首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The petrologic and oxygen isotopic characteristics of calcium‐aluminum‐rich inclusions (CAIs) in CO chondrites were further constrained by studying CAIs from six primitive CO3.0‐3.1 chondrites, including two Antarctic meteorites (DOM 08006 and MIL 090010), three hot desert meteorites (NWA 10493, NWA 10498, and NWA 7892), and the Colony meteorite. The CAIs can be divided into hibonite‐bearing inclusions (spinel‐hibonite spherules, monomineralic grains, hibonite‐pyroxene microspherules, and irregular/nodular objects), grossite‐bearing inclusions (monomineralic grains, grossite‐melilite microspherules, and irregular/nodular objects), melilite‐rich inclusions (fluffy Type A, compact type A, monomineralic grains, and igneous fragments), spinel‐pyroxene inclusions (fluffy objects resembling fine‐grained spinel‐rich inclusions in CV chondrites and nodular/banded objects resembling those in CM chondrites), and pyroxene‐anorthite inclusions. They are typically small (98.4 ± 54.4 µm, 1SD) and comprise 1.54 ± 0.43 (1SD) area% of the host chondrites. Melilite in the hot desert and Colony meteorites was extensively replaced by a hydrated Ca‐Al‐silicate during terrestrial weathering and converted melilite‐rich inclusions into spinel‐pyroxene inclusions. The CAI populations of the weathered COs are very similar to those in CM chondrites, suggesting that complete replacement of melilite by terrestrial weathering, and possibly parent body aqueous alteration, would make the CO CAIs CM‐like, supporting the hypothesis that CO and CM chondrites derive from similar nebular materials. Within the CO3.0‐3.1 chondrites, asteroidal alteration significantly resets oxygen isotopic compositions of CAIs in CO3.1 chondrites (?17O: ?25 to ?2‰) but left those in CO3.0‐3.05 chondrites mostly unchanged (?17O: ?25 to ?20‰), further supporting the model whereby thermal metamorphism became evident in CO chondrites of petrologic type ≥3.1. The resistance of CAI minerals to oxygen isotope exchange during thermal metamorphism follows in the order: melilite + grossite < hibonite + anorthite < spinel + diopside + forsterite. Meanwhile, terrestrial weathering destroys melilite without changing the chemical and isotopic compositions of melilite and other CAI minerals.  相似文献   

2.
Abstract— In situ io n microprobe analyses of spinel in refractory calcium‐aluminium‐rich inclusions (CAIs) from type 3 EH chondrites yield 16O‐rich compositions (δ 18O and δ 17O about‐40‰). Spinel and feldspar in a CAI from an EL3 chondrite have significantly heavier isotopic compositions (δ 18O and δ 17O about ?5‰). A regression through the data results in a line with slope 1.0 on a three‐isotope plot, similar to isotopic results from unaltered minerals in CAIs from carbonaceous chondrites. The existence of CAIs with 16O‐rich and 16O‐poor compositions in carbonaceous as well as enstatite chondrites indicates that CAIs formed in at least two temporally or spatially distinct oxygen reservoirs. General similarities in oxygen isotopic compositions of CAIs from enstatite, carbonaceous, and ordinary chondrites indicate a common nebular mechanism or locale for the production of most CAIs.  相似文献   

3.
We identified 66 chromite grains from 42 of ~5000 micrometeorites collected from Indian Ocean deep‐sea sediments and the South Pole water well. To determine the chromite grains precursors and their contribution to the micrometeorite flux, we combined quantitative electron microprobe analyses and oxygen isotopic analyses by high‐resolution secondary ion mass spectrometry. Micrometeorite chromite grains show variable O isotopic compositions with δ18O values ranging from ?0.8 to 6.0‰, δ17O values from 0.3 to 3.6‰, and Δ17O values from ?0.9 to 1.6‰, most of them being similar to those of chromites from ordinary chondrites. The oxygen isotopic compositions of olivine, considered as a proxy of chromite in chromite‐bearing micrometeorites where chromite is too small to be measured in ion microprobe have Δ17O values suggesting a principal relationship to ordinary chondrites with some having carbonaceous chondrite precursors. Furthermore, the chemical compositions of chromites in micrometeorites are close to those reported for ordinary chondrite chromites, but some contribution from carbonaceous chondrites cannot be ruled out. Consequently, carbonaceous chondrites cannot be a major contributor of chromite‐bearing micrometeorites. Based on their oxygen isotopic and elemental compositions, we thus conclude with no ambiguity that chromite‐bearing micrometeorites are largely related to fragments of ordinary chondrites with a small fraction from carbonaceous chondrites, unlike other micrometeorites deriving largely from carbonaceous chondrites.  相似文献   

4.
The distribution of the short‐lived radionuclide 26Al in the early solar system remains a major topic of investigation in planetary science. Thousands of analyses are now available but grossite‐bearing Ca‐, Al‐rich inclusions (CAIs) are underrepresented in the database. Recently found grossite‐bearing inclusions in CO3 chondrites provide an opportunity to address this matter. We determined the oxygen and magnesium isotopic compositions of individual phases of 10 grossite‐bearing CAIs in the Dominion Range (DOM) 08006 (CO3.0) and DOM 08004 (CO3.1) chondrites. All minerals in DOM 08006 CAIs as well as hibonite, spinel, and pyroxene in DOM 08004 are uniformly 16O‐rich (Δ17O = ?25 to ?20‰) but grossite and melilite in DOM 08004 CAIs are not; Δ17O of grossite and melilite range from ~ ?11 to ~0‰ and from ~ ?23 up to ~0‰, respectively. Even within this small suite, in the two chondrites a bimodal distribution of the inferred initial 26Al/27Al ratios (26Al/27Al)0 is seen, with four having (26Al/27Al)0 ≤1.1 × 10?5 and six having (26Al/27Al)0 ≥3.7 × 10?5. Five of the 26Al‐rich CAIs have (26Al/27Al)0 within error of 4.5 × 10?5; these values can probably be considered indistinguishable from the “canonical” value of 5.2 × 10?5 given the uncertainty in the relative sensitivity factor for grossite measured by secondary ion mass spectrometry. We infer that the 26Al‐poor CAIs probably formed before the radionuclide was fully mixed into the solar nebula. All minerals in the DOM 08006 CAIs, as well as spinel, hibonite, and Al‐diopside in the DOM 08004 CAIs retained their initial oxygen isotopic compositions, indicating homogeneity of oxygen isotopic compositions in the nebular region where the CO grossite‐bearing CAIs originated. Oxygen isotopic heterogeneity in CAIs from DOM 08004 resulted from exchange between the initially 16O‐rich (Δ17O ~?24‰) melilite and grossite and 16O‐poor (Δ17O ~0‰) fluid during hydrothermal alteration on the CO chondrite parent body; hibonite, spinel, and Al‐diopside avoided oxygen isotopic exchange during the alteration. Grossite and melilite that underwent oxygen isotopic exchange avoided redistribution of radiogenic 26Mg and preserved undisturbed internal Al‐Mg isochrons. The Δ17O of the fluid can be inferred from O‐isotopic compositions of aqueously formed fayalite and magnetite that precipitated from the fluid on the CO parent asteroid. This and previous studies suggest that O‐isotope exchange during fluid–rock interaction affected most CAIs in CO ≥3.1 chondrites.  相似文献   

5.
Abstract— Correlated in situ analyses of the oxygen and magnesium isotopic compositions of aluminum‐rich chondrules from unequilibrated enstatite chondrites were obtained using an ion microprobe. Among eleven aluminum‐rich chondrules and two plagioclase fragments measured for 26Al‐26Mg systematics, only one aluminum‐rich chondrule contains excess 26Mg from the in situ decay of 26Al; the inferred initial ratio (26Al/27Al)o = (6.8 ± 2.4) × 10?6 is consistent with ratios observed in chondrules from carbonaceous chondrites and unequilibrated ordinary chondrites. The oxygen isotopic compositions of five aluminum‐rich chondrules and one plagioclase fragment define a line of slope ?0.6 ± 0.1 on a three‐oxygen‐isotope diagram, overlapping the field defined by ferromagnesian chondrules in enstatite chondrites but extending to more 16O‐rich compositions with a range in δ18O of about ?12‰. Based on their oxygen isotopic compositions, aluminum‐rich chondrules in unequilibrated enstatite chondrites are probably genetically related to ferromagnesian chondrules and are not simple mixtures of materials from ferromagnesian chondrules and calcium‐aluminum‐rich inclusions (CAIs). Relative to their counterparts from unequilibrated ordinary chondrites, aluminum‐rich chondrules from unequilibrated enstatite chondrites show a narrower oxygen isotopic range and much less resolvable excess 26Mg from the in situ decay of 26Al, probably resulting from higher degrees of equilibration and isotopic exchange during post‐crystallization metamorphism. However, the presence of 26Al‐bearing chondrules within the primitive ordinary, carbonaceous, and now enstatite chondrites suggests that 26Al was at least approximately homogeneously distributed across the chondrite‐forming region.  相似文献   

6.
The ungrouped carbonaceous chondrite (CC) Bells has long been considered petrographically similar to CM chondrites based on its matrix abundance and degree of aqueous alteration, but also shows significant isotopic affinities to CR chondrites. Its taxonomic status is thus important for clarifying the relationship of the CRHB (formerly “CR”) clan with other CCs. In this study, we measured the oxygen isotopic compositions of olivines in type I chondrules and isolated olivine grains in Bells. Bells olivines mostly have ∆17O > −4‰, similar to CR chondrites but unlike other CCs that are rich in refractory inclusions, in which chondrules are generally richer in 16O. Therefore, Bells is a CR chondrite (albeit an anomalous one), most similar to the rare, matrix-rich CRs like Al Rais. These chondrites (i) may not necessarily derive from the same primary parent body as mainstream CRs, (ii) bear witness to significant variations of the matrix/chondrule ratio within the CRHB clan, and (iii) may be a good analog for samples retrieved by the space mission OSIRIS-REx.  相似文献   

7.
We report in situ O isotope and chemical compositions of magnetite and olivine in chondrules of the carbonaceous chondrites Watson‐002 (anomalous CK3) and Asuka (A)‐881595 (ungrouped C3). Magnetite in Watson‐002 occurs as inclusion‐free subhedral grains and rounded inclusion‐bearing porous grains replacing Fe,Ni‐metal. In A‐881595, magnetite is almost entirely inclusion‐free and coexists with Ni‐rich sulfide and less abundant Ni‐poor metal. Oxygen isotope compositions of chondrule olivine in both meteorites plot along carbonaceous chondrite anhydrous mineral (CCAM) line with a slope of approximately 1 and show a range of Δ17O values (from approximately ?3 to ?6‰). One chondrule from each sample was found to contain O isotopically heterogeneous olivine, probably relict grains. Oxygen isotope compositions of magnetite in A‐881595 plot along a mass‐dependent fractionation line with a slope of 0.5 and show a range of Δ17O values from ?2.4‰ to ?1.1‰. Oxygen isotope compositions of magnetite in Watson‐002 cluster near the CCAM line and a Δ17O value of ?4.0‰ to ?2.9‰. These observations indicate that magnetite and chondrule olivine are in O isotope disequilibrium, and, therefore, not cogenetic. We infer that magnetite in CK chondrites formed by the oxidation of pre‐existing metal grains by an aqueous fluid during parent body alteration, in agreement with previous studies. The differences in Δ17O values of magnetite between Watson‐002 and A‐881595 can be attributed to their different thermal histories: the former experienced a higher degree of thermal metamorphism that led to the O isotope exchange between magnetite and adjacent silicates.  相似文献   

8.
Abstract— We report in situ measurements of O‐isotopic compositions of magnetite and primary and secondary olivine in the highly unequilibrated oxidized CV chondrites Kaba and Mokoia. In both meteorites, the magnetite and the secondary olivine (fayalite, Fa90–100) have O‐isotopic compositions near the terrestrial fractionation (TF) line; the mean Δ17O (= δ17O‐0.52 × δ18O) value is about ?1%‰. In contrast, the compositions of nearby primary (chondrule), low‐FeO olivines (Fa1–2) are well below the TF line; Δ17O values range from ?3 to ?9%‰. Krot et al. (1998) summarized evidence indicating that the secondary phases in these chondrites formed by aqueous alteration in an asteroidal setting. The compositions of magnetite and fayalite in Kaba and Mokoia imply that the O‐isotopic composition of the oxidant was near or somewhat above the TF line. In Mokoia the fayalite and magnetite differ in δ18O by ~20%‰, whereas these same materials in Kaba have virtually identical compositions. The difference between Mokoia magnetite and fayalite may indicate formation in isotopic equilibrium in a water‐rich environment at low temperatures, ~300 K. In contrast, the similar compositions of these phases in Kaba may indicate formation of the fayalite by replacement of preexisting magnetite in dry environment, with the O coming entirely from the precursor magnetite and silica. The Δ17O of the oxidant incorporated into the CV parent body (as phyllosilicates or H2O) appears to have been much (7–8%‰) lower than that in that incorporated into the LL parent body (Choi et al, 1998), which suggests that the O‐isotopic composition of the nebular gas was spatially or temporally variable.  相似文献   

9.
Abstract– Dhofar (Dho) 225 and Dho 735 are carbonaceous chondrites found in a hot desert and having affinities to Belgica‐like Antarctic chondrites (Belgica [B‐] 7904 and Yamato [Y‐] 86720). Texturally they resemble CM2 chondrites, but differ in mineralogy, bulk chemistry and oxygen isotopic compositions. The texture and main mineralogy of Dho 225 and Dho 735 are similar to the CM2 chondrites, but unlike CM2 chondrites they do not contain any (P, Cr)‐sulfides, nor tochilinite 6Fe0.9S*5(Fe,Mg)(OH)2. H2O‐contents of Dho 225 and Dho 735 (1.76 and 1.06 wt%) are lower than those of CM2 chondrites (2–18 wt%), but similar to those in the metamorphosed carbonaceous chondrites of the Belgica‐like group. Bulk compositions of Dho 225 and Dho 735, as well as their matrices, have low Fe and S and low Fe/Si ratios relative to CM2 chondrites. X‐ray powder diffraction patterns of the Dho 225 and Dho 735 matrices showed similarities to laboratory‐heated Murchison CM2 chondrite and the transformation of serpentine to olivine. Dho 225 and 735’s oxygen isotopic compositions are in the high 18O range on the oxygen diagram, close to the Belgica‐like meteorites. This differs from the oxygen isotopic compositions of typical CM2 chondrites. Experimental results showed that the oxygen isotopic compositions of Dho 225 and Dhofar 725, could not be derived from those of typical CM2 chondrites via dehydration caused by thermal metamorphism. Dho 225 and Dho 735 may represent a group of chondrites whose primary material was different from typical CM2 chondrites and the Belgica‐like meteorites, but they formed in an oxygen reservoir similar to that of the Belgica‐like meteorites.  相似文献   

10.
We performed a petrologic, geochemical, and oxygen isotopic study of the lowest FeO ordinary chondrite (OC), Yamato (Y) 982717. Y 982717 shows a chondritic texture composed of chondrules and chondrule fragments, and mineral fragments set in a finer grained, clastic matrix, similar to H4 chondrites. The composition of olivine (Fa11.17 ± 0.48 (1σ)) and low‐Ca pyroxene (Fs11.07 ± 0.98 (1σ)Wo0.90 ± 0.71(1σ)) is significantly more magnesian than those of typical H chondrites (Fa16.0‐20, Fs14.5‐18.0), as well as other known low‐FeO OCs (Fa12.8‐16.7; Fs13‐16). However, the bulk chemical composition of Y 982717, in particular lithophile and moderately volatile elements, is within the range of OCs. The bulk siderophile element composition (Ni, Co) is within the range of H chondrites and distinguishable from L chondrites. The O‐isotopic composition is also within the range of H chondrites. The lack of reduction textures indicates that the low olivine Fa content and low‐Ca pyroxene Fs content are characteristics of the precursor materials, rather than the result of reduction during thermal metamorphism. We suggest that the H chondrites are more compositionally diverse than has been previously recognized.  相似文献   

11.
To examine the iron (Fe) isotopic heterogeneities of CI and ordinary chondrites, we have analyzed several large chips (approximately 1 g) from three CI chondrites and three ordinary chondrites (LL5, L5, and H5). The Fe isotope compositions of five different samples of Orgueil, one from Ivuna and one from Alais (CI chondrites), are highly homogeneous. This new dataset provides a δ56Fe average of 0.02 ± 0.04‰ (2SE, n = 7), which represents the best available value for the Fe isotopic composition of CI chondrites and probably the best estimate of the bulk solar system. We conclude that the homogeneity of CI chondrites reflects the initial Fe isotopic homogeneity of the well‐mixed solar nebula. In contrast, larger (up to 0.26‰ in δ56Fe) isotopic variations have been found between separate approximately 1 g pieces of the same ordinary chondrite sample. The Fe isotope heterogeneities in ordinary chondrites appear to be controlled by the abundances of chondritic components, specifically chondrules, whose Fe isotope compositions have been fractionated by evaporation and recondensation during multiple heating events.  相似文献   

12.
Dicarboxylic acids were searched for in three Sutter's Mill (SM) fragments (SM2 collected prerain, SM12, and SM41) and found to occur almost exclusively as linear species of 3‐ to 14‐carbon long. Between these, concentrations were low, with measured quantities typically less than 10 nmole g?1 of meteorite and a maximum of 6.8 nmole g?1 of meteorite for suberic acid in SM12. The SM acids' molecular distribution is consistent with a nonbiological origin and differs from those of CMs, such as Murchison or Murray, and of some stones of the C2‐ungrouped Tagish Lake meteorite, where they are abundant and varied. Powder X‐ray diffraction of SM12 and SM41 show them to be dominated by clays/amorphous material, with lesser amounts of Fe‐sulfides, magnetite, and calcite. Thermal gravimetric (TG) analysis shows mass losses up to 1000 °C of 11.4% (SM12) and 9.4% (SM41). These losses are low compared with other clay‐rich carbonaceous chondrites, such as Murchison (14.5%) and Orgueil (21.1%). The TG data are indicative of partially dehydrated clays, in accordance with published work on SM2, for which mineralogical studies suggest asteroidal heating to around 500 °C. In view of these compositional traits and mineralogical features, it is suggested that the dicarboxylic acids observed in the SM fragments we analyzed likely represent a combination of molecular species original to the meteorite as well as secondary products formed during parent‐body alteration processes, such as asteroidal heating.  相似文献   

13.
Transmission electron microscope studies of fine‐grained rims in three CM2 carbonaceous chondrites, Y‐791198, Murchison, and ALH 81002, have revealed the presence of widespread nanoparticles with a distinctive core–shell structure, invariably associated with carbonaceous material. These nanoparticles vary in size from ~20 nm up to 50 nm in diameter and consist of a core of Fe,Ni carbide surrounded by a continuous layer of polycrystalline magnetite. These magnetite shells are 5–7 nm in thickness irrespective of the diameter of the core Fe,Ni carbide grains. A narrow layer of amorphous carbon a few nanometers in thickness is present separating the carbide core from the magnetite shell in all the nanoparticles observed. The Fe,Ni carbide phases that constitute the core are consistent with both haxonite and cohenite, based on electron diffraction data, energy dispersive X‐ray analysis, and electron energy loss spectroscopy. Z‐contrast scanning transmission electron microscopy shows that these core–shell magnetite‐carbide nanoparticles can occur as individual isolated grains, but more commonly occur in clusters of multiple particles. In addition, energy‐filtered transmission electron microscopy (EFTEM) images show that in all cases, the nanoparticles are embedded within regions of carbonaceous material or are coated with carbonaceous material. The observed nanostructures of the carbides and their association with carbonaceous material can be interpreted as being indicative of Fischer–Tropsch‐type (FTT) reactions catalyzed by nanophase Fe,Ni metal grains that were carburized during the catalysis reaction. The most likely environment for these FTT reactions appears to be the solar nebula consistent with the high thermal stability of haxonite and cohenite, compared with other carbides and the evidence of localized catalytic graphitization of the carbonaceous material. However, the possibility that such reactions occurred within the CM parent body cannot be excluded, although this scenario seems unlikely, because the kinetics of the reaction would be extremely slow at the temperatures inferred for CM asteroidal parent bodies. In addition, carbides are unlikely to be stable under the oxidizing conditions of alteration experienced by CM chondrites. Instead, it is most probable that the magnetite rims on all the carbide particles are the product of parent body oxidation of Fe,Ni carbides, but this oxidation was incomplete, because of the buildup of an impermeable layer of amorphous carbon at the interface between the magnetite and the carbide phase that arrested the reaction before it went to completion. These observations suggest that although FTT catalysis reactions may not have been the major mechanism of organic material formation within the solar nebula, they nevertheless contributed to the inventory of complex insoluble organic matter that is present in carbonaceous chondrites.  相似文献   

14.
Among the many ungrouped meteorites, Acfer 370, NWA 7135, and El Médano 301—probably along with the chondritic inclusion in Cumberland Falls and ALHA 78113—represent a homogeneous grouplet of strongly reduced forsterite‐rich chondrites characterized by common textural, chemical, mineralogical, and isotopic features. All of these meteorites are much more reduced than OCs, with a low iron content in olivine and low‐Ca pyroxene. In particular, Acfer 370 is a type 4 chondrite that has olivine and low‐Ca pyroxene compositional ranges of Fa 5.2–5.8 and Fs 9.4–33.4, respectively. The dominant phase is low‐Ca pyroxene (36.3 vol%), followed by Fe‐Ni metal (16.3 vol%) and olivine (15.5 vol%); nevertheless, considering the Fe‐oxyhydroxide (due to terrestrial weathering), the original metal content was around 29.6 vol%. Finally, the mean oxygen isotopic composition Δ17O = +0.68‰ along with the occurrence of a silica phase, troilite, Ni‐rich phosphides, chromite, and oldhamite confirms that these ungrouped meteorites have been affected by strong reduction and are different from any other group recognized so far.  相似文献   

15.
16.
Abstract– Different oxygen isotopic reservoirs have been recognized in the early solar system. Fluffy type A Ca‐Al‐rich inclusions (CAIs) are believed to be direct condensates from a solar nebular gas, and therefore, have acquired oxygen from the solar nebula. Oxygen isotopic and chemical compositions of melilite crystals in a type A CAI from Efremovka CV3 chondrite were measured to reveal the temporal variation in oxygen isotopic composition of surrounding nebular gas during CAI formation. The CAI is constructed of two domains, each of which has a core‐mantle structure. Reversely zoned melilite crystals were observed in both domains. Melilite crystals in one domain have a homogeneous 16O‐poor composition on the carbonaceous chondrite anhydrous mineral (CCAM) line of δ18O = 5–10‰, which suggests that the domain was formed in a 16O‐poor oxygen isotope reservoir of the solar nebula. In contrast, melilite crystals in the other domain have continuous variations in oxygen isotopic composition from 16O‐rich (δ18O = ?40‰) to 16O‐poor (δ18O = 0‰) along the CCAM line. The oxygen isotopic composition tends to be more 16O‐rich toward the domain rim, which suggests that the domain was formed in a variable oxygen isotope reservoir of the solar nebula. Each domain of the type A CAI has grown in distinct oxygen isotope reservoir of the solar nebula. After the domain formation, domains were accumulated together in the solar nebula to form a type A CAI.  相似文献   

17.
Carbonaceous chondrites are classified into several groups. However, some are ungrouped. We studied one such ungrouped chondrite, Y‐82094, previously classified as a CO. In this chondrite, chondrules occupy 78 vol%, and the matrix is distinctly poor in abundance (11 vol%), compared with CO and other C chondrites. The average chondrule size is 0.33 mm, different from that in C chondrites. Although these features are similar to those in ordinary chondrites, Y‐82094 contains 3 vol% Ca‐Al‐rich inclusions and 5% amoeboid olivine aggregates (AOAs). Also, the bulk composition resembles that of CO chondrites, except for the volatile elements, which are highly depleted. The oxygen isotopic composition of Y‐82094 is within the range of CO and CV chondrites. Therefore, Y‐82094 is an ungrouped C chondrite, not similar to any other C chondrite previously reported. Thin FeO‐rich rims on AOA olivine and the mode of occurrence of Ni‐rich metal in the chondrules indicate that Y‐82094 is petrologic type 3.2. The extremely low abundance of type II chondrules and high abundance of Fe‐Ni metal in the chondrules suggest reducing condition during chondrule formation. The depletion of volatile elements indicates that the components formed under high‐temperature conditions, and accreted to the parent body of Y‐82094. Our study suggests a wider range of formation conditions than currently recorded by the major C chondrite groups. Additionally, Y‐82094 may represent a new, previously unsampled, asteroidal body.  相似文献   

18.
Abstract– Asteroids and their fragments have impacted the Earth for the last 4.5 Gyr. Carbonaceous meteorites are known to contain a wealth of indigenous organic molecules, including amino acids, which suggests that these meteorites could have been an important source of prebiotic organic material during the origins of life on Earth and possibly elsewhere. We report the detection of extraterrestrial amino acids in thermally altered type 3 CV and CO carbonaceous chondrites and ureilites recovered from Antarctica. The amino acid concentrations of the thirteen Antarctic meteorites ranged from 300 to 3200 parts‐per‐billion (ppb), generally much less abundant than in amino acid‐rich CI, CM, and CR carbonaceous chondrites that experienced much lower temperature aqueous alteration on their parent bodies. In contrast to low‐temperature aqueously altered meteorites that show complete structural diversity in amino acids formed predominantly by Strecker–cyanohydrin synthesis, the thermally altered meteorites studied here are dominated by small, straight‐chain, amine terminal (n‐ω‐amino) amino acids that are not consistent with Strecker formation. The carbon isotopic ratios of two extraterrestrial n‐ω‐amino acids measured in one of the CV chondrites (δ13C approximately ?25‰) are consistent with 13C‐depletions observed previously in hydrocarbons produced by Fischer‐Tropsch type reactions. The predominance of n‐ω‐amino acid isomers in thermally altered meteorites hints at cosmochemical mechanisms for the preferential formation and preservation of a small subset of the possible amino acids.  相似文献   

19.
CV (Vigarano type) carbonaceous chondrites, comprising Allende‐like (CVoxA) and Bali‐like (CVoxB) oxidized and reduced (CVred) subgroups, experienced differing degrees of fluid‐assisted thermal and shock metamorphism. The abundance and speciation of secondary minerals produced during asteroidal alteration differ among the subgroups: (1) ferroan olivine and diopside–hedenbergite solid solution pyroxenes are common in all CVs; (2) nepheline and sodalite are abundant in CVoxA, rare in CVred, and absent in CVoxB; (3) phyllosilicates and nearly pure fayalite are common in CVoxB, rare in CVred, and virtually absent in CVoxA; (4) andradite, magnetite, and Fe‐Ni‐sulfides are common in oxidized CVs, but rare in reduced CVs; the latter contain kirschsteinite instead. Thus, a previously unrecognized correlation exists between meteorite bulk permeabilities and porosities with the speciation of the Ca‐, Fe‐rich silicates (pyroxenes, andradite, kirschsteinite) among the CVox and CVred meteorites. The extent of secondary mineralization was controlled by the distribution of water ices, permeability, and porosity, which in turn were controlled by impacts on the asteroidal parent body. More intense shock metamorphism in the region where the reduced CVs originated decreased their porosity and permeability while simultaneously expelling intergranular ices and fluids. The mineralogy, petrography, and bulk chemical compositions of both the reduced and oxidized CV chondrites indicate that mobile elements were redistributed between Ca,Al‐rich inclusions, dark inclusions, chondrules, and matrices only locally; there is no evidence for large‐scale (>several cm) fluid transport. Published 53Mn‐53Cr ages of secondary fayalite in CV, CO, and unequilibrated ordinary chondrites, and carbonates in CI, CM, and CR chondrites are consistent with aqueous alteration initiated by heating of water ice‐bearing asteroids by decay of 26Al, not shock metamorphism.  相似文献   

20.
We report the bulk C abundances, and C and O isotopic compositions of carbonates in 64 CM chondrites, 14 CR chondrites, 2 CI chondrites, LEW 85332 (C2), Kaba (CV3), and Semarkona (LL3.0). For the unheated CMs, the total ranges of carbonate isotopic compositions are δ13C ≈ 25–75‰ and δ18O ≈ 15–35‰, and bulk carbonate C contents range from 0.03 to 0.60 wt%. There is no simple correlation between carbonate abundance and isotopic composition, or between either of these parameters and the extent of alteration. Unless accretion was very heterogeneous, the uncorrelated variations in extent of alteration and carbonate abundance suggests that there was a period of open system behavior in the CM parent body, probably prior to or at the start of aqueous alteration. Most of the ranges in CM carbonate isotopic compositions can be explained by their formation at different temperatures (0–130 °C) from a single fluid in which the carbonate O isotopes were controlled by equilibrium with water (δ18O ≈ 5‰) and the C isotopes were controlled by equilibrium with CO and/or CH413C ≈ ?33‰ or ?20‰ for CO‐ or CH4‐dominated systems, respectively). However, carbonate formation would have to have been inefficient, otherwise carbonate compositions would have resembled those of the starting fluid. A quite similar fluid composition (δ18O ≈ ?5.5‰, and δ13C ≈ ?31‰ or ?17‰ for CO‐ or CH4‐dominated systems, respectively) can explain the carbonate compositions of the CIs, although the formation temperatures would have been lower (~10–40 °C) and the relative abundances of calcite and dolomite may play a more important role in determining bulk carbonate compositions than in the CMs. The CR carbonates exhibit a similar range of O isotopes, but an almost bimodal distribution of C isotopes between more (δ13C ≈ 65–80‰) and less altered samples (δ13C ≈ 30–40‰). This bimodality can still be explained by precipitation from fluids with the same isotopic composition (δ18O ≈ ?9.25‰, and δ13C ≈ ?21‰ or ?8‰ for CO‐ or CH4‐dominated systems, respectively) if the less altered CRs had higher mole fractions of CO2 in their fluids. Semarkona and Kaba carbonates have some of the lightest C isotopic compositions of the meteorites studied here, probably because they formed at higher temperatures and/or from more CO2‐rich fluids. The fluids responsible for the alteration of chondrites and from which the carbonates formed were almost certainly accreted as ices. By analogy with cometary ices, CO2 and/or CO would have dominated the trapped volatile species in the ices. The chondrites studied are too oxidized for CO‐dominated fluids to have formed in their parent bodies. If CH4 was the dominant C species in the fluids during carbonate formation, it would have to have been generated in the parent bodies from CO and/or CO2 when oxidation of metal by water created high partial pressures of H2. The fact that the chondrite carbonate C/H2O mole ratios are of the order predicted for CO/CO2‐H2O ices that experienced temperatures of >50–100 K suggests that the chondrites formed at radial distances of <4–15 AU.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号