首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Dhofar 1673, Dhofar 1983, and Dhofar 1984 meteorites are three lunar regolith breccias classified based on their petrography, mineralogy, oxygen isotopes, and bulk chemistry. All three meteorites are dominated by feldspathic lithic clasts; however, impact melt rock clasts and spherules are also found in each meteorite. The bulk chemistry of these samples is similar to other feldspathic highland meteorites with the Al2O3 content only slightly lower than average. Within the lithic clasts, the Mg # of mafic phases versus the anorthite content of feldspars is similar to other highland meteorites and is found to plot intermediate of the ferroan‐anorthositic suite and magnesian suite. The samples lack any KREEPy signature and have only minor indications of a mare basalt component, suggesting that the source region of all three meteorites would have been distal from the Procellarum KREEP Terrane and could have possibly been the Feldspathic Highland Terrane. All three meteorites were found within 500 m of each other in the Dhofar region of Oman. This, together with their similar petrography, stable isotope chemistry, and geochemistry indicates the possibility of a pairing.  相似文献   

2.
Abstract— We have analyzed nine highland lunar meteorites (lunaites) using mainly INAA. Several of these rocks are difficult to classify. Dhofar 081 is basically a fragmental breccia, but much of its groundmass features a glassy‐fluidized texture that is indicative of localized shock melting. Also, much of the matrix glass is swirly‐brown, suggesting a possible regolith derivation. We interpret Dar al Gani (DaG) 400 as an extremely immature regolith breccia consisting mainly of impact‐melt breccia clasts; we interpret Dhofar 026 as an unusually complex anorthositic impact‐melt breccia with scattered ovoid globules that formed as clasts of mafic, subophitic impact melt. The presence of mafic crystalline globules in a lunar material, even one so clearly impact‐heated, suggests that it may have originated as a regolith. Our new data and a synthesis of literature data suggest a contrast in Al2O3‐incompatible element systematics between impact melts from the central nearside highlands, where Apollo sampling occurred, and those from the general highland surface of the Moon. Impact melts from the general highland surface tend to have systematically lower incompatible element concentration at any given Al2O3 concentration than those from Apollo 16. In the case of Dhofar 026, both the bulk rock and a comparatively Al‐poor composition (14 wt% Al2O3, 7 μg/g Sm) extrapolated for the globules, manifest incompatible element contents well below the Apollo 16 trend. Impact melts from Luna 20 (57°E) distribute more along the general highland trend than along the Apollo 16 trend. Siderophile elements also show a distinctive composition for Apollo 16 impact melts: Ni/Ir averaging ?1.8x chondritic. In contrast, lunaite impact‐melt breccias have consistently chondritic Ni/Ir. Impact melts from Luna 20 and other Apollo sites show average Ni/Ir almost as high as those from Apollo 16. The prevalence of this distinctive Ni/Ir ratio at such widely separated nearside sites suggests that debris from one extraordinarily large impact may dominate the megaregolith siderophile component of a nearside region 2300 km or more across. Highland polymict breccia lunaites and other KREEP‐poor highland regolith samples manifest a strong anticorrelation between Al2O3 and mg. The magnesian component probably represents the chemical signature of the Mg‐suite of pristine nonmare rocks in its most “pure” form, unaltered by the major KREEP‐assimilation that is so common among Apollo Mg‐suite samples. The average composition of the ferroan anorthositic component is now well constrained at Al2O3 ?29–30 wt% (implying about 17–19 wt% modal mafic silicates), in good agreement with the composition predicted for flotation crust over a “ferroan” magma ocean (Warren 1990).  相似文献   

3.
Abstract— Studies of lunar meteorite Dhofar 026, and comparison to Apollo sample 15418, indicate that Dhofar 026 is a strongly shocked granulitic breccia (or a fragmental breccia consisting almost entirely of granulitic breccia clasts) that experienced considerable post‐shock heating, probably as a result of diffusion of heat into the rock from an external, hotter source. The shock converted plagioclase to maskelynite, indicating that the shock pressure was between 30 and 45 GPa. The post‐shock heating raised the rock's temperature to about 1200 °C; as a result, the maskelynite devitrified, and extensive partial melting took place. The melting was concentrated in pyroxene‐rich areas; all pyroxene melted. As the rock cooled, the partial melts crystallized with fine‐grained, subophitic‐poikilitic textures. Sample 15418 is a strongly shocked granulitic breccia that had a similar history, but evidence for this history is better preserved than in Dhofar 026. The fact that Dhofar 026 was previously interpreted as an impact melt breccia underscores the importance of detailed petrographic study in interpretation of lunar rocks that have complex textures. The name “impact melt” has, in past studies, been applied only to rocks in which the melt fraction formed by shock‐induced total fusion. Recently, however, this name has also been applied to rocks containing melt formed by heating of the rocks by conductive heat transfer, assuming that impact is the ultimate source of the heat. We urge that the name “impact melt” be restricted to rocks in which the bulk of the melt formed by shock‐induced fusion to avoid confusion engendered by applying the same name to rocks melted by different processes.  相似文献   

4.
Abstract— Sayh al Uhaymir (SaU) 300 comprises a microcrystalline igneous matrix (grain size <10 μm), dominated by plagioclase, pyroxene, and olivine. Pyroxene geothermometry indicates that the matrix crystallized at ?1100 °C. The matrix encloses mineral and lithic clasts that record the effects of variable levels of shock. Mineral clasts include plagioclase, low‐ and high‐Ca pyroxene, pigeonite, and olivine. Minor amounts of ilmenite, FeNi metal, chromite, and a silica phase are also present. A variety of lithic clast types are observed, including glassy impact melts, impact‐melt breccias, and metamorphosed impact melts. One clast of granulitic breccia was also noted. A lunar origin for SaU 300 is supported by the composition of the plagioclase (average An95), the high Cr content in olivine, the lack of hydrous phases, and the Fe/Mn ratio of mafic minerals. Both matrix and clasts have been locally overprinted by shock veins and melt pockets. SaU 300 has previously been described as an anorthositic regolith breccia with basaltic components and a granulitic matrix, but we here interpret it to be a polymict crystalline impact‐melt breccia with an olivine‐rich anorthositic norite bulk composition. The varying shock states of the mineral and lithic clasts suggest that they were shocked to between 5–28 GPa (shock stages S1–S2) by impact events in target rocks prior to their inclusion in the matrix. Formation of the igneous matrix requires a minimum shock pressure of 60 GPa (shock stage >S4). The association of maskelynite with melt pockets and shock veins indicates a subsequent, local 28–45 GPa (shock stage S2–S3) excursion, which was probably responsible for lofting the sample from the lunar surface. Subsequent fracturing is attributed to atmospheric entry and probable breakup of the parent meteor.  相似文献   

5.
The meteorite Mount DeWitt (DEW) 12007 is a polymict regolith breccia mainly consisting of glassy impact‐melt breccia particles, gabbroic clasts, feldspathic clasts, impact and volcanic glass beads, basaltic clasts, and mingled breccia clasts embedded in a matrix dominated by fine‐grained crystals; vesicular glassy veins and rare agglutinates are also present. Main minerals are plagioclase (typically An>85) and clinopyroxene (pigeonites and augites, sometimes interspersed). The presence of tranquillityite, coupled with the petrophysical data, the O‐isotope data (Δ17O = ?0.075), and the FeOtot/MnO ratios in olivine (91), pyroxene (65), and bulk rock (77) indicate a lunar origin for DEW 12007. Impactites consist of Al‐rich impact‐melt splashes and plagioclase‐rich meta‐melt clasts. The volcanic products belong to the very low titanium (VLT) or low titanium (LT) suites; an unusual subophitic fragment could be cryptomare‐related. Gabbroic clasts could represent part of a shallow intrusion within a volcanic complex with prevailing VLT affinity. DEW 12007 has a mingled bulk composition with relatively high incompatible element abundances and shows a high crustal diversity comprising clasts from the Moon's major terranes and rare lithologies. First‐order petrographic and chemical features suggest that DEW 12007 could be launch‐paired with other meteorites including Y 793274/981031, QUE 94281, EET 87521/96008, and NWA 4884.  相似文献   

6.
Abstract We described lunar meteorite Dhofar 026 (Cohen et al. 2004) and interpreted this rock as a strongly shocked granulitic breccia (or fragmental breccia consisting almost entirely of granulitic‐breccia clasts) that was partially melted by post‐shock heating. Warren et al. (2005) objected to many aspects of our interpretation: they were uncertain whether or not the bulk rock had been shocked; they disputed our identification of the precursor as granulitic breccia; and they suggested that mafic, igneous‐textured globules within the breccia, which we proposed were melted by post‐shock heating, are clasts with relict textures. The major evidence for shock of the bulk rock is the fact that the plagioclase in the lithologic domains that make up 80–90% of the rock is devitrified maskelynite. The major evidence for a granulitic‐breccia precursor is the texture of the olivine‐plagioclase domain that constitutes 40—45% of the rock; Warren et al. apparently overlooked or ignored this lithology. Textures of the mafic, igneous‐textured globules, and especially of the vesicles they contain, demonstrate that these bodies were melted and crystallized in situ. Warren et al. suggested that the rock might have originally been a regolith breccia, but the textural homogeneity of the rock and the absence of solar wind—derived noble gases preclude a regolith‐breccia precursor. Warren et al. classified the rock as an impact‐melt breccia, but they did not identify any fraction that was impact melt.  相似文献   

7.
We have studied the feldspathic lunar meteorite Dhofar 1428 chemically and petrologically to better understand the evolution of the lunar surface. Dhofar 1428 is a feldspathic regolith breccia derived from the lunar highland. Bulk chemical and mineral compositions of Dhofar 1428 are similar to those of other feldspathic lunar meteorites. We found a few clasts of evolved lithologies, such as K‐rich plagioclases and quartz monzogabbro. Dhofar 1428 contains approximately 1 wt% of chondritic materials like CM chondrite on the basis of abundances of platinum group elements (Ru, Rh, Pd, Os, Ir, and Pt).  相似文献   

8.
Magnesium‐rich spinel assemblages occur in the two lunar vitric breccia meteorites—Dhofar (Dho) 1528 and Graves Nunataks (GRA) 06157. Dho 1528 contains up to ~0.7 mm cumulate Mg‐rich spinel crystals associated with Mg‐rich olivine, Mg‐ and Al‐rich pyroxene, plagioclase, and rare cordierite. Using thermodynamic calculations of these mineral assemblages, we constrain equilibration depths and discuss an origin of these lithologies in the upper mantle of the Moon. In contrast, small, 10 to 20 μm spinel phenocryst assemblages in glassy melt rock clasts in Dho 1528 and GRA 06157 formed from the impact melting of Mg‐rich rocks. Some of these spinel phenocrysts match compositional constraints for spinel associated with “pink spinel anorthosites” inferred from remote sensing data. However, such spinel phenocrysts in meteorites and Apollo samples are typically associated with significant amounts of olivine ± pyroxene that exceed the compositional constraints for pink spinel anorthosites. We conclude that the remotely sensed “pink spinel anorthosites” have not been observed in the collections of lunar rocks. Moreover, we discuss impact‐excavation scenarios for the spinel‐bearing assemblages in Dhofar 1528 and compare the bulk rock composition of Dho 1528 to strikingly similar compositions of Luna 20 samples that contain ejecta from the Crisium impact basin.  相似文献   

9.
Martian regolith breccia NWA 7533 (and the seven paired samples) is unique among Martian meteorites in showing accessory pyrite (up to 1% by weight). Pyrite is a late mineral, crystallized after the final assembly of the breccia. It is present in all of the lithologies, i.e., the fine‐grained matrix (ICM), clast‐laden impact melt rocks (CLIMR), melt spherules, microbasalts, lithic clasts, and mineral clasts, all lacking magmatic sulfides due to degassing. Pyrite crystals show combinations of cubes, truncated cubes, and octahedra. Polycrystalline clusters can reach 200 μm in maximum dimensions. Regardless of their shape, pyrite crystals display evidence of very weak shock metamorphism such as planar features, fracture networks, and disruption into subgrains. The late fracture systems acted as preferential pathways for partial replacement of pyrite by iron oxyhydroxides interpreted as resulting from hot desert terrestrial alteration. The distribution and shape of pyrite crystals argue for growth at moderate to low growth rate from just‐saturated near neutral (6 < pH<10), H2S‐HS‐rich fluids at minimum log fO2 of >FMQ + 2 log units. It is inferred from the maximum Ni contents (4.5 wt%) that pyrite started crystallizing at 400–500 °C, during or shortly after a short‐duration, relatively low temperature, thermal event that lithified and sintered the regolith breccias, 1.4 Ga ago as deduced from disturbance in several isotope systematics.  相似文献   

10.
Abstract— Dhofar 287 (Dho 287), a recently found lunar meteorite, consists in large part (95%) of low‐Ti mare basalt (Dho 287A) and a minor, attached portion (?5%) of regolith breccia (Dho 287B). The present study is directed mainly at the breccia portion of this meteorite. This breccia consists of a variety of lithic clasts and mineral fragments set in a fine‐grained matrix and minor impact melt. The majority of clasts and minerals appear to have been mainly derived from the low‐Ti basalt suite, similar to that of Dho 287A. Very low‐Ti (VLT) basalts are a minor lithology of the breccia. These are significantly lower in Mg# and slightly higher in Ti compared to Luna 24 and Apollo 17 VLT basalts. Picritic glasses constitute another minor component of the breccia and are compositionally similar to Apollo 15 green glasses. Dho 287B also contains abundant fragments of Mg‐rich pyroxene and anorthite‐rich plagioclase grains that are absent in the lithic clasts. Such fragments appear to have been derived from a coarse‐grained, Mg#‐rich, Na‐poor lithology. A KREEP component is apparent in chemistry, but no highlands lithologies were identified. The Dho 287 basaltic lithologies cannot be explained by near‐surface fractionation of a single parental magma. Instead, magma compositions are represented by a picritic glass; a low‐Ti, Na‐poor glass; and a low‐Ti, Na‐enriched source (similar to the Dho 287A parental melt). Compositional differences among parent melts could reflect inhomogeneity of the lunar mantle. Alternatively, the low‐Ti, Na‐poor, and Dho 287A parent melts could be of hybrid compositions, resulting from assimilation of KREEP by picritic magma. Thus, the Dho 287B breccia contains lithologies from multiple magmatic eruptions, which differed in composition, formational conditions, and cooling histories. Based on this study, the Dho 287 is inferred to have been ejected from a region located distal to highlands terrains, possibly from the western limb of the lunar nearside, dominated by mare basalts and KREEP‐rich lithologies.  相似文献   

11.
Northwest Africa (NWA) 7533 is a Martian regolith breccia. This meteorite (and its pairings) offers a good opportunity to study (near‐) surface processes that occurred on early Mars. Here, we have conducted a transmission electron microscope study of medium‐ and coarse‐grained (a few tens to hundreds of micrometers) Ca‐rich pyroxene clasts in order to define their thermal and shock histories. The pyroxene grains have a high‐temperature (magmatic) origin as revealed by the well‐developed pigeonite–augite exsolution microstructure. Exsolution lamella characteristics (composition, thickness, and spacing) indicate a moderately slow cooling. Some of the pyroxene clasts display evidence for local decomposition into magnetite and silica at the submicron scale. This phase decomposition may have occurred at high temperature and occurred at high oxygen fugacity at least 2–3 log units above the QFM buffer, after the formation of the exsolution lamellae. This corresponds to oxidizing conditions well above typical Martian magmatic conditions. These oxidizing conditions seem to have prevailed early and throughout most of the history of NWA 7533. The shock microstructure consists of (100) mechanical twins which have accommodated plastic deformation. Other pyroxene shock indicators are absent. Compared with SNC meteorites that all suffered significant shock metamorphism, NWA 7533 appears only mildly shocked. The twin microstructure is similar from one clast to another, suggesting that the impact which generated the (100) twins involved the compacted breccia and that the pyroxene clasts were unshocked when they were incorporated into the NWA 7533 breccia.  相似文献   

12.
The formation of the high‐pressure compositional equivalents of olivine and pyroxene has been well‐documented within and surrounding shock‐induced veins in chondritic meteorites, formed by crystallization from a liquid‐ or solid‐state phase transformation. Typically polycrystalline ringwoodite grains have a narrow range of compositions that overlap with those of their olivine precursors, whereas the formation of iron‐enriched ringwoodite has been documented from only a handful of meteorites. Here, we report backscattered electron images, quantitative wavelength‐dispersive spectrometry (WDS) analyses, qualitative WDS elemental X‐ray maps, and micro‐Raman spectra that reveal the presence of Fe‐rich ringwoodite (Fa44‐63) as fine‐grained (500 nm), polycrystalline rims on olivine (Fa24‐25) wall rock and as clasts engulfed by shock melt in a previously unstudied L5 chondrite, Dhofar 1970. Crystallization of majorite + magnesiowüstite in the vein interior and metastable mineral assemblages within 35 μm of the vein margin attest to rapid crystallization of a superheated shock melt (>2300 K) from 20─25 GPa to ambient pressure and temperature. The texture and composition of bright polycrystalline ringwoodite rims (Fa44‐63; MnO 0.01─0.08 wt%) surrounding dark polycrystalline olivine (Fa8‐14; MnO 0.56─0.65 wt%) implies a solid‐state transformation mechanism in which Fe was preferentially partitioned to ringwoodite. The spatial association between ringwoodite and shock melt suggests that the rapidly fluctuating thermal regimes experienced by chondritic minerals in contact with shock melt are necessary to both drive phase transformation but also to prevent back‐transformation.  相似文献   

13.
Abstract— We report here the petrography, mineralogy, and geochemistry of lunar meteorite Sayh al Uhaymir 300 (SaU 300). SaU 300 is dominated by a fine‐grained crystalline matrix surrounding mineral fragments (plagioclase, pyroxene, olivine, and ilmenite) and lithic clasts (mainly feldspathic to noritic). Mare basalt and KREEPy rocks are absent. Glass melt veins and impact melts are present, indicating that the rock has been subjected to a second impact event. FeNi metal and troilite grains were observed in the matrix. Major element concentrations of SaU 300 (Al2O3 21.6 wt% and FeO 8.16 wt%) are very similar to those of two basalt‐bearing feldspathic regolith breccias: Calcalong Creek and Yamato (Y‐) 983885. However, the rare earth element (REE) abundances and pattern of SaU 300 resemble the patterns of feldspathic highlands meteorites (e.g., Queen Alexandra Range (QUE) 93069 and Dar al Gani (DaG) 400), and the average lunar highlands crust. It has a relatively LREE‐enriched (7 to 10 x CI) pattern with a positive Eu anomaly (?11 x CI). Values of Fe/Mn ratios of olivine, pyroxene, and the bulk sample are essentially consistent with a lunar origin. SaU 300 also contains high siderophile abundances with a chondritic Ni/Ir ratio. SaU 300 has experienced moderate terrestrial weathering as its bulk Sr concentration is elevated compared to other lunar meteorites and Apollo and Luna samples. Mineral chemistry and trace element abundances of SaU 300 fall within the ranges of lunar feldspathic meteorites and FAN rocks. SaU 300 is a feldspathic impact‐melt breccia predominantly composed of feldspathic highlands rocks with a small amount of mafic component. With a bulk Mg# of 0.67, it is the most mafic of the feldspathic meteorites and represents a lunar surface composition distinct from any other known lunar meteorites. On the basis of its low Th concentration (0.46 ppm) and its lack of KREEPy and mare basaltic components, the source region of SaU 300 could have been within a highland terrain, a great distance from the Imbrium impact basin, probably on the far side of the Moon.  相似文献   

14.
Lunar breccias preserve the records of geologic processes on the Moon. In this study, we report the occurrence, petrography, mineralogy, and geologic significance of the observed secondary olivine veinlets in lunar feldspathic breccia meteorite Northwest Africa (NWA) 11273. Bulk‐rock composition measurements show that this meteorite is geochemically similar to other lunar highland meteorites. In NWA 11273, five clasts are observed to host veinlets that are dominated by interconnecting olivine mineral grains. The host clasts are mainly composed of mafic minerals (i.e., pyroxene and olivine) and probably sourced from a basaltic lithology. The studied olivine veinlets (~5 to 30 μm in width) are distributed within the mafic mineral host, but do not extend into the adjacent plagioclase. Chemically, these olivine veinlets are Fe‐richer (Fo41.4–51.9), compared with other olivine grains (Fo54.3–83.1) in lithic clasts and matrix of NWA 11273. By analogy with the secondary olivine veinlets observed in meteorites from asteroid Vesta (howardite–eucrite–diogenite group samples) and lunar mare samples, our study suggests that the newly observed olivine veinlets in NWA 11273 are likely formed by secondary deposition from a lunar fluid, rather than by crystallization from a high‐temperature silicate melt. Such fluid could be sulfur‐ and phosphorous‐poor and likely had an endogenic origin on the Moon. The new occurrence of secondary olivine veinlets in breccia NWA 11273 reveals that the fluid mobility and deposition could be a previously underappreciated geological process on the Moon.  相似文献   

15.
Abstract– Dhofar 458 is a lunar meteorite consisting mainly of olivine‐plagioclase intergrowths, pyroxene‐plagioclase intergrowths, and plagioclase fragments. Pyroxene‐plagioclase globules are also common. In this study, we report the discovery of a polycrystalline zircon in this lunar meteorite. The polycrystalline zircon contains small vesicles and rounded baddeleyite grains at its margin. The polycrystalline and porous texture of the zircon indicates high‐pressure shock‐induced melting and degassing. Baddeleyite grains are derived from decomposition of zircon under high postshock temperature. The shock features in zircon indicates that the shock pressure in Dhofar 458 was greater than approximately 60 GPa and the postshock temperature greater than approximately 1700 °C. The polycrystalline and degassing texture and decomposition zircon also strongly indicates that Dhofar 458 is a clast‐rich impact melt rock. During this shock event, most components were melted and grains of mafic minerals are interstitial to lath‐like plagioclase grains. Large fragments of olivine and chromite also formed polycrystalline texture at margins and chemically reequilibrated with surrounding melts. We suggest that pyroxene‐plagioclase globules could be remains of melted target clasts, whereas vesicles may form during shock‐induced degassing of the rock. The U‐Pb isotopic data plot on a well‐defined discordant line, yielding the age of the zircon of 3434 ± 15 Ma (2σ). This age is interpreted as the time of the impact event that melted Dhofar 458 and caused decomposition and recrystallization of this zircon in Dhofar 458, which reset this zircon’s U‐Pb age.  相似文献   

16.
Abstract— Here we report the petrography, mineralogy, and trace element geochemistry of the Dhofar 1180 lunar meteorite. Dhofar 1180 is predominantly composed of fine‐grained matrix with abundant mineral fragments and a few lithic and glassy clasts. Lithic clasts show a variety of textures including cataclastic, gabbroic, granulitic, ophitic/subophitic, and microporphyritic. Both feldspathic and mafic lithic clasts are present. Most feldspathic lithic clasts have a strong affinity to ferroan anorthositic suite rocks and one to magnesian suite rocks. Mafic lithic clasts are moderately to extremely Fe‐rich. The Ti/[Ti+Cr]‐Fe/[Fe+Mg] compositional trend of pyroxenes in mafic lithic clasts is consistent with that of low‐Ti mare basalts. Glasses display a wide chemical variation from mafic to feldspathic. Some glasses are very similar to those from Apollo 16 soils. KREEP components are essentially absent in Dhofar 1180. One glassy clast is rich in K, REE and P, but its Mg/[Mg+Fe] is very low (0.25). It is probably a last‐stage differentiation product of mare basalt. Molar Fe/Mn ratios of both olivine and pyroxene are essentially consistent with a lunar origin. Dhofar 1180 has a LREE‐enriched (La 18 × CI, Sm 14 × CI) pattern with a small positive Eu anomaly (Eu 15 × CI). Th concentration is 0.7 ppm in Dhofar 1180. Petrography, mineralogy, and trace element geochemistry of Dhofar 1180 are different from those of other lunar meteorites, indicating that Dhofar 1180 represents a unique mingled lunar breccia derived from an area on the lunar nearside but far away from the center of the Imbrium Basin.  相似文献   

17.
Abstract— The petrogenesis of four lunar highlands meteorites, Dhofar 025 (Dho 025), Dhofar 081 (Dho 081), Dar al Gani 262 (DaG 262), and Dar al Gani 400 (DaG 400) were studied. For Dho 025, measured oxygen isotopic values and Fe‐Mn ratios for mafic minerals provide corroboratory evidence that it originated on the Moon. Similarly, Fe‐Mn ratios in the mafic minerals of Dho 081 indicate lunar origin. Lithologies in Dho 025 and Dho 081 include lithic clasts, granulites, and mineral fragments. A large number of lithic clasts have plagioclase AN# and coexisting mafic mineral Mg# that plot within the “gap” separating ferroan anorthosite suite (FAN) and high‐magnesium suite (HMS) rocks. This is consistent with whole rock Ti‐Sm ratios for Dho 025, Dho 081, and DaG 262, which are also intermediate compared to FAN and HMS lithologies. Although ion microprobe analyses performed on Dho 025, Dho 081, DaG 262, and DaG 400 clasts and minerals show far stronger FAN affinities than whole rock data suggest, most clasts indicate admixture of ≤12% HMS component based on geochemical modeling. In addition, coexisting plagioclase‐pyroxene REE concentration ratios in several clasts were compared to experimentally determined plagioclase‐pyroxene REE distribution coefficient ratios. Two Dho 025 clasts have concordant plagioclase‐pyroxene profiles, indicating that equilibrium between these minerals has been sustained despite shock metamorphism. One clast has an intermediate FAN‐HMS composition. These lunar meteorites appear to represent a type of highland terrain that differs substantially from the KREEP‐signatured impact breccias that dominate the lunar database. From remote sensing data, it is inferred that the lunar far side appears to have appropriate geochemical signatures and lithologies to be the source regions for these rocks; although, the near side cannot be completely excluded as a possibility. If these rocks are, indeed, from the far side, their geochemical characteristics may have far‐reaching implications for our current scientific understanding of the Moon.  相似文献   

18.
Abstract— Six ordinary chondrite breccias from the Museo Nacional de Ciencias Naturales, Madrid (Spain), are described and classified as follows: the solar gas-rich regolith breccia Oviedo (H5); the pre-metamorphic fragmental breccias Cabezo de Mayo (type 6, L-LL), and Sevilla (LL4); the fragmental breccias Cañellas (H4) and Gerona (H5); and the impact melt breccia, Madrid (L6). We confirm that chondrites with typical light-dark structures and petrographic properties typical of regolith breccias may (Oviedo) or may not (Cañellas) be solar gas-rich. Cabezo de Mayo and Sevilla show convincing evidence that they were assembled prior to peak metamorphism and were equilibrated during subsequent reheating. These meteorites contain small melt rock clasts that were incorporated into the host chondrite while still molten and/or plastic and cooled rapidly and, yet, are totally equilibrated with their hosts. Compositions of olivine and low-Ca pyroxene in host chondrite and breccia clasts in Cabezo de Mayo are transitional between groups L and LL. It is suggested, based on mineralogic and oxygen isotopic compositions of host and clasts, that the rock formed on the L parent body by mixing, prior to peak metamorphism. This was followed by partial equilibration of two different materials: the indigenous L chondrite host and exotic LL melt rock clasts.  相似文献   

19.
Abstract— Lunar meteorite QUE 93069 found in Antarctica is a mature, anorthitic regolith breccia with highland affinities that was ejected from the Moon <0.3 Ma ago. The frequency distribution of mineral and lithic clasts gives information about the nature of the regolith and subregolith basement near the ejection site as well as about the abundances of rock types shocked to different degrees prior to the breccia formation. Thin section QUE 93069,37 consists of 67.5 vol% fine-grained (<~130 μm) constituents and 32.5 vol% mineral and lithic clasts and an impact melt vein. The most abundant types of these clasts are intragranularly recrystallized anorthosites and plagioclases (together 26.3 vol%) and feldspathic fine-grained to microporphyritic crystalline melt breccias (21.9 vol%). Mafic crystalline melt breccias are extremely rare (1.3 vol%). Granulitic lithologies are 10.4 vol%, recrystallized feldspathic melt breccias are 15.0 vol%, and glasses are 3.5 vol%. The impact melt vein cutting across the entire thin section was probably formed subsequent to the lithification process of the bulk rock at pressures below 20 GPa, because the bulk rock never experienced a higher peak shock pressure. Lunar meteorite QUE 93069 has a higher abundance of clear glass, occurring within melt spherules, glassy fragments, and an impact melt vein than lunar meteorites ALHA81005, Y-791197, Y-82192/3, Y-86032, or MAC 88104/5. The high abundance of melt spherules indicates that this lunar meteorite contains the highest content of typical regolith components. Mafic crystalline melt breccias are much rarer in QUE 93069 than in all other lunar highland regolith breccias. The extremely low abundance of mafic components may constrain possible areas of the Moon, from which the breccia was derived. The source area of QUE 93069 must be a highland terrain lacking significant mafic impact melts or mare components.  相似文献   

20.
Abstract— –Sayh al Uhaymir (SaU) 169 is a composite lunar meteorite from Oman that consists of polymict regolith breccia (8.44 ppm Th), adhering to impact‐melt breccia (IMB; 32.7 ppm Th). In this contribution we consider the regolith breccia portion of SaU 169, and demonstrate that it is composed of two generations representing two formation stages, labeled II and III. The regolith breccia also contains the following clasts: Ti‐poor to Ti‐rich basalts, gabbros to granulites, and incorporated regolith breccias. The average SaU 169 regolith breccia bulk composition lies within the range of Apollo 12 and 14 soil and regolith breccias, with the closest correspondence being with that of Apollo 14, but Sc contents indicate a higher portion of mare basalts. This is supported by relations between Sm‐Al2O3, FeO‐Cr2O3‐TiO2, Sm/Eu and Th‐K2O. The composition can best be modeled as a mixture of high‐K KREEP, mare basalt and norite/troctolite, consistent with the rareness of anorthositic rocks. The largest KREEP breccia clast in the regolith is identical in its chemical composition and total REE content to the incompatible trace‐element (ITE)‐ rich high‐K KREEP rocks of the Apollo 14 landing site, pointing to a similar source. In contrast to Apollo 14 soil, SaU 169 IMB and SaU 169 KREEP breccia clast, the SaU 169 regolith is not depleted in K/Th, indicating a low contribution of high‐Th IMB such as the SaU 169 main lithology in the regolith. The data presented here indicate the SaU 169 regolith breccia is from the lunar front side, and has a strong Procellarum KREEP Terrane signature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号