首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Abstract— Dar al Gani 489 (DaG 489) is a meteorite fragment of 2146 g found in the Libyan Sahara by a meteorite finder during one of his search campaigns in 1997–98. It is a porphyritic rock with millimetersized olivine crystals (Fo79–59) set in a fine‐grained groundmass (average grain size 0.1 mm) consisting of pigeonite (En75–57 Wo5–15) crystals and interstitial feldspathic glass (An67–56 Or0–1). Minor phases include enstatite (En82–71 Wo2–4), augite (En48–52 Wo29–32), chromite, Ti‐chromite, ilmenite, pyrrhotite, merrillite, and secondary calcite and iron oxides. On the basis of mineralogical, petrographic, bulk chemical, O‐isotopic, and noble gas data, DaG 489 can be classified as a highly shocked martian meteorite (e.g., Fe/Mn(bulk) = 42.1, Ni/Mg(bulk) = 0.002; δ17O = 2.89, δ18O = 4.98, and Δ17O = 0.305), belonging to the basaltic shergottite subgroup. The texture and modal composition of DaG 489 are indeed those of basalts; nonetheless, the bulk chemistry, the abundance of large olivine and chromite crystals, and enstatitic pyroxene suggest some relationship with lherzolitic shergottites. As such, DaG 489 is similar to the hybrid shergottite Elephant Moraine (EET) A79001 lithology A; however, there are some relevant differences including a higher olivine content (20 vol%), the lack of orthopyroxene megacrysts, a higher molar Mg/(Mg + Fe)(molar) = 0.68, and a lower rare earth element content in the bulk sample. Therefore, DaG 489 has the potential of providing us with a further petrogenetic link between the basaltic and lherzolitic shergottites. Noble gases data show that DaG 489 has an ejection age of ~1.3 Ma. This young age lends support to the requirement of several ejection events to produce the current population of shergottites, nakhlites, and chassignites (SNC) meteorites. In terms of texture, mineral and bulk compositions, shock level, and weathering features, DaG 489 is essentially identical to DaG 476, another basaltic shergottite independently found ~25 km due northnortheast of DaG 489. Because DaG 489 also has the same exposure history as DaG 476, it is very likely that both meteorites are fragments of the same fall. In addition to the existing hypotheses on the petrogenesis of the similar EETA79001 lithology A and the identical DaG 476, we propose that DaG 489 could have formed through high‐degree partial melting of a lherzolite‐like material.  相似文献   

2.
Abstract— Dhofar 019 is a new martian meteorite found in the desert of Oman. In texture, mineralogy, and major and trace element chemistry, this meteorite is classified as a basaltic shergottite. Olivine megacrysts are set within a groundmass composed of finer grained olivine, pyroxene (pigeonite and augite), and maskelynite. Minor phases are chromite‐ulvöspinel, ilmenite, silica, K‐rich feldspar, merrillite, chlorapatite, and pyrrhotite. Secondary phases of terrestrial origin include calcite, gypsum, celestite, Fe hydroxides, and smectite. Dhofar 019 is most similar to the Elephant Moraine (EETA) 79001 lithology A and Dar al Gani (DaG) 476/489 shergottites. The main features that distinguish Dhofar 019 from other shergottites are lack of orthopyroxene; lower Ni contents of olivine; the heaviest oxygen‐isotopic bulk composition; and larger compositional ranges for olivine, maskelynite, and spinel, as well as a wide range for pyroxenes. The large compositional ranges of the minerals are indicative of relatively rapid crystallization. Modeling of olivine chemical zonations yield minimum cooling rates of 0.5‐0.8 °C/h. Spinel chemistry suggests that crystallization took place under one of the most reduced conditions for martian meteorites, at an fO2 3 log units below the quartz‐fayalite‐magnetite (QFM) buffer. The olivine megacrysts are heterogeneously distributed in the rock. Crystal size distribution analysis suggests that they constitute a population formed under steady‐state conditions of nucleation and growth, although a few grains may be cumulates. The parent melt is thought to have been derived from partial melting of a light rare earth element‐ and platinum group element‐depleted mantle source. Shergottites, EETA79001 lithology A, DaG 476/489, and Dhofar 019, although of different ages, comprise a particular type of martian rocks. Such rocks could have formed from chemically similar source(s) and parent melt(s), with their bulk compositions affected by olivine accumulation.  相似文献   

3.
Abstract— In 1998, Dar al Gani (DaG) 476 was found in the Libyan desert. The meteorite is classified as a basaltic shergottite and is only the 13th martian meteorite known to date. It has a porphyritic texture consisting of a fine‐grained groundmass and larger olivines. The groundmass consists of pyroxene and feldspathic glass. Minor phases are oxides and sulfides as well as phosphates. The presence of olivine, orthopyroxene, and chromite is a feature that DaG 476 has in common with lithology A of Elephant Moraine (EET) A79001. However, in DaG 476, these phases appear to be early phenocrysts rather than xenocrysts. Shock features, such as twinning, mosaicism, and impact‐melt pockets, are ubiquitous. Terrestrial weathering was severe and led to formation of carbonate veins following grain boundaries and cracks. With a molar MgO/(MgO + FeO) of 0.68, DaG 476 is the most magnesian member among the basaltic shergottites. Compositions of augite and pigeonite and some of the bulk element concentrations are intermediate between those of lherzolitic and basaltic shergottites. However, major elements, such as Fe and Ti, as well as LREE concentrations are considerably lower than in other shergottites. Noble gas concentrations are low and dominated by the mantle component previously found in Chassigny. A component, similar to that representing martian atmosphere, is virtually absent. The ejection age of 1.35 ± 0.10 Ma is older than that of EETA79001 and could possibly mark a distinct ejection. Dar al Gani 476 is classified as a basaltic shergottite based on its mineralogy. It has a fine‐grained groundmass consisting of clinopyroxene, pigeonite and augite, feldspathic glass and chromite, Ti‐chromite, ilmenite, sulfides, and whitlockite. Isolated olivine and single chromite grains occur in the groundmass. Orthopyroxene forms cores of some pigeonite grains. Shock‐features, such as shock‐twinning, mosaicism, cracks, and impact‐melt pockets, are abundant. Severe weathering in the Sahara led to significant formation of carbonate veins crosscutting the entire meteorite. Dar al Gani 476 is distinct from other known shergottites. Chemically, it is the most magnesian member among known basaltic shergottites and intermediate in composition for most trace and major elements between Iherzolitic and basaltic shergottites. Unique are the very low bulk REE element abundances. The CI‐normalized abundances of LREEs are even lower than those of Iherzolitic shergottites. The overall abundance pattern, however, is similar to that of QUE 94201. Textural evidence indicates that orthopyroxene, as well as olivine and chromite, crystallized as phenocrysts from a magma similar in composition to that of bulk DaG 476. Whether such a magma composition can be a shergottite parent melt or was formed by impact melting needs to be explored further. At this time, it cannot entirely be ruled out that these phases represent relics of disaggregated xenoliths that were incorporated and partially assimilated by a basaltic melt, although the texture does not support this possibility. Trapped noble gas concentrations are low and dominated by a Chassigny‐like mantle component. Virtually no martian atmosphere was trapped in DaG 476 whole‐rock splits. The exposure age of 1.26 ± 0.09 Ma is younger than that of most shergottites and closer to that of EETA79001. The ejection age of 1.35 ± 0.1 Ma could mark another distinct impact event.  相似文献   

4.
Northwest Africa (NWA) 1950 is a new member of the lherzolitic shergottite clan of the Martian meteorites recently found in the Atlas Mountains. The petrological, mineralogical, and geochemical data are very close to those of the other known lherzolitic shergottites. The meteorite has a cumulate gabbroic texture and its mineralogy consists of olivine (Fo66 to Fo75), low and high‐Ca pyroxenes (En78Fs19Wo2‐En60Fs26W14; En53Fs16Wo31‐En45Fs14Wo41), and plagioclase (An57Ab41Or1 to An40Ab57Or3; entirely converted into maskelynite during intense shock metamorphism). Accessory minerals include phosphates (merrillite), chromite and spinels, sulfides, and a glass rich in potassium. The oxygen isotopic values lie on the fractional line defined by the other SNC meteorites (Δ17O = 0.312 %o). The composition of NWA 1950 is very similar to the other lherzolitic shergottites and suggests an origin from the same magmatic system, or at least crystallization from a close parental melt. Cosmogenic ages indicate an ejection age similar to those of the other lherzolitic shergottites. The intensity of the shock is similar to that observed in other shergottites, as shown by the occurrence of small melt pockets containing glass interwoven with stishovite.  相似文献   

5.
Abstract By mineral and bulk compositions, the Lewis Cliff (LEW) 88516 meteorite is quite similar to the ALHA77005 martian meteorite. These two meteorites are not paired because their mineral compositions are distinct, they were found 500 km apart in ice fields with different sources for meteorites, and their terrestrial residence ages are different. Minerals in LEW88516 include: olivine, pyroxenes (low- and high-Ca), and maskelynite (after plagioclase); and the minor minerals chromite, whitlockite, ilmenite, and pyrrhotite. Mineral grains in LEW88516 range up to a few mm. Texturally, the meteorite is complex, with regions of olivine and chromite poikilitically enclosed in pyroxene, regions of interstitial basaltic texture, and glass-rich (shock) veinlets. Olivine compositions range from Fo64 to Fo70, (avg. Fo67), more ferroan and with more variation than in ALHA77005 (Fo69 to Fo73). Pyroxene compositions fall between En77Wo4 and En65Wo15 and in clusters near En63Wo9 and En53Wo33, on average more magnesian and with more variation than in ALHA77005. Shock features in LEW88516 range from weak deformation through complete melting. Bulk chemical analyses by modal recombination of electron microprobe analyses, instrumental neutron activation, and radiochemical neutron activation confirm that LEW88516 is more closely related to ALHA77005 than to other known martian meteorites. Key element abundance ratios are typical of martian meteorites, as is its non-chondritic rare earth pattern. Differences between the chemical compositions of LEW88516 and ALHA77005 are consistent with slight differences in the proportions of their constituent minerals and not from fundamental petrogenetic differences. Noble gas abundances in LEW88516, like those in ALHA77005, show modest excesses of 40Ar and 129Xe from trapped (shock-implanted) gas. As with other ALHA77005 and the shergottite martian meteorites (except EETA79001), noble gas isotope abundances in LEW88516 are consistent with exposure to cosmic rays for 2.5–3 Ma. The absence of substantial effects of shielding from cosmic rays suggest LEW88516 spent this time as an object no larger than a few cm in diameter.  相似文献   

6.
Abstract– Northwest Africa (NWA) 4797 is an ultramafic Martian meteorite composed of olivine (40.3 vol%), pigeonite (22.2%), augite (11.9%), plagioclase (9.1%), vesicles (1.6%), and a shock vein (10.3%). Minor phases include chromite (3.4%), merrillite (0.8%), and magmatic inclusions (0.4%). Olivine and pyroxene compositions range from Fo66–72,En58–74Fs19–28Wo6–15, and En46–60Fs14–22Wo34–40, respectively. The rock is texturally similar to “lherzolitic” shergottites. The oxygen fugacity was QFM?2.9 near the liquidus, increasing to QFM?1.7 as crystallization proceeded. Shock effects in olivine and pyroxene include strong mosaicism, grain boundary melting, local recrystallization, and pervasive fracturing. Shock heating has completely melted and vesiculated igneous plagioclase, which upon cooling has quench‐crystallized plagioclase microlites in glass. A mm‐size shock melt vein transects the rock, containing phosphoran olivine (Fo69–79), pyroxene (En44–51Fs14–18Wo30–42), and chromite in a groundmass of alkali‐rich glass containing iron sulfide spheres. Trace element analysis reveals that (1) REE in plagioclase and the shock melt vein mimics the whole rock pattern; and (2) the reconstructed NWA 4797 whole rock is slightly enriched in LREE relative to other intermediate ultramafic shergottites, attributable to local mobilization of melt by shock. The shock melt vein represents bulk melting of NWA 4797 injected during pressure release. Calculated oxygen fugacity for NWA 4797 indicates that oxygen fugacity is decoupled from incompatible element concentrations. This is attributed to subsolidus re‐equilibration. We propose an alternative nomenclature for “lherzolitic” shergottites that removes genetic connotations. NWA 4797 is classified as an ultramafic poikilitic shergottite with intermediate trace element characteristics.  相似文献   

7.
Abstract— Sayhal Uhaymir (SaU) 094 is a 223.3 g, partially crusted, strongly to very strongly shocked melanocratic olivine-porphyric rock of the shergottite group showing a microgabbroic texture. The rock consists of pyroxene (52.0–58.2 vol%)—dominantly prismatic pigeonite (En60–68Fs20–27Wo7–9) associated with minor augite (En46–49Fs15–16Wo28–31)—brown (shock-oxidized) olivine (Fo65–69; 22.1–31%), completely isotropic interstitial plagioclase glass (maskelynite; An50–64Or0.3-0.9; 8.6–13.0%), chromite and titanian magnesian chromite (0.9-1.0%), traces of ilmenite (Ilm80–86), pyrrhotite (Fe92–100; 0.1-0.2%), merrillite (<<0.1%), and pockets (4.8-6.7%) consisting of green basaltic to basaltic andesitic shock glass that is partially devitrified into a brown to black product along boundaries with the primary minerals. The average maximum dimensions of minerals are: olivine (1.5 mm), pyroxene (0.3 mm) and maskelynite (0.3 mm). Primary melt inclusions in olivine and chromite are common and account for 0.1-0.6% of the rock. X-ray tomography revealed that the specimen contains ˜0.4 vol% of shock-melt associated vesicles, up to 3 mm in size, which show a preferred orientation. Fluidization of the maskelynite, melting and recrystallization of pyroxene, olivine and pyrrhotite indicate shock stage S6. Minor terrestrial weathering resulted in calcite-veining and minor oxidation of sulfides. The meteorite is interpreted as paired with SaU 005/008/051. The modal composition is similar to Dar al Gani 476/489/670/735/876, with the exception that neither mesostasis nor titanomagnetite nor apatite are present and that all phases show little zonation. The restricted mineral composition, predominance of chromite among the oxides, and abundance of olivine indicate affinities to the lherzolitic shergottites.  相似文献   

8.
Abstract— Mixing models using major and trace elements show that the bulk composition of lithology A (xenocryst-bearing magnesian basalt) of Elephant Moraine A79001 (EETA79001) can be reasonably approximated as a simple mixture of ~44% EETA79001 lithology B (ferroan basalt) and ~56% of Allan Hills A77005 (ALHA7705) light lithology (incompatible element-poor lherzolite). Micro-instrumental neutron activation analysis (INAA) data on xenocryst-free groundmass samples of lithology A show that about 20–25% of the melt phase could be dissolved lherzolite. The bulk and groundmass samples of lithology A have excesses in Au, which indicates either meteoritic contamination or addition by some unknown martian geochemical process. Previous workers have suggested that lithology A was formed by either assimilation of cumulates (like ALHA77005), by a basalt (like lithology B), or by mixing of basaltic and lherzolitic magmas. The former scenario is energetically improbable and unlikely to explain the normal Fe/Mg zonation in lithology A groundmass pyroxenes, whereas the latter scenario is unlikely to satisfy the constraints of the mixing model indicating the ultramafic component is poor in incompatible elements. We suggest rather that EETA79001 lithology A is an impact melt composed dominantly of basalt like lithology B and lherzolitic cumulates like the trace-element-poor fraction of ALHA77005 or Y-793605. This model can satisfy the energetic, petrologic, and geochemical constraints imposed by the samples. If EETA79001 lithology A is an impact melt, this would have considerable consequences for current models of martian petrologic evolution. It would call into question the generally accepted age of magmatism of martian basalts and preclude the use of lithology A groundmass as a primary martian basalt composition in experimental studies. Regardless, the latter is required because lithology A groundmass is a hybrid composition.  相似文献   

9.
Abstract— ALH84001, originally classified as a diogenite, is a coarse-grained, cataclastic, orthopyroxenite meteorite related to the martian (SNC) meteorites. The orthopyroxene is relatively uniform in composition, with a mean composition of Wo3.3En69.4Fs27.3. Minor phases are euhedral to subhedral chromite and interstitial maskelynite, An31.1Ab63.2Or5.7, with accessory augite, Wo42.2En45.1Fs12.7, apatite, pyrite and carbonates, Cc11.5Mg58.0Sd29.4Rd1.1. The pyroxenes and chromites in ALH84001 are similar in composition to these phases in EETA79001 lithology A megacrysts but are more homogeneous. Maskelynite is similar in composition to feldspars in the nakhlites and Chassigny. Two generations of carbonates are present, early (pre-shock) strongly zoned carbonates and late (post-shock) carbonates. The high Ca content of both types of carbonates indicates that they were formed at moderately high temperature, possibly ~700 °C. ALH84001 has a slightly LREE-depleted pattern with La 0.67x and Lu 1.85x CI abundances and with a negative Eu anomaly (Eu/Sm 0.56x CI). The uniform pyroxene composition is unusual for martian meteorites, and suggests that ALH84001 cooled more slowly than did the shergottites, nakhlites or Chassigny. The nearly monomineralic composition, coarse-grain size, homogenous orthopyroxene and chromite compositions, the interstitial maskelynite and apatite, and the REE pattern suggest that ALH84001 is a cumulate orthopyroxenite containing minor trapped, intercumulus material.  相似文献   

10.
Abstract— We present the results of a combined mineralogic‐petrologic and ion microprobe study of two martian meteorites recently recovered in the Lybian Sahara, Dar al Gani 476 (DaG 476) and Dar al Gani 489 (DaG 489). Having resided in a hot desert environment for an extended time, DaG 476 and DaG 489 were subjected to terrestrial weathering that significantly altered their chemical composition. In particular, analyses of some of the silicates show light rare earth element (LREE)‐enrichment resulting from terrestrial alteration. In situ measurement of trace element abundances in minerals allows us to identify areas unaffected by this contamination and, thereby, to infer the petrogenesis of these meteorites. No significant compositional differences between DaG 476 and DaG 489 were found, supporting the hypothesis that they belong to the same fall. These meteorites have characteristics in common with both basaltic and lherzolitic shergottites, possibly suggesting spatial and petrogenetic associations of these two types of lithologies on Mars. However, the compositions of Fe‐Ti oxides and the size of Eu anomalies in the earliest‐formed pyroxenes indicate that the two Saharan meteorites probably experienced more reducing crystallization conditions than other shergottites (with the exception of Queen Alexandra Range (QUE) 94201). As is the case for other shergottites, trace element microdistributions in minerals of the DaG martian meteorites indicate that closed‐system crystal fractionation from a LREE‐depleted parent magma dominated their crystallization history. Furthermore, rare earth element abundances in the orthopyroxene megacrysts are consistent with their origin as xenocrysts rather than phenocrysts.  相似文献   

11.
Abstract— The Nova 001 [= Nuevo Mercurio (b)] and Nullarbor 010 meteorites are ureilites, both of which contain euhedral graphite crystals. The bulk of the meteorites are olivine (Fo79) and pyroxenes (Wo9En73Fs18, Wo3En77Fs20), with a few percent graphite and minor amounts of troilite, Ni-Fe metal, and possibly diamond. The rims of olivine grains are reduced (to Fo91) and contain abundant blebs of Fe metal. Silicate mineral grains are equant, anhedral, up to 2 mm across, and lack obvious preferred orientations. Euhedral graphite crystals (to 1 mm x 0.3 mm) are present at silicate grain boundaries, along boundaries and protruding into the silicates, and entirely within silicate mineral grains. Graphite euhedra are also present as radiating clusters and groups of parallel plates grains embedded in olivine; no other ureilite has comparable graphite textures. Minute lumps within graphite grains are possibly diamond, inferred to be a result of shock. Other shock effects are limited to undulatory extinction and fracturing. Both ureilites have been weathered significantly. Considering their similar mineralogies, identical mineral compositions, and identical unusual textures, Nova 001 and Nullarbor 010 are probably paired. Based on olivine compositions, Nova 001 and Nullarbor 010 are in Group 1 (FeO-rich) of Berkley et al. (1980). Silicate mineral compositions are consistent with those of other known ureilites. The presence of euhedral graphite crystals within the silicate minerals is consistent with an igneous origin, and suggests that large proportions of silicate magma were present locally and crystallized in situ.  相似文献   

12.
Abstract— The Elephant Moraine A79002 (EETA79002) diogenite is a fragmental breccia with a subtle lightdark structure. It is composed of orthopyroxene, with minor olivine, chromite, and ubiquitous, inhomogeneously distributed, approximately 5–500 μm sized troilite and metal grains. These latter are present in the matrix, and as inclusions in and as symplectic intergrowths with orthopyroxene and olivine. Trace amounts of silica and diopside are also present. Most orthopyroxene compositions (typical orthopyroxenes) are in the narrow range Wo2.1–2.7En74.1–75.6Fs22.2–23.8 like those of most diogenites. A few magnesian orthopyroxenes are present with compositions of Wo1.7‐2.5En77.5–80.2 Fs18.2–20.3. These are among the most magnesian orthopyroxenes known from diogenites. A few ferroan orthopyroxenes have compositions of Wo2.1–2.9En71.7–73.7Fs24.2–25.5. Differences in Al2O3, TiO2, and Cr2O3 between the different orthopyroxene groups are inconsistent with a simple igneous fractionation relationship between them. Olivine compositions are Fo75.0–76.9. The olivines could be in equilibrium with the magnesian orthopyroxenes, but not with the typical or ferroan orthopyroxenes that form the bulk of EETA79002. Metal grains exhibit a range of Ni and Co contents and Ni/Co ratios; their compositions indicate that they are primary igneous metal. Metal and troilite grains are more prevalent in the dark samples. The trace incompatible lithophile element contents of 16 samples are remarkably uniform. Their Yb concentrations are all within their 2s? analytical uncertainties of the mean. The uniformity and low content of light rare earth elements in EETA79002 indicate that negligible amounts of a trapped liquid component, or foreign material mixed in the breccia, could be present. The siderophile and chalcophile element data show that the light‐dark structure is due to the distribution of metal and troilite grains; dark samples contain higher Ni, Co, and Se compared to light samples. Meteorite EETA79002 appears to contain material from three or more related plutons, a magnesian harzburgite, and two orthopyroxenites, and is a genomict breccia.  相似文献   

13.
Nepheline and sodalite have been found in association with glass in a barred olivine chondrule from the Allende C3V meteorite. The major minerals of the chondrule are olivine (Fo80–88), bronzite (En85Fs12Wo3), and chromite. Olivine bars are separated by glass of nearly pure plagioclase composition (An81–99). Olivine composition is more Fe-rich than predicted by olivine-liquid equilibria (Fo96). Conditions of non-equilibrium are implied from this and the presence of plagioclase glass and small amounts of subcalcic diopside (En75Fs12Wo13) in the chondrule. The properties of this chondrule are consistent with liquid condensation, but melting of an amoeboid olivine aggregate or similar object could also have generated the chondrule-forming liquid. Nepheline and sodalite appear to have crystallized from this liquid under non-equilibrium conditions.  相似文献   

14.
Abstract— Antarctic meteorite QUE 94201 is a new basaltic shergottite that is mainly composed of subequal amounts of maskelynite and pyroxenes (pigeonite and augite) plus abundant merrillite and accessory phases. It also contains impact melt. Complex zoning patterns in QUE 94201 pyroxenes revealed by elemental map analyses using an electron microprobe suggest a crystallization sequence from Mg-rich pigeonite (En62Fss30Wog) to extremely Fe-rich pigeonite (En5Fs81Wo14) via {110} Mg-rich augite bands (En44Fs20Wo36) in a single crystal. These textures, along with the abundant plagioclase (maskelynite), indicates single-stage rapid cooling (>5 °C/year) of this rock from a supercooled magma. Transition from Mg-rich augite to Fe-rich pigeonite reflects the onset of plagioclase crystallization. Enrichment of late-stage phases in QUE 94201 implies crystallization from an evolved magma and suggests a different parent magma composition from the other basaltic shergottites. Lithology B of EETA79001 basaltic shergottite contains pyroxenes that show complex zoning with augite bands similar to those in QUE 94201 pyroxene, which suggests similar one-stage rapid cooling. Lithology B of EETA79001 also resembles QUE 94201 in its coarse-grained texture of silicates and its high abundance of maskelynite, although QUE 94201 probably crystallized from a more fractionated magma. We also note that some Apollo lunar mare basalts (e.g., 12020 and 12021) have similar mineralogy and petrology to QUE 94201, especially in pyroxene zoning. All these basaltic rocks with complex pyroxene zoning suggest rapid metastable crystallization from supercooled magmas.  相似文献   

15.
Abstract— Northwest Africa (NWA) 1670, contains olivines of up to 5 mm in size representing about 30% of the studied section. With subordinate clinopyroxene and chrome‐spinel microphenocrysts (0.2‐0.5 mm), they represent a xenocrystic association. Phenocrysts are surrounded by a groundmass, predominantly comprising bundles of plagioclase and clinopyroxene (typically 20 × 200 μm crystals). Olivine and kirschsteinite are present in the groundmass in lesser amounts. The olivine xenocrysts (Fo90) are significantly fractured and show mosaicism for their major part, the remaining showing faint undulatory extinction. They are surrounded with a rim of 100–200 μm zoned down to Fo80 and overgrown with serrated olivine, Fo80 to Fo60 (about 100 μm). Olivine in the groundmass is zoned from Mg# 0.55 to 0.15; its CaO content ranges 2.0 to 8.4%. Subcalcic kirschsteinite is zoned from Mg# 0.13 to 0.03, CaO increasing from 15.8 to 21.3%. Pyroxenes xenocrysts (Mg# = 0.77) are superseded in the groundmass by less magnesian pyroxenes, Mg# 0.61 to 0.17, with an average FeO/ MnO of 98. Their compositions range from En30 Fs22 Wo27 Al‐Ts28 Ti‐Ts2 to En2 Fs37 Wo22 Al‐Ts40 Ti‐Ts1. Anorthite microcrysts (An99‐100) are restricted to the groundmass. Accessories are pyrrhotite, kamacite, Ca‐phosphate, titanomagnetite, hercynite and Ca‐carbonate. The bulk chemical composition confirms that NWA 1670 corresponds to a normal angrite melt that incorporated olivine. High Mg olivine xenocrysts and the associated mineralogy are typical of angrites. We suggest that it is an impact melt with relict phenocrysts. The strong silica undersaturation, the presence of Fo90 olivine xenocrysts and carbonate support their derivation as melilite‐like melts in the presence of carbonate.  相似文献   

16.
Grove Mountains (GRV) 020090 is a “lherzolitic” shergottite found in the Grove Mountains, Antarctica. It exhibits two distinct textures: poikilitic and nonpoikilitic. In poikilitic areas, large pyroxene oikocrysts enclose subhedral olivine and chromite chadacrysts. Pyroxene oikocrysts are zoned from pigeonite cores to augite rims. In nonpoikilitic areas, olivine, pyroxene, and interstitial maskelynite occur as major phases, and minor phases include chromite and merrillite. Compared with typical “lherzolitic” shergottites, GRV 020090 contains a distinctly higher abundance of maskelynite (19 vol%). Olivine and pyroxene are more ferroan (Fa28–40, En57–72Fs24–31Wo4–14 and En46–53Fs17–21Wo26–35), and maskelynite is more alkali‐rich (Ab43–65Or2–7). The major phases, whole‐rock (estimated) and fusion crust of GRV 020090, are relatively enriched in light rare earth elements (LREE), similar to those of the geochemically enriched basaltic shergottites, but distinct from those of LREE‐depleted “lherzolitic” shergottites. Combined with a high oxygen fugacity of log fO2 = QFM ? 1.41 ± 0.04 (relative to the quartz‐fayalite‐magnetite buffer), it is clear that GRV 020090 sampled from an oxidized and enriched mantle reservoir similar to those of other enriched shergottites. The calculated REE abundances and patterns of the melts in equilibrium with the cores of major phases are parallel to but higher than that of the whole rock, suggesting that GRV 020090 originated from a single parent magma and experienced progressive fractional crystallization in a closed system. The crystallization age recorded by baddeleyite is 192 ± 10 (2σ) Ma, consistent with the young internal isochron ages of enriched shergottites. Baddeleyite dating results further demonstrated that the young ages, rather than ancient ages (>4 Ga), appear to represent the crystallization of Martian surface lava flow. GRV 020090 shares many similarities with Roberts Massif (RBT) 04261/2, the first enriched “lherzolitic” shergottite. Detailed comparisons suggest that these two rocks are petrologically and geochemically closely related, and probably launch paired.  相似文献   

17.
The Loop meteorite was found in 1962 in Gaines County, Texas, at a location very close to that where the Ashmore chondrite was found in 1969. The two specimens were assumed to be fragments of the same meteorite. The Loop meteorite is a type L6 chondrite composed of olivine (Fo75.4Fa24.6), orthopyroxene (En77.6Wo1.5Fs20.9), clinopyroxene (En47.5Wo45.1Fs7.4), plagioclase (Ab84.3Or5.5An10.2), Fe-Ni metal, troilite, and chromite. Fe-Ni metal is represented by kamacite (5.8-6.4 wt % Ni, 0.88-1.00 wt % Co), taenite (30.0–52.9 wt % Ni, 0.16-0.34 wt % Co), and plessite (16.8–28.5 wt % Ni, 0.38-0.54 wt % Co). Native copper occurs as rare inclusions in Fe-Ni metal. Both chondrules and matrix have similar mineral compositions. The mineral chemistry of the Loop meteorite is quite different from that of the Ashmore, which was classified as an H5 chondrite by Bryan and Kullerud (1975). Therefore, the Ashmore and Loop meteorites are two different chondrites, even though they were recovered from the same geographic location.  相似文献   

18.
Crystal size distribution (CSD) and spatial distribution pattern (SDP) analyses are applied to the early crystallizing phases, olivine and pyroxene, in olivine‐phyric shergottites (Elephant moraine [EET] 79001A, Dar al Gani [DaG] 476, and dhofar [Dho] 019) from each sampling locality inferred from Mars ejection ages. Trace element zonation patterns (P and Cr) in olivine are also used to characterize the crystallization history of these Martian basalts. Previously reported 2‐D CSDs for these meteorites are re‐evaluated using a newer stereographically corrected methodology. Kinks in the olivine CSD plots suggest several populations that crystallized under different conditions. CSDs for pyroxene in DaG 476 and EET 79001A reveal single populations that grew under steady‐state conditions; pyroxenes in Dho 019 were too intergrown for CSD analysis. Magma chamber residence times of several days for small grains to several months for olivine megacrysts are calculated using the CSD slopes and growth rates inferred from previous experimental data. Phosphorus imaging in olivines in DaG 476 and Dho 019 indicate rapid growth of skeletal, sector‐zoned, or patchy cores, probably in response to delayed nucleation, followed by slow growth, and finally rapid dendritic growth with back‐filling to form oscillatory zoning in rims. SPD analyses indicate that olivine and pyroxene crystals grew or accumulated in clusters rather than as randomly distributed grains. These data reveal complex solidification histories for Martian basalts, and are generally consistent with the formation at depth of olivine megacryst cores, which were entrained in ascending magmas that crystallized pyroxenes, small olivines, and oscillatory rims on megacrysts.  相似文献   

19.
Abstract— We report on the petrology and geochemistry of Northwest Africa (NWA) 4215, an unbrecciated diogenite recovered in the Sahara. This single stone, weighing 46.4 g, displays a wellpreserved cumulative texture. It consists of zoned xenomorphic orthopyroxene grains on the order of 500 μm in size, along with a few large chromite crystals (<5 vol%, up to 3 mm). Accessory olivine and scarce diopside grains occur within the groundmass, usually around the chromite crystals. Minor phases are cristobalite, troilite, and metal. Unlike other diogenites, orthopyroxenes (En76.2Wo1.1Fs22.7 to En68.6Wo5.5Fs25.9), olivines (Fo76 to Fo71), and chromites (Mg# = 14.3 44.0, Cr# = 42.2–86.5) are chemically zoned. The minor element behavior in orthopyroxenes and the intricate chemical profiles obtained in chromites indicate that the zonings do not mirror the evolution of the parental melt. We suggest that they resulted from reaction of the crystals with intercumulus melt. In order to preserve the observed zoning profiles, NWA 4215 clearly cooled significantly faster than other diogenites. Indeed, the cooling rate determined from the diffusion of Cr in olivine abutting chromite is in the order of 10–50 °C/a, suggesting that NWA 4215 formed within a small, shallow intrusion. The bulk composition of NWA 4215 has been determined for major and trace elements. This meteorite is weathered and its fractures are filled with calcite, limonite, and gypsum, typical of hot desert alteration. In particular, the FeO, CaO abundances and most of the trace element concentrations (Sr, Ba, Pb, and REE among others) are high and indicate a significant contribution from the secondary minerals. To remove the terrestrial contribution, we have leached with HCl a subsample of the meteorite. The residue, made essentially of orthopyroxene and chromite, has similar major and trace element abundances to diogenites as shown by the shape of its REE pattern or by its high Al/Ga ratio. The connection of NWA 4215 with diogenites is confirmed by its O‐isotopic composition (δ17O = 1.431 ± 0.102‰, δ18O = 3.203 ± 0.205‰, Δ17O = ?0.248 ± 0.005‰).  相似文献   

20.
The iron‐bearing phases in a ureilite fragment (AS#051) from the Almahata Sitta meteorite are studied using Mössbauer spectroscopy, X‐ray diffraction (XRD), and electron microprobe analysis (EMPA). AS#051 has a typical ureilite texture of medium‐ to coarse‐grained silicates (olivine, orthopyroxene, and pigeonite) with minor opaques (Fe‐Ni metal, troilite, and graphite). The silicate compositions, determined by EMPA, are homogeneous: olivine (Fo90.2), orthopyroxene (En86.3Fs8.6Wo5.1), and pigeonite (En81.6Fs8.9Wo9.5), and are similar to those of magnesian ureilites. The modal abundance of mineral phases was determined by Rietveld refinement of the powder XRD data. The Mössbauer spectra at 295 K and 78 K are composed of two sharp well‐defined paramagnetic doublets superimposed on a well‐resolved magnetic sextet and other weak absorption features. The two paramagnetic doublets are assigned to olivine and pyroxene (orthopyroxene and pigeonite), and the ferromagnetic sextet to kamacite (magnetic hyperfine field ≈ 33.2 T), in agreement with the XRD characterization. The Mössbauer results also show the presence of small amounts of troilite (FeS) and cohenite ([Fe,Ni,Co]3C). Using the Mössbauer data, the relative abundance of each Fe‐bearing phase is determined and compared with the results obtained by XRD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号