singlet spectral components related to various α‐Fe(Ni, Co), α‘‐Fe(Ni, Co), α2‐Fe(Ni, Co), and γ‐Fe(Ni, Co) phases. Each subspectrum of olivine and pyroxene in Mössbauer spectra of ordinary chondrites was fitted by superposition of two quadrupole doublets related to M1 and M2 sites in minerals for the first time. An analysis of relative areas and Mössbauer hyperfine parameters was performed and some differences for L and H chondrites as well as for M1 and M2 sites were observed. Mössbauer parameters of troilite and oxidized iron were analyzed. In contrast to a previous study with 512‐channel spectra, the presence of oxidized iron was found in all chondrites. 相似文献
12.
13.
A high spatial resolution synchrotron Mössbauer study of the Tazewell IIICD and Esquel pallasite meteorites 下载免费PDF全文
Roberts Blukis Rudolf Rüffer Aleksandr I. Chumakov Richard J. Harrison 《Meteoritics & planetary science》2017,52(5):925-936
Metallic phases in the Tazewell IIICD iron and Esquel pallasite meteorites were examined using 57Fe synchrotron Mössbauer spectroscopy. Spatial resolution of ~10–20 μm was achieved, together with high throughput, enabling individual spectra to be recorded in less than 1 h. Spectra were recorded every 5–10 μm, allowing phase fractions and hyperfine parameters to be traced along transects of key microstructural features. The main focus of the study was the transitional region between kamacite and plessite, known as the “cloudy zone.” Results confirm the presence of tetrataenite and antitaenite in the cloudy zone as its only components. However, both phases were also found in plessite, indicating that antitaenite is not restricted exclusively to the cloudy zone, as previously thought. The confirmation of paramagnetic antitaenite as the matrix phase of the cloudy zone contrasts with recent observations of a ferromagnetic matrix phase using X‐ray photoemission electron spectroscopy. Possible explanations for the different results seen using these techniques are proposed. 相似文献
14.
Lionel G. Vacher Laurent Truche Franois Faure Laurent Tissandier Rgine Mosser‐Ruck Yves Marrocchi 《Meteoritics & planetary science》2019,54(8):1870-1889
Tochilinite/cronstedtite intergrowths are commonly observed as alteration products in CM chondrite matrices, but the conditions under which they formed are still largely underconstrained due to their scarcity in terrestrial environments. Here, we report low temperature (80 °C) anoxic hydrothermal experiments using starting assemblages similar to the constituents of the matrices of the most pristine CM chondrite and S‐rich and S‐free fluids. Cronstedtite crystals formed only in S‐free experiments under circumneutral conditions with the highest Fe/Si ratios. Fe‐rich tochilinite with chemical and structural characteristics similar to chondritic tochilinite was observed in S‐bearing experiments. We observed a positive correlation between the Mg content in the hydroxide layer of synthetic tochilinite and temperature, suggesting that the composition of tochilinite is a proxy for the alteration temperature in CM chondrites. Using this relation, we estimate the mean precipitation temperatures of tochilinite to be 120–160 °C for CM chondrites. Given the different temperature ranges of tochilinite and cronstedtite in our experiments, we propose that Fe‐rich tochilinite crystals resulted from the alteration of metal beads under S‐bearing alkaline conditions at T = 120–160 °C followed by cronstedtite crystals formed by the reaction of matrix amorphous silicates, metal beads, and water at a low temperature (50–120 °C). 相似文献
15.
Abstract— Four different types of calcium- and aluminium-rich inclusions (CAIs) have been identified in the CM2 chondrite Murray, three of which contain alteration products. Two types of altered CAIs, spinel inclusions and spinel-pyroxene inclusions, contain primary spinel (± perovskite ± hibonite ± diopside) and secondary Fe-rich serpentine phyllosilicates (± tochilinite ± calcite). Original melilite in these CAIs is inferred to have been altered during aqueous activity in the parent body and Fe-rich serpentines, tochilinite and calcite were formed in its place. The other type of altered CAI is represented by one inclusion, here called MCA-1. This CAI contains primary spinel, perovskite, fassaite and diopside with secondary calcite, paragonite, Mg-Al-Fe phyllosilicates and a Mg-Al-Fe sulphate. Importantly, MCA-1 is similar in both primary and secondary mineralogy to a small number of altered CAIs described from other CM2 meteorites including Essebi, Murchison and a CM2 clast from Plainview. Features that these CAIs have in common include an unusually large size, a CV3-like primary mineralogy and the presence of secondary aluminosilicates and calcite. The Al-rich alteration products in MCA-1 are also reminiscent of secondary minerals in refractory inclusions from CV3 meteorites, which have previously been interpreted to form by interaction of the inclusions with solar nebula gases. In common with the other types of altered CAIs in Murray, MCA-1 is inferred to have experienced its main phase of alteration in a parent body environment. The Mg-Al-Fe phyllosilicates, calcite and the Mg-Al-Fe sulphate formed following aqueous alteration of an Al-rich precursor, possibly Ca dialuminate. This episode of parent body alteration may have overprinted an earlier phase of alteration in a solar nebula environment from which only paragonite remains. 相似文献
16.
Yoko KEBUKAWA Satoru NAKASHIMA Michio ISHIKAWA Kento AIZAWA Tsutomu INOUE Keiko NAKAMURA‐MESSENGER Michael E. ZOLENSKY 《Meteoritics & planetary science》2010,45(3):394-405
Abstract– Distributions of organic functional groups as well as inorganic features were analyzed in the Bells (CM2) carbonaceous chondrite using near‐field infrared (NFIR) spectroscopy. NFIR spectroscopy has recently been developed to enable infrared spectral mapping beyond the optical diffraction limit of conventional Fourier transform infrared microspectroscopy. NFIR spectral mapping of the Bells 300 nm thick sections on Al plates for 7.5 × 7.5 μm2 areas showed some C‐H‐rich areas which were considered to represent the organic‐rich areas. Heterogeneous distributions of organic matter as well as those of inorganic phases such as silicates (Si‐O) were observed with 1 μm spatial resolution. The NFIR mappings of aliphatic C‐H (2960 and 2930 cm?1) and structural OH (3650 cm?1) confirm that organic matter is associated with phyllosilicates as previously suggested. The NFIR mapping method can provide 1 μm spatial distribution of organic functional groups and their association with minerals. High local sensitivity of NFIR enables us to find organic‐rich areas and to characterize them by their aliphatic CH2/CH3 ratios. The aliphatic CH2/CH3 ratio of Bells is slightly higher than Murchison, similar to Orgueil, and lower than literature values of IDPs and cometary dust particles. 相似文献
17.
The Sutter's Mill (SM) CM chondrite fell in California in 2012. The CM chondrite group is one of the most primitive, consisting of unequilibrated minerals, but some of them have experienced complex processes occurring on their parent body, such as aqueous alteration, thermal metamorphism, brecciation, and solar wind implantation. We have determined noble gas concentrations and isotopic compositions for SM samples using a stepped heating gas extraction method, in addition to mineralogical observation of the specimens. The primordial noble gas abundances, especially the P3 component trapped in presolar diamonds, confirm the classification of SM as a CM chondrite. The mineralogical features of SM indicate that it experienced mild thermal alteration after aqueous alteration. The heating temperature is estimated to be <350 °C based on the release profile of primordial 36Ar. The presence of a Ni‐rich Fe‐Ni metal suggests that a minor part of SM has experienced heating at >500 °C. The variation in the heating temperature of thermal alteration is consistent with the texture as a breccia. The heterogeneous distribution of solar wind noble gases is also consistent with it. The cosmic‐ray exposure (CRE) age for SM is calculated to be 0.059 ± 0.023 Myr based on cosmogenic 21Ne by considering trapped noble gases as solar wind, the terrestrial atmosphere, P1 (or Q), P3, A2, and G components. The CRE age lies at the shorter end of the CRE age distribution of the CM chondrite group. 相似文献
18.
Abstract— CM chondrite clasts that have experienced different degrees of aqueous alteration occur in H‐chondrite and HED meteorite breccias. Many clasts are fragments of essentially unshocked CM projectiles that accreted at low relative velocities to the regoliths of these parent bodies. A few clasts were heated and dehydrated upon impact; these objects most likely accreted at higher relative velocities. We examined three clasts and explored alternative scenarios for their formation. In the first scenario, we assumed that the H and HED parent bodies had diameters of a few hundred kilometers, so that their high escape velocities would effectively prevent soft landings of small CM projectiles. This would imply that weakly shocked CM clasts formed on asteroidal fragments (family members) associated with the H and HED parent bodies. In the second scenario, we assumed that weakly shocked CM clasts were spall products ejected at low velocities from larger CM projectiles when they slammed into the H and HED parent bodies. In both cases, if most CM clasts turn out to have ancient ages (e.g., ?3.4‐4.1 Ga), a plausible source for their progenitors would be outer main belt objects, some which may have been dynamically implanted 3.9 Ga ago by the events described in the so‐called “Nice model.” On the other hand, if most CM clasts have recent ages (<200 Ma), a plausible source location for their parent body would be the inner main belt between 2.1–2.2 AU. In that case, the possible source of the CM‐clasts' progenitors' parent fragments would be the breakup ?160 Ma ago of the parent body 170 km in diameter of the Baptistina asteroid family (BAF). 相似文献
19.
Abstract— Mössbauer absorption areas corresponding to 57Fe in olivine, pyroxene, troilite, and the metallic phase in ordinary chondrites are shown to exhibit certain systematic behaviors. H chondrites occupy 2 distinct regions on the plot of metallic phase absorption area versus silicate absorption area, while L/LL chondrites fall in a separate region. Similar separation is also observed when pyroxene absorption area is plotted against olivine absorption area. The one‐dimensional plot for the ratio of olivine area to pyroxene area separates L and LL chondrites. Based on these systematics, a newly fallen meteorite at Jodhpur, India is suggested to be an LL chondrite. 相似文献
20.
M. Darby DYAR 《Meteoritics & planetary science》2003,38(12):1733-1752
Abstract— Mössbauer spectra of martian meteorites are currently of great interest due to the Mössbauer spectrometers on the Athena mission MER rovers as well as the European Space Agency Mars Express mission, with its Beagle 2 payload. Also, considerable current effort is being made to understand the oxygen fugacity of martian magmas because of the effect of fO2 on mineral chemistry and crystallization processes. For these 2 reasons, the present study was conceived to acquire room temperature Mössbauer spectra of mineral separates and whole rock samples of 10 SNC meteorites. The results suggest that mineral identification using remote application of this technique will be most useful when the phases present have distinctive parameters arising from Fe in very different coordination polyhedra; for example, pyroxene coexisting with olivine can be discriminated easily, but opx versus cpx cannot. The MER goal of using Mössbauer spectroscopy to quantify the relative amounts of individual mineral species present will be difficult to satisfy if silicates are present because the lack of constraints on wt% FeO contents of individual silicate phases present will make modal calculations impossible. The remote Mössbauer spectroscopy will be most advantageous if the rocks analyzed are predominantly oxides with known stoichiometries, though these phases are not present in the SNCs. As for the detection of martian oxygen fugacity, no evidence exists in the SNC samples studied of a relationship between Fe3+ content and fO2 as calculated by independent methods. Possibly, all of the Fe3+ observed in olivine is the result of dehydrogenation rather than oxidation, and this process may also be the source of all the Fe3+ observed in pyroxene. The observed Fe3+ in pyroxene also likely records an equilibrium between pyroxene and melt at such low fO2 that little or no Fe3+ would be expected. 相似文献