首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Ejecta at North Ray crater (Apollo 16) sampled a unique section of the lunar highlands not accessible at most other landing sites and provide important constraints on the composition of late accreted materials. New data on multiple aliquots of four fragmental matrix breccias and a fragment‐laden melt breccia from this site display a variety of highly siderophile element patterns which may represent the signatures of volatile element‐depleted carbonaceous chondrite‐like material, primitive achondrite, differentiated metal, and an impactor component that cannot be related to known meteoritic material. The latter component is prevalent in these rocks besides characterized by depletions in Re and Os compared to Ir, Ru and Pt, chondritic Re/Os, and a gradual depletion of Pd and Au. The observed characteristics are more consistent with fractionations by nebular processes, like incomplete condensation or evaporation, than with lunar crustal processes, like partial melting or volatilization. The impactor signature preserved in these breccias may stem from primitive meteorites with a refractory element composition moderately different from known chondrites. The presence of distinct impactor components within the North Ray crater breccias together with observed correlations of characteristic element ratios (e.g., Re/Os, Ru/Pt, Pd/Ir) in different impact lithologies of four Apollo landing sites constrains physical mixing processes ranging from the scale of gram‐sized samples to the area covered by the Apollo missions.  相似文献   

2.
Abstract– Aubrites exhibit a wide range of highly siderophile element (HSE—Re, Os, Ir, Ru, Rh, Pt, Pd, Au) concentrations and 187Os/188Os compositions. Their HSE concentrations are one to three orders of magnitude less than chondrites, with the exception of the Shallowater and Mt. Egerton samples. While most aubrites show chondritic HSE abundance ratios, significant enrichments of Pd and Re relative to Os, Ir, and Ru are observed in 12 of 16 samples. Present‐day 187Os/188Os ratios range from subchondritic values of 0.1174 to superchondritic values of up to 0.2263. Half of the samples have 187Os/188Os ratios of 0.127 to 0.130, which is in the range of enstatite chondrites. Along with the brecciated nature of aubrites, the HSE and Re‐Os isotope systematics support a history of extensive postaccretion processing, including core formation, late addition of chondritic material and/or core material and potential breakup and reassembly. Highly siderophile element signatures for some aubrites are consistent with a mixing of HSE‐rich chondritic fragments with a HSE‐free aubrite matrix. The enrichments in incompatible HSE such as Pd and Re observed in some aubrites, reminiscent of terrestrial basalts, suggest an extensive magmatic and impact history, which is supported by both the 187Re‐187Os isotope system and silicate‐hosted isotope systems (Rb‐Sr, K‐Ar) yielding young formation ages of 1.3–3.9 Ga for a subset of samples. Compared with other differentiated achondrites derived from small planetary bodies, aubrites show a wide range in HSE concentrations and 187Os/188Os, most similar to angrites. While similarities exist between the diverse groups of achondrites formed early in solar system history, the aubrite parent body(ies) clearly underwent a distinct evolution, different from angrites, brachinites, ureilites, howardites, eucrites, and diogenites.  相似文献   

3.
The abundances of highly siderophile elements (HSE; including Re, Os, Ir, Ru, Pt, and Pd) and 187Re‐187Os isotopic systematics were determined for two fragments from ungrouped achondrite NWA 7325. Rhenium‐Os systematics are consistent with closed‐system behavior since formation or soon after. The abundances of the HSE were therefore largely unaffected by late‐stage secondary processes such as shock or terrestrial weathering. As an olivine gabbro cumulate, this meteorite has a bulk composition consistent with derivation from a body that produced a core, mantle, and crust. Also consistent with derivation from a body that produced a core, both fragments of NWA 7325 have HSE abundances that are highly depleted compared to bulk chondrites. One fragment has ~0.002× CI chondrite Ir and relative HSE abundances similar to bulk chondrites. The other fragment has ~0.0002× CI chondrite Ir and relative HSE abundances that are fractionated compared to bulk chondrites. The chondritic relative HSE abundances of the fragment characterized by higher HSE abundances most likely reflect the addition of exogenous chondritic material during or after crystallization by surface impacts. The HSE in the other fragment is likely more representative of the parent body crust. One formation model that can broadly account for the HSE abundances in this fragment is multiple episodes of low‐pressure metal‐silicate equilibration, followed by limited late accretion and mantle homogenization. Given the different HSE compositions of the two adjoining fragments, this meteorite provides an example of the overprint of global processes (differentiation and late accretion) by localized impact contamination.  相似文献   

4.
Archean spherule layers represent the only currently known remnants of the early impact record on Earth. Based on the lunar cratering record, the small number of spherule layers identified so far contrasts to the high impact flux that can be expected for the Earth at that time. The recent discovery of several Paleoarchean spherule layers in the BARB5 and CT3 drill cores from the Barberton area, South Africa, drastically increases the number of known Archean impact spherule layers and may provide a unique opportunity to improve our knowledge of the impact record on the early Earth. This study is focused on the spherule layers in the CT3 drill core from the northeastern Barberton Greenstone Belt. We present highly siderophile element (HSE: Re, Os, Ir, Pt, Ru, and Pd) concentrations and Re‐Os isotope signatures for spherule layer samples and their host rocks in order to unravel the potential presence of extraterrestrial fingerprints within them. Most spherule layer samples exhibit extreme enrichments in HSE concentrations of up to superchondritic abundances in conjunction with, in some cases, subchondritic present‐day 187Os/188Os isotope ratios. This indicates a significant meteoritic contribution to the spherule layers. In contrast to some of the data reported earlier for other Archean spherule layers from the Barberton area, the CT3 core is significantly overprinted by secondary events. However, HSE and Re‐Os isotope signatures presented in this study indicate chondritic admixtures of up to (and even above) 100% chondrite component in some of the analyzed spherule layers. There is no significant correlation between HSE abundances and respective spherule contents. Although strongly supporting the impact origin of these layers and the presence of significant meteoritic admixtures, peak HSE concentrations are difficult to explain without postdepositional enrichment processes.  相似文献   

5.
The best estimate of indigenous lunar siderophiles comes from 29 pristine lunar rocks, characterized by low siderophile abundances, plutonic textures, and high age. Delano and Ringwood's blanket rejection of these rocks, on the contention that they are impact melts, is not justified by the petrologic evidence. Contrary to their claims, gold in highland breccias is largely meteoritic and is unaffected by fumarolic volcanism, as shown by its correlation with Ir and noncorrelation with fumarolic T1 (r=0.896 and 0.272). Delano and Ringwood's approach, involving subtraction of an H-chondrite meteoritic component from highland breccias, ignores the variation of Ir/Au ratios in modern and ancient meteorites, and hence leads to spurious excesses of Au, Ni, and volatiles, and in some cases to physically meaningless, negative residuals. Their excess volatiles in highland crust relative to mare basalts disappear when the highland composition is based on pristine lunar rocks rather than under-corrected breccias. Contrary to claims by Delano and Ringwood, the Ni/Co trend in Apollo 16 samples cannot be explained by an indigenous component rich in Ni (150–200 ppm) and Co (30–45ppm); mixing lines show that much lower Ni and Co contents are required (e.g., 7 ppm each).Chondrites and lunar highland breccias show essentially parallel fractionation trends for the siderophile-element ratios Re/Ir, Au/Ir, Ni/Ir, Ni/Pd, and Os/Ir. Because the chondritic ratios were established in the solar nebula, it appears that the lunar ratios also reflect nebular processes, and have not been modified by planetary processes.Properly derived abundances for the lunar highlands show large, systematic depletions relative to terrestrial oceanic tholeiites, by the following factors: Ge 270, Re 230, Sb170, Zn150, Au60, Tl 50, Ag 48, Ni 42, Se 12. It would seem that the resemblance to the Earth's mantle is not quite as striking as claimed by Delano and Ringwood.  相似文献   

6.
Abstract— The relative abundances of the highly siderophile elements (HSE) Os, Ir, Ru, Pt, Rh, and Pd in relatively pristine lherzolites differ from solar abundance ratios and are several orders of magnitude higher than predicted for equilibrium distribution between metal/silicate (core‐mantle). The samples are characterized by a mean Ca/Al ratio of 1.18 ± 0.09 σM and a mean Ca/Si ratio of 0.10 ± 0.01 σM, overlapping with a mean Ca/Al of 1.069 ± 0.044 σM and a mean Ca/Si of 0.081 ± 0.023 σM found in chondrites (Wasson and Kallemeyn 1988). Interestingly, the CI‐normalized abundance pattern shows decreasing solar system normalized abundances with increasing condensation temperatures. The abundance of the moderately volatile element Pd is about 2x higher than those in the most refractory siderophiles Ir and Os. Thus, the HSE systematics of upper mantle samples suggest that the late bombardment, which added these elements to the accreting Earth, more closely resembles materials of highly reduced EH or EL chondrites than carbonaceous chondrites. In fact, the HSE in the Earth mantle are even more fractionated than the enstatite chondrites—an indication that some inner solar system materials were more highly fractionated than the latter.  相似文献   

7.
187Re‐187Os systematics, abundances of highly siderophile elements (HSE: Re, PGE, and Au), chalcogen elements (Te, Se, and S), and some major and minor elements were determined in physically separated components of the Allende (CV3) and Murchison (CM2) carbonaceous chondrites. Substantial differences exist in the absolute and relative abundances of elements in the components, but the similarity of calculated and literature bulk rock abundances of HSE and chalcogens indicate that chemical complementarity exists among the components, with CI chondrite‐like ratios for many elements. Despite subsequent alteration and oxidation, the overall cosmochemical behavior of most moderately to highly siderophile elements during high‐temperature processing has been preserved in components of Allende at the sampling scale of the present study. The 187Re‐187Os systematics and element variations of Allende are less disturbed compared with Murchison, which reflects different degrees of oxidation and alteration of these meteorites. The HSE systematics (with the exception of Au) is controlled by two types of materials: Pd‐depleted condensates and CI chondrite‐like material. Enrichment and heterogeneous distribution of Au among the components is likely the result of hydrothermal alteration. Chalcogen elements are depleted compared with HSE in all components, presumably due to their higher volatility. Small systematic variations of S, Se, and Te in components bear the signature of fractional condensation/partial evaporation and metal–sulfide–silicate partitioning.  相似文献   

8.
We have studied the feldspathic lunar meteorite Dhofar 1428 chemically and petrologically to better understand the evolution of the lunar surface. Dhofar 1428 is a feldspathic regolith breccia derived from the lunar highland. Bulk chemical and mineral compositions of Dhofar 1428 are similar to those of other feldspathic lunar meteorites. We found a few clasts of evolved lithologies, such as K‐rich plagioclases and quartz monzogabbro. Dhofar 1428 contains approximately 1 wt% of chondritic materials like CM chondrite on the basis of abundances of platinum group elements (Ru, Rh, Pd, Os, Ir, and Pt).  相似文献   

9.
This study uses experimentally determined plagioclase‐melt D values to estimate the trace element concentrations of Sr, Hf, Ga, W, Mo, Ru, Pd, Au, Ni, and Co in a crystallizing lunar magma ocean at the point of plagioclase flotation. Similarly, experimentally determined metal‐silicate partition experiments combined with a composition model for the Moon are used to constrain the concentrations of W, Mo, Ru, Pd, Au, Ni, and Co in the lunar magma ocean at the time of core formation. The metal‐silicate derived lunar mantle estimates are generally consistent with previous estimates for the concentration of these elements in the lunar mantle. Plagioclase‐melt derived concentrations for Sr, Ga, Ru, Pd, Au, Ni, and Co are also consistent with prior estimates. Estimates for Hf, W, and Mo, however, are higher. These elements may be concentrated in the residual liquid during fractional crystallization due to their incompatibility. Alternatively, the apparent enrichment could reflect the inappropriate use of bulk anorthosite data, rather than data for plagioclase separates.  相似文献   

10.
Abstract– We examined 378 micrometeorites collected from deep‐sea sediments of the Indian Ocean of which 175, 180, and 23 are I‐type, S‐type, and G‐type, respectively. Of the 175 I‐type spherules, 13 contained platinum group element nuggets (PGNs). The nuggets occur in two distinct sizes and have distinctly different elemental compositions: micrometer (μm)‐sized nuggets that are >3 μm contain dominantly Ir, Os, and Ru (iridium‐platinum group element or IPGE) and sub‐μm (or nanometer)‐sized (<1 μm) nuggets, which contain dominantly Pt, Rh, and Pd (palladium—PGE or PPGE). The μm‐sized nuggets are found only one per spherule in the cross section observed and are usually found at the edge of the spherule. By contrast, there are hundreds of nanometer‐sized nuggets distributed dominantly in the magnetite phases of the spherules, and rarely in the wüstite phases. Both the nugget types are found as separate entities in the same spherule and apparently, nugget formation is a common phenomenon among I‐type micrometeorites. However, the μm‐sized nuggets are seen in fewer specimens (~2.5% of the observed I‐type spherules). In all, we analyzed four nuggets of μm size and 213 nanometer‐sized nuggets from 13 I‐type spherules for platinum group elements. Chemically, the μm‐sized PGNs contain chondritic ratios of Os/Ir, but are depleted in the more volatile PGE (Pt, Rh, and Pd) relative to chondritic ratios. On the other hand, the nanometer‐sized nuggets contain dominantly Pt and Rh. Importantly, the refractory PGEs are conspicuous by their absence in these nanometer nuggets. Palladium, the most volatile PGE is highly depleted (<1.1%) with respect to chondritic ratios in the μm‐sized PGNs, and is observed in only 17 of 213 nanometer nuggets with concentrations that are just above the detection limit (≥0.2%). Distinct fractionation of the PGE into IPGE (Ir, Os, Ru) and PPGE seems to take place during the short span of atmospheric entry. These observations suggest several implications: (1) The observation of fractionated PGE in an Fe‐Ni system gives rise to the possibility that Earth’s core could contain fractionated PGE. (2) The present data support the processes suggested for the fractionated PGE patterns observed in the ejecta of ancient meteorite impacts. (3) Meteoric metals released in the troposphere could contain fractionated PGNs in large numbers.  相似文献   

11.
Abstract— Seismic reflection data and an at least 350 m thick, PGE‐rich carbonate breccia lens intersected by the Fohn‐1 exploration well in the Timor Sea off northern Australia, are interpreted in terms of a buried 4.8 km‐diameter impact crater of late Eocene to pre‐Miocene age. The crater displays the classic elements of impact structures, including a central uplift, ring syncline, and upraised rims. The presence in the breccia of redeposited Campanian and Maastrichtian microfossils suggests rebound of strata from levels deeper than 1250 m below the pre‐Miocene unconformity. Morphometric modelling suggests an original crater at least 1400 m deep, which is consistent with the excavation of Cretaceous strata. Stratigraphic and palaeontological evidence suggests that the impact occurred between 36 and 24.6 Ma. The breccia contains a pseudotachylite component enriched in the inert Pt group elements (PGE) (Ir, Ru) by factors of 5–12 above the values of common sediments. The more mobile PGE (Os, Pt, Pd) show a wide scatter and terrestrial‐type values. Opposite geochemical/stratigraphic trends pertain to different PGE species—the relatively inert Ir‐Ru group shows an overall concentration at the base of the section, whereas the more mobile Os shows peaks at median levels of the section—suggesting upward diagenetic leaching. The near‐chondritic PGE patterns at the base of the breccia pile are accompanied by near‐chondritic Ni/Cr, Co/Cr, Ni/Ir, Ni/Pt, and Cu/Pd ratios. Departure from these values related to alteration at higher levels in the breccia pile is accompanied with high S levels (~1%).  相似文献   

12.
Abstract— We have analyzed nine highland lunar meteorites (lunaites) using mainly INAA. Several of these rocks are difficult to classify. Dhofar 081 is basically a fragmental breccia, but much of its groundmass features a glassy‐fluidized texture that is indicative of localized shock melting. Also, much of the matrix glass is swirly‐brown, suggesting a possible regolith derivation. We interpret Dar al Gani (DaG) 400 as an extremely immature regolith breccia consisting mainly of impact‐melt breccia clasts; we interpret Dhofar 026 as an unusually complex anorthositic impact‐melt breccia with scattered ovoid globules that formed as clasts of mafic, subophitic impact melt. The presence of mafic crystalline globules in a lunar material, even one so clearly impact‐heated, suggests that it may have originated as a regolith. Our new data and a synthesis of literature data suggest a contrast in Al2O3‐incompatible element systematics between impact melts from the central nearside highlands, where Apollo sampling occurred, and those from the general highland surface of the Moon. Impact melts from the general highland surface tend to have systematically lower incompatible element concentration at any given Al2O3 concentration than those from Apollo 16. In the case of Dhofar 026, both the bulk rock and a comparatively Al‐poor composition (14 wt% Al2O3, 7 μg/g Sm) extrapolated for the globules, manifest incompatible element contents well below the Apollo 16 trend. Impact melts from Luna 20 (57°E) distribute more along the general highland trend than along the Apollo 16 trend. Siderophile elements also show a distinctive composition for Apollo 16 impact melts: Ni/Ir averaging ?1.8x chondritic. In contrast, lunaite impact‐melt breccias have consistently chondritic Ni/Ir. Impact melts from Luna 20 and other Apollo sites show average Ni/Ir almost as high as those from Apollo 16. The prevalence of this distinctive Ni/Ir ratio at such widely separated nearside sites suggests that debris from one extraordinarily large impact may dominate the megaregolith siderophile component of a nearside region 2300 km or more across. Highland polymict breccia lunaites and other KREEP‐poor highland regolith samples manifest a strong anticorrelation between Al2O3 and mg. The magnesian component probably represents the chemical signature of the Mg‐suite of pristine nonmare rocks in its most “pure” form, unaltered by the major KREEP‐assimilation that is so common among Apollo Mg‐suite samples. The average composition of the ferroan anorthositic component is now well constrained at Al2O3 ?29–30 wt% (implying about 17–19 wt% modal mafic silicates), in good agreement with the composition predicted for flotation crust over a “ferroan” magma ocean (Warren 1990).  相似文献   

13.
The Lonar crater is a ~0.57‐Myr‐old impact structure located in the Deccan Traps of the Indian peninsula. It probably represents the best‐preserved impact structure hosted in continental flood basalts, providing unique opportunities to study processes of impact cratering in basaltic targets. Here we present highly siderophile element (HSE) abundances and Sr‐Nd and Os isotope data for target basalts and impactites (impact glasses and impact melt rocks) from the Lonar area. These tools may enable us to better constrain the interplay of a variety of impact‐related processes such as mixing, volatilization, and contamination. Strontium and Nd isotopic compositions of impactites confirm and extend earlier suggestions about the incorporation of ancient basement rocks in Lonar impactites. In the Re‐Os isochron plot, target basalts exhibit considerable scatter around a 65.6 Myr Re‐Os reference isochron, most likely reflecting weathering and/or magma replenishment processes. Most impactites plot at distinctly lower 187Re/188Os and 187Os/188Os ratios compared to the target rocks and exhibit up to two orders of magnitude higher abundances of Ir, Os, and Ru. Moreover, the impactites show near‐chondritic interelement ratios of HSE. We interpret our results in terms of an addition of up to 0.03% of a chondritc component to most impact glasses and impact melt rocks. The magnitude of the admixture is significantly lower than the earlier reported 12–20 wt% of extraterrestrial component for Lonar impact spherules, reflecting the typical difference in the distribution of projectile component between impact glass spherules and bulk impactites.  相似文献   

14.
Abstract— With the recent realization that some meteorites may come from Mars and the Moon, it is worthwhile to consider whether meteorites from Mercury could exist in our collections and, if so, whether they could be recognized. The current state of ignorance about Mercury both increases the potential scientific value of mercurian meteorites and aggravates the problem of identifying them. Here, we review evidence supporting the possibility of impact launch and subsequent orbital evolution that could deliver rocks from Mercury to Earth and suggest criteria that could help identify a mercurian meteorite. Mercurian rocks are probably differentiated igneous rocks or breccias or melt rocks derived therefrom. Solar nebula models suggest that they are probably low in volatiles and moderately enriched in Al, Ti, and Ca oxides. Mercurian surface rocks contain no more than 5% FeO and may contain plagioclase. A significant fraction may be volcanic. They may possess an unusual isotopic composition. Most pristine mercurian rocks should have solidification ages of ~3.7 to ~4.4 Ga, but younger impact-remelted materials are possible. Because we know more about the space environment of Mercury than we do about the planet itself, surface-exposed rocks would be easiest to identify as mercurian. The unique solar-to-galactic cosmic-ray damage track ratio expected in materials exposed near the Sun may be useful in identifying a rock from Mercury. Mercury's magnetic field stands off the solar wind, so that solar-wind implants in mercurian regolith breccias may be scarce or fractionated compared to lunar ones. Mercurian regolith breccias should contain more agglutinates (or their recrystallized derivatives) and impact vapor deposits than any other and should show a higher fraction of exogenic chondritic materials than analogous lunar breccias. No known meteorite group matches these criteria. A misclassified mercurian meteorite would most likely be found among the aubrites or the anorthositic lunar meteorites.  相似文献   

15.
Abstract— Seven large (10 g) impact melt rock samples from boreholes from the Boltysh impact crater (Ukraine) and six samples from the East Clearwater crater (Canada) were analyzed for Os, Ir, Ru, Rh, Pd, Re and Au by the nickel sulfide technique in combination with neutron activation. Earlier analyses of Clearwater East impact melt rocks have shown that they are strongly enriched in Ir, Os, Pd and Re. In this work, I confirm earlier findings and demonstrate similarly high enrichments of Rh and Ru. The average Os/Ir, Ru/Ir, Pd/Ir, Rh/Ir and Ru/Rh ratios of the melt rock samples from Clearwater East are CI-chondritic and yield an average Ir content of 25.2 ± 6.5 ng/g relative to an average upper crust concentration of 0.03 ± 0.02 ng/g Ir. The amount of meteoritic component corresponds to 4 to 7% of a nominal CI component for Clearwater East. The impact melt rock samples from a bore hole from Boltysh are low in Ir with an average of 0.2 ± 0.1 ng/g. The CI-normalized abundances increase from the refractory to the more volatile siderophile elements (Os < Ir < Ru < Rh ~ Pd ~ Au ~ Ni ~ Co). Because of the low Ir anomaly and uncertainties in making corrections (correlations are weak) for indigenous siderophile elements, no clear projectile assignment can be made.  相似文献   

16.
Abstract– Fragments of magnesian anorthositic granulite are found in the lunar highlands meteorites Allan Hills (ALH) A81005 and Dhofar (Dho) 309. Five analyzed clasts of meteoritic magnesian anorthositic granulite have Mg′ [molar Mg/(Mg + Fe)] = 81–87; FeO ≈ 5% wt; Al2O3 ≈ 22% wt; rare earth elements abundances ≈ 0.5–2 × CI (except Eu ≈ 10 × CI); and low Ni and Co in a non‐chondritic ratio. The clasts have nearly identical chemical compositions, even though their host meteorites formed at different places on the Moon. These magnesian anorthositic granulites are distinct from other highlands materials in their unique combination of mineral proportions, Mg′, REE abundances and patterns, Ti/Sm ratio, and Sc/Sm ratio. Their Mg′ is too high for a close relationship to ferroan anorthosites, or to have formed as flotation cumulates from the lunar magma ocean. Compositions of these magnesian anorthositic granulites cannot be modeled as mixtures of, or fractionates from, known lunar rocks. However, compositions of lunar highlands meteorites can be represented as mixtures of magnesian anorthositic granulite, ferroan anorthosite, mare basalt, and KREEP. Meteoritic magnesian anorthositic granulite is a good candidate for the magnesian highlands component inferred from Apollo highland impactites: magnesian, feldspathic, and REE‐poor. Bulk compositions of meteorite magnesian anorthositic granulites are comparable to those inferred for parts of the lunar farside (the Feldspathic Highlands Terrane): ~4.5 wt% FeO; ~28 wt% Al2O3; and Th <1 ppm. Thus, magnesian anorthositic granulite may be a widespread and abundant component of the lunar highlands.  相似文献   

17.
Abstract— New data for lunar meteorites and a synthesis of literature data have significant implications for the interpretation of global Th data and for the Moon's bulk composition. As presently calibrated (Prettyman et al. 2002), the Lunar Prospector gamma‐ray data imply that the average global surface Th = 1.58 μg/g. However, that calibration yields implausibly high concentrations for the three most Th‐poor documented sampling sites, it extrapolates to a nonzero Lunar Prospector Th, ?0.7 μg/g, at zero sample Th, and it results in a misfit toward too‐high Th when compared with the global regolith Th spectrum as constrained using mainly lunaite regolith breccias. Another problem is manifested by Th versus K systematics. Ground truth data plot consistently to the high‐Th/K side of the Prospector data trend, offset by a factor of 1.2. A new calibration is proposed that represents a compromise between the Th levels indicated by ground truth constraints and the Prettyman et al. (2002) calibration. Conservatively assuming that the Th versus K issue is mostly a K problem, the average global surface Th is estimated to be ?1.35 μg/g. The Moon's remarkable global asymmetry in KREEP abundance is even more pronounced than previously supposed. The surface Th concentration ratio between the hemisphere antipodal to the Procellarum basin and the hemisphere centered on Procellarum is reduced to 0.24 in the new calibration. This extreme disparity is most simply interpreted as a consequence of Procellarum's origin at a time when the Moon still contained at least a thin residual layer of a global magma ocean. Allowing for diminution of Th with depth, the extrapolated bulk crustal Th is ?0.73 μg/g. Further extrapolation to bulk Moon Th yields ?0.07 μg/g, which is nearly identical to the consensus estimate for Earth's primitive mantle. Assuming chondritic proportionality among refractory lithophile elements implies Al2O3 of approximately 3.8 wt%. The Moon's bulk mantle mg ratio is only weakly constrained by seismic and mare‐basaltic data. KREEP‐and mare‐free lunaite regolith samples, other thoroughly polymict lunar meteorites, and a few KREEP‐free Apollo highland samples manifest a remarkable anticorrelation on a plot of Al2O3 versus mg. This trend implies that an important component of the Moon is highly magnesian. The bulk Moon is inferred to have an Earth‐like oxide mg ratio of ?87–88 mol%. The close resemblance between the bulk Moon and Earth's primitive mantle extends to moderately volatile elements, most clearly Mn. Unless major proportions of Cr and V are sequestered into deep mantle spinel, remarkably Earth‐like depletions (versus chondrites) are also inferred for bulk Moon Cr and V.  相似文献   

18.
Abstract— We describe an analytical technique for measurements of Fe, Ni, Co, Mo, Ru, Rh, W, Re, Os, Ir, Pt, and Au in bulk samples of iron meteorites. The technique involves EPMA (Fe, Ni, Co) and LA‐ICP‐MS analyses of individual phases of iron meteorites, followed by calculation of bulk compositions based on the abundances of these phases. We report, for the first time, a consistent set of concentrations of Mo, Ru, Rh, Pd, W, Re, Os, Ir, Pt, and Au in the iron meteorites Arispe, Bennett County, Grant, Cape of Good Hope, Cape York, Carbo, Chinga, Coahuila, Duchesne, Gibeon, Henbury, Mundrabilla, Negrillos, Odessa, Sikhote‐Alin, and Toluca and the Divnoe primitive achondrite. The comparison of our LA‐ICP‐MS data for a number of iron meteorites with high‐precision isotope dilution and INAA data demonstrates the good precision and accuracy of our technique. The narrow ranges of variations of Mo and Pd concentrations within individual groups of iron meteorites suggest that these elements can provide important insights into the evolution of parent bodies of iron meteorites. Under certain assumptions, the Mo concentrations can be used to estimate mass fractions of the metal‐sulfide cores in the parent bodies of iron meteorites. It appears that a range of Pd variations within a group of iron meteorites can serve as a useful indicator of S content in the core of its parent body.  相似文献   

19.
Abstract— Lunar meteorite Dar al Gani 262 (DG 262)—found in the Libyan part of the Sahara—is a mature, anorthositic regolith breccia with highland affinities. The origin from the Moon is undoubtedly indicated by its bulk chemical composition; radionuclide concentrations; noble gas, N, and O isotopic compositions; and petrographic features. Dar al Gani 262 is a typical anorthositic highland breccia similar in mineralogy and chemical composition to Queen Alexandra Range (QUE) 93069. About 52 vol% of the studied thin sections of Dar al Gani 262 consist of fine-grained(100 μm) constituents, and 48 vol% is mineral and lithic clasts and impact-melt veins. The most abundant clast types are feldspathic fine-grained to microporphyritic crystalline melt breccias (50.2 vol%; includes recrystallized melt breccias), whereas mafic crystalline melt breccias are extremely rare (1.4 vol%). Granulitic lithologies are 12.8 vol%, intragranularly recrystallized anorthosites and cataclastic anorthosites are 8.8 and 8.2 vol%, respectively, and (devitrified) glasses are 2.7 vol%. Impact-melt veins (5.5 vol% of the whole thin sections) cutting across the entire thin section were probably formed subsequent to the lithification process of the bulk rock at pressures below 20 GPa, because the bulk rock never experienced a higher peak shock pressure. Mafic crystalline melt breccias are very rare in Dar al Gani 262 and are similar in abundance to those in QUE 93069. The extremely low abundance of mafic components and the bulk composition may constrain possible areas of the Moon from which the breccia was derived. The source area of Dar al Gani 262 must be a highland terrain lacking significant mafic impact melts or mare components. On the basis of radionuclide activities, an irradiation position of DG 262 on the Moon at a depth of 55–85 g/cm3and a maximum transit time to Earth <0.15 Ma is suggested. Dar al Gani 262 contains high concentrations of solar-wind-implanted noble gases. The isotopic abundance ratio 40Ar/36Ar < 3 is characteristic of lunar soils. The terrestrial weathering of DG 262 is reflected by the occurrence of fractures filled with calcite and by high concentrations of Ca, Ba, Cs, Br, and As. There is also a large amount of terrestrial C and some N in the sample, which was released at low temperatures during stepped heating. High concentrations of Ni, Co, and Ir indicate a significant meteoritic component in the lunar surface regolith from which DG 262 was derived.  相似文献   

20.
Kevin Righter 《Icarus》2002,158(1):1-13
The issue of whether the Moon has a small metallic core is reexamined in light of new information: improved dynamical modeling, new constraints on core size, and high temperature and pressure metal-silicate partition coefficients. Addressed specifically is the question of whether the Moon's siderophile element budget can be explained by derivation of the Moon from a differentiated impactor or proto-Earth (stage 1), followed by formation of a small metallic core within the Moon (stage 2). If the Moon is made of mantle material from either a “hot” impactor or a “warm” impactor or proto-Earth, a small metallic core (0.7 to 2 mass%) is predicted. If the Moon is made from mantle material from a “hot” proto-Earth, the lunar mantle would be more depleted in W or Re than is observed. Scenarios in which the Moon is made from impactor or proto-Earth mantle material that has equilibrated with metal at low pressures and temperatures (“cold” scenarios) would yield a much larger metallic core than observed. Finally, the greater depletions of Ni, Mo, and Re in the Moon (relative to the Earth) can be explained by low PT and reduced metal-silicate equilibrium in an impactor without later core formation in the Moon (i.e., no stage 2), but depletions of Co, Ga, and W cannot. Altogether, geochemically unlikely or geophysically inadequate non-metallic core alternatives, substantial geophysical evidence for a metallic core, and the successful models presented here for siderophile element depletions all favor the presence of a small lunar metallic core. Previous geochemical objections to an impactor origin of the Moon are eliminated because siderophile element concentrations in the lunar mantle are consistent with separation of a small core from a bulk Moon derived from impactor mantle material.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号