首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Large landslides and deep-seated gravitational slope deformations (DSGSD) represent an important geo-hazard in relation to the deformation of large structures and infrastructures and to the associated secondary landslides. DSGSD movements, although slow (from a few millimetres to several centimetres per year), can continue for very long periods, producing large cumulative displacements and undergoing partial or complete reactivation. Therefore, it is important to map the activity of such phenomena at a regional scale. Ground surface displacements at DSGSD typically range close to the detection limit of monitoring equipment but are suitable for synthetic aperture radar (SAR) interferometry. In this paper, permanent scatterers (PSInSAR?) and SqueeSAR? techniques are used to analyse the activity of 133 DSGSD, in the Central Italian Alps. Statistical indicators for assigning a degree of activity to slope movements from displacement rates are discussed together with methods for analysing the movement and activity distribution within each landslide. In order to assess if a landslide is active or not, with a certain degree of reliability, three indicators are considered as optimal: the mean displacement rate, the activity index (ratio of active PS, displacement rate larger than standard deviation, overall PS) and the nearest neighbor ratio, which allows to describe the degree of clustering of the PS data. According to these criteria, 66% of the phenomena are classified as active in the monitored period 1992–2009. Finally, a new methodology for the use of SAR interferometry data to attain a classification of landslide kinematic behaviour is presented. This methodology is based on the interpretation of longitudinal ground surface displacement rate profiles in the light of numerical simulations of simplified failure geometries. The most common kinematic behaviour is rotational, amounting to 41 DSGSDs, corresponding to the 62.1% of the active phenomena.  相似文献   

2.
This paper illustrates the capabilities of L-band satellite SAR interferometry for the investigation of landslide displacements. SAR data acquired by the L-band JERS satellite over the Italian and Swiss Alps have been analyzed together with C-band ERS-1/2 SAR data and in situ information. The use of L-band SAR data with a wavelength larger than the usual C-band, generally considered for ground motion measurements, reduces some of the limitations of differential SAR interferometry, in particular, signal decorrelation induced by vegetation cover and rapid displacements. The sites of the Alta Val Badia region in South Tyrol (Italy), Ruinon in Lombardia (Italy), Saas Grund in Valais (Switzerland) and Campo Vallemaggia in Ticino (Switzerland), representing a comprehensive set of different mass wasting phenomena in various environments, are considered. The landslides in the Alta Val Badia region are good examples for presenting the improved performance of L-band in comparison to C-band for vegetated areas, in particular concerning open forest. The landslides of Ruinon, Saas Grund, and Campo Vallemaggia demonstrate the strength of L-band in observing moderately fast displacements in comparison to C-band. This work, performed with historical SAR data from a satellite which operated until 1998, demonstrates the capabilities of future planned L-band SAR missions, like ALOS and TerraSAR-L, for landslide studies.  相似文献   

3.
In this work we analyse the performance of advanced land observing satellite (ALOS) phased array type L-band syntetic aperture radar (PALSAR) images for mapping and monitoring of very slow landslides using conventional differential interferometry in the Tena Valley (Central Pyrenees, Spain). These results are compared with those retrieved in previous works where multi-band advanced differential interferometric synthetic aperture radar (DInSAR) analysis was performed for the same area using PSI techniques. The study area is largely underlain by slates (ca. 80 %) where large deep-seated very slow earth flows are dominant. The results reveal that DInSAR analysis is able to measure displacements of landslides with a greater spatial coverage than PSI analysis, but for a lower amount of them (nine against 51). Overall, the combination of the DInSAR and multi-band PSI analysis permitted to map and monitor 68 % of the landslides in Tena Valley. From this amount, 63 landslides are considered as active. The main advantage of DInSAR with respect to PSI analysis is the capability to detect faster movements (up to 145 cm?year?1) derived from the 46 days interferograms. That is the case of Sextas and La Selva landslides where an acceleration of the moving mass was measured after intense rainfall periods producing major damages to linear infrastructures. The combination of measured displacement from ALOS interferograms, with the observed damages on the A-136 road, was useful to assess the potential damage that could cause these slow movements. In general, it is demonstrated that even though PSI analysis provides a better performance in terms of landslide mapping, L-band DInSAR analysis provides an added value for landslide hazard assessment through radar remote sensing. For this reason it is necessary to encourage the launch of new satellite missions similar to ALOS PALSAR that could operate with shorter revisiting time periods.  相似文献   

4.
The applicability of the Permanent Scatterers Synthetic Aperture Radar Interferometry (PSInSAR) technique for detecting and monitoring ground displacements was tested in the Oltrepo Pavese territory (Northern Italy, southern Lombardia), which could be representative of similar geological contexts in the Italian Apennines. The study area, which extends for almost 1100 km2, is characterized by a complex geological and structural setting and the presence of clay-rich sedimentary formations. These characteristics make the Oltrepo Pavese particularly prone to several geological hazards: shallow and deep landslides, subsidence and swelling/shrinkage of the clayey soils. The PSInSAR technique used in this study overcomes most of the limitations of conventional interferometric approaches by identifying, within the area of interest, a set of “radar benchmarks” (PS), where very precise displacement measurements can be carried out. More than 90,000 PS were identified by processing Synthetic Aperture Radar (SAR) images acquired from 1992 to 2001 by the European Remote Sensing satellites (ERS). The PSInSAR application at a sub-regional scale detected slow ground deformations ranging from + 5 to − 16 mm/year, and resulting from various processes (landslides, swelling/shrinkage of clay soils and water pumping). The PS displacements were analysed by collecting data obtained through geological, geomorphologic field surveys, geotechnical analysis of the soils and the information was integrated within a landslide inventory and the damaged building inventory. Despite the limited number of landslide bodies with PS (7% of the inventoried landslides), the PS data helped to revise the state of activity of several landslides. Furthermore, some previously unknown unstable slopes were detected. Two areas of uplift and two areas of subsidence were identified.  相似文献   

5.
Within the SLAM project (Service for Landslide Monitoring), launched in 2003 by the European Space Agency (ESA) the Permanent Scatterers (PS) technique, a multi-image interferometric approach, coupled with the interpretation of aerial-photos and optical satellite images, was carried out for landslide investigations. The PS analysis was applied at a regional scale as support for landslide inventory mapping and at local scale for the monitoring of single well-known slope movements. For the integration of the PS measurements within a landslide inventory the Arno river basin (Italy) was chosen as test site for the presence of a high number of mass movements (to date about 300 areas at high landslide risk and more than 27,000 individual landslides mapped by the institutional authorities). About 350 SAR images have been interferometrically processed by means of the PS technique, with the detection of about 600,000 PS. The use of optical images contributed spatial meaning to the point-wise information provided by the PS, making it easier to identify terrain features related to slope instability and the landslide boundaries. Here we describe the employed methodology and its impact in the updating of a preexisting landslide inventory. 6.8% of the total number of landslides were characterized by ground displacement measurements from the PS: 6.1% of already mapped landslides and 0.8% of new unstable areas detected through the PS analysis. Moreover, most of the PS are located in urban areas, showing that the proposed methodology is suitable for landslide mapping in areas with a quite high density of urbanization, but that over vegetated areas it still suffers from the limitations induced by the current space-borne SAR missions (e.g. temporal de-correlation). On the other hand, the use of InSAR for the monitoring of single slow landslides threatening built-up areas has provided satisfactory results, allowing the measurement of superficial deformations with high accuracy on the landslide sectors characterized by a good radar reflectivity and coherence.  相似文献   

6.
《Engineering Geology》2007,89(3-4):200-217
Within the SLAM project (Service for Landslide Monitoring), launched in 2003 by the European Space Agency (ESA) the Permanent Scatterers (PS) technique, a multi-image interferometric approach, coupled with the interpretation of aerial-photos and optical satellite images, was carried out for landslide investigations. The PS analysis was applied at a regional scale as support for landslide inventory mapping and at local scale for the monitoring of single well-known slope movements. For the integration of the PS measurements within a landslide inventory the Arno river basin (Italy) was chosen as test site for the presence of a high number of mass movements (to date about 300 areas at high landslide risk and more than 27,000 individual landslides mapped by the institutional authorities). About 350 SAR images have been interferometrically processed by means of the PS technique, with the detection of about 600,000 PS. The use of optical images contributed spatial meaning to the point-wise information provided by the PS, making it easier to identify terrain features related to slope instability and the landslide boundaries. Here we describe the employed methodology and its impact in the updating of a preexisting landslide inventory. 6.8% of the total number of landslides were characterized by ground displacement measurements from the PS: 6.1% of already mapped landslides and 0.8% of new unstable areas detected through the PS analysis. Moreover, most of the PS are located in urban areas, showing that the proposed methodology is suitable for landslide mapping in areas with a quite high density of urbanization, but that over vegetated areas it still suffers from the limitations induced by the current space-borne SAR missions (e.g. temporal de-correlation). On the other hand, the use of InSAR for the monitoring of single slow landslides threatening built-up areas has provided satisfactory results, allowing the measurement of superficial deformations with high accuracy on the landslide sectors characterized by a good radar reflectivity and coherence.  相似文献   

7.
Interferometric synthetic aperture radar data from ERS and ENVISAT sensors were utilized in the analysis of the post-failure deformations in the area of Lubietova town in Central Slovakia. The catastrophic landslide of 1977 together with surrounding landslides in the Lubietova area were analysed with the help of persistent scatterers (PS) technique in order to evaluate recent and past deformations of the unstable slopes. Although long-term precise geodetic monitoring of the 1977 landslide revealed differential deformations inside the sliding mass, due to the lack of the PS located inside the landside caused by temporal decorrelation, unfortunately, these records could not be directly compared. The adjacent landslides with sufficient number of PS were analysed by transformation of the line of sight displacements recorded by the sensors to the slope vector direction. This procedure allowed identification of the precise boundaries of the actively moving landslide parts and the updating of the landslide inventory for the Lubietova area.  相似文献   

8.
Ground-based SAR interferometry for monitoring mass movements   总被引:11,自引:3,他引:8  
An innovative technique for the remote assessment of ground displacements, based on radar interferometry and implemented using ground-based instrumentation (GB-InSAR), has been tested in recent years on a number of selected case sites. The system, known as LISA, developed by the Joint Research Centre (JRC) of the European Commission, is a ground-based radar interferometer specifically designed for field use. It is composed of two radar antennas mounted on a linear rail which horizontally slides to form a synthetic aperture. Coherent SAR processing converts the raw data into an image containing, for each pixel, information on the wave phase, which depends on the target-sensor distance. Consecutive couples of SAR images can be cross-correlated to form interferograms representing phase variations which can be directly related to ground displacement along the sight-line of the radar system, since they are acquired from exactly the same position. Several applications of the system have been conducted on a number of mass movements located in Italy, in order to validate the technique for the monitoring of landslides. GB-InSAR has proved its potential for the measurement of the superficial ground displacements of different landslide types, in terms of failure mechanism, materials involved, kinematics, water content and deformation rates. In particular conditions, such as fast-moving phenomena and inaccessible areas, the technique can be employed directly as a monitoring tool, providing multi-temporal displacement maps of the observed area. Additionally, some applications of the GB-InSAR have provided a fundamental support to decision makers during landslide emergencies, allowing the civil protection authorities to assess the risk and to manage an effective emergency response.  相似文献   

9.
A major limitation for wide application of Synthetic Aperture Radar (SAR) remote sensing in mapping landslide surface displacements is the intrinsic gap between the ultimate objective of measuring three-dimensional displacements and the limited capability of detecting only one or two-dimensional displacements by repeat-pass SAR observations of identical imaging geometries. Although multi-orbit SAR observations of dissimilar viewing geometries can be jointly analyzed to inverse the three-dimensional displacements, the reliability of inversion results might be highly questionable in case of continuous motion because of the usually asynchronous acquisitions of multi-orbit SAR datasets. Aiming at this problem, we proposed an approach of retrieving time series three-dimensional displacements from multi-angular SAR datasets for step-like landslides in the Three Gorges area in this article. Firstly, time series displacements of a common ground target in the azimuth and line-of-sight (LOS) direction can be estimated using traditional methods of SAR interferometry (InSAR) and SAR pixel offset tracking (POT), respectively. Then, a spline fitting and interpolation procedure was employed to parameterize the displacement history in the sliding/dormant periods of step-like landslides and estimate displacements from multi-angular observations for identical date series. Finally, three-dimensional displacements can be inverted from these synchronized multi-angular measured displacements in traditional ways. As a case study, the proposed method was applied to retrieve the three-dimensional displacements history of the Shuping landslide in the Three Gorges area, China. Comparisons between SAR-measured displacements and measurements of global positioning system (GPS) showed good agreement. Furthermore, temporal correlation analyses suggest that reservoir water level fluctuation and rainfall are the two most important impact factors for the Shuping landslide stability.  相似文献   

10.
The main aim of this paper is to exploit information obtained from satellite SAR data to detect and monitor instability phenomena affecting hilly and scarcely urbanized areas, overtaking some of the restrictions due to the presence of thick vegetation. To this end, phase and amplitude analyses of COSMO-SkyMed SAR data were carried out on two landslides located in the North-Eastern Italian pre-Alps: Cischele roto-translational slide and Val Maso rotational slide—earth flow. In the first case, the careful choice of processing parameters allowed to evaluate landslide displacement fields considering the phase difference between SAR acquisitions. In the second case, the speed of movement and the deep changes in morphology and vegetation induced by the landslide did not allow to apply DInSAR techniques; in this case the variation in the amplitude between SAR acquisitions allowed to detect the area affected by the instability. Obtained results show that methods and techniques to analyse satellite SAR data could be further refined in order to provide useful tools for landslide mapping and monitoring.  相似文献   

11.
Statistical analyses have been often used for landslide susceptibility zoning at small to medium scale when relevant base and thematic maps are available. Since the beginning of the last decade, images remotely acquired by spaceborne Synthetic Aperture Radar (SAR) and processed via Differential SAR Interferometry (DInSAR) proved extremely useful for non-invasive and non-destructive monitoring of displacements of the topographic surface. The present paper proposes an original procedure for the definition of the state of activity of slow-moving landslides via the combined use of multivariate statistical analyses and DInSAR data. The procedure is based on the following essential elements: distinction between terrain units used for computational purposes and the final zoning units; independent statistical and DInSAR analyses and activity models leading to first-level state of activity zoning maps; a consistency model between statistical and DInSAR analyses; two confidence and combination models leading, respectively, to second- or third-level state of activity zoning maps. The application in a test area including 19 municipalities in southern Italy, where slow-moving landslides are widespread and accurately mapped by using geomorphological criteria, allowed the generation of the three above-mentioned levels of zoning maps. The results were successfully crosschecked by exploiting a different DInSAR dataset and the results of previous works based on the use of slow-moving landslide-induced damage to facilities surveys.  相似文献   

12.
The application of satellite differential synthetic aperture radar (SAR) interferometry, principally coherent (InSAR) and to a lesser extent, persistent-scatterer (PSI) techniques to hydrogeologic studies has improved capabilities to map, monitor, analyze, and simulate groundwater flow, aquifer-system compaction and land subsidence. A number of investigations over the previous decade show how the spatially detailed images of ground displacements measured with InSAR have advanced hydrogeologic understanding, especially when a time series of images is used in conjunction with histories of changes in water levels and management practices. Important advances include: (1) identifying structural or lithostratigraphic boundaries (e.g. faults or transitional facies) of groundwater flow and deformation; (2) defining the material and hydraulic heterogeneity of deforming aquifer-systems; (3) estimating system properties (e.g. storage coefficients and hydraulic conductivities); and (4) constraining numerical models of groundwater flow, aquifer-system compaction, and land subsidence. As a component of an integrated approach to hydrogeologic monitoring and characterization of unconsolidated alluvial groundwater basins differential SAR interferometry contributes unique information that can facilitate improved management of groundwater resources. Future satellite SAR missions specifically designed for differential interferometry will enhance these contributions.  相似文献   

13.
In this paper, the updating of the landslide inventory of Tuscany region is presented. To achieve this goal, satellite SAR data processed with persistent scatter interferometry (PSI) technique have been used. The updating leads to a consistent reduction of unclassified landslides and to an increasing of active landslides. After the updating, we explored the characteristics of the new inventory, analysing landslide distribution and geomorphological features. Several maps have been elaborated, as sliding index or landslide density map; we also propose a density-area map to highlight areas with different landslide densities and sizes. A frequency-area analysis has been performed, highlighting a classical negative power-law distribution. We also explored landslide frequency for lithology, soil use and several morphological attributes (elevation, slope gradient, slope curvature), considering both all landslides and classified landslide types (flows, falls and slides).  相似文献   

14.
This paper explores the potential of using satellite radar inteferometry to monitor time-varying land movement prior to any visible tension crack signs. The idea was developed during dedicated geotechnical studies at a large open-pit lignite mine, where large slope movements (10–20 mm/day) were monitored and large fissures were observed in the immediate area outside the current pit limits. In this work, differential interferometry (DInSAR), using Synthetic Aperture Radar (SAR) ALOS images, was applied to monitor the progression of land movement that could potentially thwart mine operations. Early signs of land movements were captured by this technique well before their visual observation. Moreover, a qualitative comparison of DInSAR and ground geodetic measurements indicates that the technique can be used for the identification of high risk areas and, subsequently, for the optimization of the spatial distribution of the available ground monitoring equipment. Finally, quantitative land movement results from DInSAR are shown to be in accordance with simultaneous measurements obtained by ground means.  相似文献   

15.
Extremely slow landslides, those with a displacement rate <16 mm/year, may be imperceptible without proper instrumentation. These landslides can cause infrastructure damage on a long-term timescale. The objective is to identify these landslides through the combination of information from the California landslide inventory (CLI) and ground displacement rates using results from persistent scatterer interferometry (PSI), an interferometric synthetic aperture radar (InSAR) stacking technique, across the Palos Verdes Peninsula in California. A total of 34 ENVISAT radar images (acquired between 2005 and 2010) and 40 COSMO-SkyMed radar images (acquired between 2012 and 2014) were processed. An InSAR landslide inventory (ILI) is created using four criteria: minimum PS count, average measured ground velocity, slope angle, and slope aspect. The ILI is divided into four categories: long-term slides (LTSs), potentially active slides (PASs), relatively stable slopes (RSSs), and unmapped extremely slow slides (UESSs). These categories are based on whether landslides were previously mapped on that slope (in the CLI), if persistent scatterers (PSs) are present, and whether PSs are unstable or stable. The final inventory includes 263 mapped landslides across the peninsula, of them 67 landslides were identified as UESS. Although UESS exhibit low velocity and are relatively small (average area of 8865 m2 per slide), their presence in a highly populated area such as the Palos Verdes Peninsula could lead to destruction of infrastructure and property over the long term.  相似文献   

16.
Interferometric synthetic aperture radar (InSAR) analysis is a radar technique for generating large-area maps of ground deformation using differences in the phase of microwaves returning to a satellite. In recent years, high-resolution SAR sensors have been developed that enable small-scale slope deformation to be detected, such as the partial block movement of a landslide. The L-band SAR (PALSAR-2) is mounted on Advanced Land Observing Satellite-2 (ALOS-2), which was launched on 24 Mar. 2014. Its main improvements compared with ALOS are enhanced resolution of as high as 3 m with a high-frequency recurrence period (14 days). Owing to its high resolution and the use of the L-band, PALSAR-2 can obtain reflective data passing through a tree canopy surface, unlike the other synthetic aperture radars. Therefore, the coherence of InSAR in mountainous forest areas is less likely to decrease, making it advantageous for the extraction of slope movement. In this study, to verify the accuracy of InSAR analysis using PALSAR-2 data, we compared the results of InSAR analysis and the measurement of the displacement in a landslide by global navigation satellite system (GNSS) observation. It was found that the average difference between the displacements obtained by InSAR analysis and the field measurements by GNSS was only 15.1 mm in the slant range direction, indicating the high accuracy of InSAR analysis. Many of the areas detected by InSAR analysis corresponded to the locations of surface changes due to landslide activity. Additionally, in the areas detected by InSAR analysis using multiple datasets, the ground changes due to landslide movement were confirmed by site investigation.  相似文献   

17.
基于合成孔径雷达干涉测量技术的地面沉降研究综述   总被引:2,自引:0,他引:2  
综述了合成孔径雷达干涉测量(InSAR)技术的研究现状及其在监测地面沉降方面的优势和缺陷.与传统监测方法相比,InSAR技术在地面沉降监测方面主要具有全天候、大范围、高分辨率、高精度等优势,但在实际应用中则会产生去相关问题.探讨了利用该技术监测地面沉降的发展方向,认为应将InSAR与GPS及传统的水准测量等方法结合使用,合理利用各技术之间的互补性.  相似文献   

18.
We present two case studies regarding the application of Synthetic Aperture Radar (SAR) Persistent Scatterers Interferometry (PSI) techniques to landslide-prone slopes situated in the municipal territories of Caramanico Terme and Volturino (Italy). The analysis of satellite SAR data with PSI techniques poses often problems on sites where, due to the scarcity of human artefacts and the presence of vegetation cover, density of coherent points (PS) is low (< 10 per km2). Moreover, the steep and rough topography typical of landslide-prone areas hamper the interferometric pre-processing, making more difficult the joint estimation of displacements and of DEM errors. Under these conditions the significance of temporal interferometric phase trends can be uncertain and conservative assumptions, necessary to ensure low false detection probabilities, need to be coupled with innovative processing strategies to increase the detection efficiency of PS objects. Here, the SPINUA (Stable Point Interferometry over Un-urbanised Areas) processing technique is applied together with an alternative PS Candidate (PSC) selection procedure based on the use of pixels classified as urban.

The cases of Caramanico and Volturino are representative, respectively, of harsh and favourable conditions for PSI applications. The results from Caramanico show clusters of PS exhibiting similar line-of-sight (LOS) deformation behaviour in the period 1995–2000. The locations of moving PS often coincide with distressed buildings and appear consistent with the areal distribution of recent and past landslide activity. The temporal displacement trends, however, are characterised by very low annual average velocities (from 3 to 7 mm/y) and it is uncertain to what extent the PS data reflect true slope movements, local deformations (e.g. settlement of engineering structures) or both.

Thanks to the more favourable conditions, the application of the standard SPINUA approach in the Volturino area was sufficient to obtain suitable densities of PS, as well as spatially and temporally consistent displacement results for a period 1992–2000. In particular, a group of moving PS was identified in a peri-urban area, known for the past and recent slope stability problems. The slowly moving PS (from 3 to 5 mm/y) fall in a location that, unlike the remaining part of the town, is characterised by the presence of many distressed buildings and structures. Although the site information confirms the reliability of PS data, in the absence of ground monitoring and detailed records of landslide movements, it is difficult to identify the main mechanism of the detected deformations. In general, in geologically and topographically complex urban/peri-urban settings, the significance of very low-velocity PSI surface displacements should always be considered together with in situ geotechnical controls and ground monitoring data.  相似文献   


19.
Subsidence related to multiple natural and human-induced processes affects an increasing number of areas worldwide. Although this phenomenon may involve surface deformation with 3D displacement components, negative vertical movement, either progressive or episodic, tends to dominate. Over the last decades, differential SAR interferometry (DInSAR) has become a very useful remote sensing tool for accurately measuring the spatial and temporal evolution of surface displacements over broad areas. This work discusses the main advantages and limitations of addressing active subsidence phenomena by means of DInSAR techniques from an end-user point of view. Special attention is paid to the spatial and temporal resolution, the precision of the measurements, and the usefulness of the data. The presented analysis is focused on DInSAR results exploitation of various ground subsidence phenomena (groundwater withdrawal, soil compaction, mining subsidence, evaporite dissolution subsidence, and volcanic deformation) with different displacement patterns in a selection of subsidence areas in Spain. Finally, a cost comparative study is performed for the different techniques applied.  相似文献   

20.
The geometric and kinematic characterization of landslides affecting urban areas is a challenging goal that is routinely pursued via geological/geomorphological method and monitoring of ground displacements achieved by geotechnical and, more recently, advanced differential interferometric synthetic aperture radar (A-DInSAR) data. Although the integration of all the above-mentioned methods should be planned a priori to be more effective, datasets resulting from the independent use of these different methods are commonly available, thus making crucial the need for their standardized a posteriori integration. In this regard, the present paper aims to provide a contribution by introducing a procedure that, taking into account the specific limits of geological/geomorphological analyses and deep/surface ground displacement monitoring via geotechnical and A-DInSAR data, allows the a posteriori integration of the results by exploiting their complementarity for landslide characterization. The approach was tested in the urban area of Lungro village (Calabria region, southern Italy), which is characterized by complex geological/geomorphological settings, widespread landslides and peculiar urban fabric. In spite of the different level of information preliminarily available for each landslide as result of the independent use of the three methods, the implementation of the proposed procedure allowed a better understanding and typifying of the geometry and kinematics of 50 landslides. This provided part of the essential background for geotechnical landslide models to be used for slope stability analysis within landslide risk mitigation strategies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号