首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A reanalysis of NEAR X‐ray/gamma‐ray spectrometer (XGRS) data provides robust evidence that the elemental composition of the near‐Earth asteroid 433 Eros is consistent with the L and LL ordinary chondrites. These results facilitated the use of the gamma‐ray measurements to produce the first in situ measurement of hydrogen concentrations on an asteroid. The measured value,  ppm, is consistent with hydrogen concentrations measured in L and LL chondrite meteorite falls. Gamma‐ray derived abundances of hydrogen and potassium show no evidence for depletion of volatiles relative to ordinary chondrites, suggesting that the sulfur depletion observed in X‐ray data is a surficial effect, consistent with a space‐weathering origin. The newfound agreement between the X‐ray, gamma‐ray, and spectral data suggests that the NEAR landing site, a ponded regolith deposit, has an elemental composition that is indistinguishable from the mean surface. This observation argues against a pond formation process that segregates metals from silicates, and instead suggests that the differences observed in reflectance spectra between the ponds and bulk Eros are due to grain size differences resulting from granular sorting of ponded material.  相似文献   

2.
Abstract— Elemental composition and composition ratios derived from gamma‐ray measurements collected by the NEAR‐Shoemaker spacecraft while on the surface of 433 Eros are reported. Performance of the gamma‐ray spectrometer (GRS) during cruise and orbit is reviewed. The best gamma‐ray data were collected on the surface of Eros after the spacecraft's controlled descent on 2001 February 12. Methods used in spectral analysis, to convert peak areas to incident photons, and photons to elemental composition are described in some detail. The elemental abundance of K and the Mg/Si, Fe/Si, Si/O and Fe/O abundance ratios were determined. The Mg/Si and Si/O ratios and the K abundance are roughly chondritic, but the Fe/Si and Fe/O ratios are low compared to expected chondritic values. Three possible explanations for the apparent Fe depletion are considered.  相似文献   

3.
Abstract— The near‐Earth asteroid rendezvous (NEAR) mission carried x‐ray/gamma‐ray spectrometers and multi‐spectral imager/near‐infrared spectrometer instrument packages which gave complementary information on the chemistry and mineralogy, respectively, of the target asteroid 433 Eros. Synthesis of these two data sets provides information not available from either alone, including the abundance of non‐mafic silicates, metal and sulfide minerals. We have utilized four techniques to synthesize these data sets. Venn diagrams, which examine overlapping features in two data sets, suggest that the best match for 433 Eros is an ordinary chondrite, altered at the surface of the asteroid, or perhaps a primitive achondrite derived from material mineralogically similar to these chondrites. Normalized element distributions preclude FeO‐rich pyroxenes and suggest that the x‐ray and gamma‐ray data can be reconciled with a common silicate mineralogy by inclusion of varying amounts of metal. Normative mineralogy cannot be applied to these data sets owing to uncertainties in oxygen abundance and lack of any constraints on the abundance of sodium. Matrix inversion for simultaneous solution of mineral abundances yields reasonable results for the x‐ray‐derived bulk composition, but seems to confirm the inconsistency between mineral compositions and orthopyroxene/clinopyroxene ratios. A unique solution does not seem possible in synthesizing these multiple data sets. Future missions including a lander to fully characterize regolith distribution and sample return would resolve the types of problems faced in synthesizing the NEAR data.  相似文献   

4.
Abstract— We report major element ratios determined for the S‐class asteroid 433 Eros using remote‐sensing x‐ray fluorescence spectroscopy with the near‐Earth asteroid rendezvous Shoemaker x‐ray spectrometer (XRS). Data analysis techniques and systematic errors are described in detail. Data acquired during five solar flares and during two extended “quiet Sun” periods are presented; these results sample a representative portion of the asteroid's surface. Although systematic uncertainties are potentially large, the most internally consistent and plausible interpretation of the data is that Eros has primitive Mg/Si, Al/Si, Ca/Si and Fe/Si ratios, closely similar to H or R chondrites. Global differentiation of the asteroid is ruled out. The S/Si ratio is much lower than that of chondrites, probably reflecting impact‐induced volatilization and/or photo‐ or ion‐induced sputtering of sulfur at the surface of the asteroid. An alternative explanation for the low S/Si ratio is that it reflects a limited degree of melting with loss of an FeS‐rich partial melt. Size‐sorting processes could lead to segregation of Fe‐Ni metal from silicates within the regolith of Eros; this could indicate that the Fe/Si ratios determined by the x‐ray spectrometer are not representative of the bulk Eros composition.  相似文献   

5.
Abstract— In late January 2001 the NEAR—Shoemaker spacecraft performed low‐altitude passes over the surface of 433 Eros. Coordinated observations of the asteroid surface were obtained at submeter resolution by the NEAR laser rangefinder and the multispectral imager. This paper presents three independent, coordinated observations of a 90 m pond adjacent to a granular debris flow, including the highest resolution altimetric measurements of ponded deposits on Eros. The ponded deposits appear to have been emplaced by fluid‐like motion of dry asteroidal regolith. A simple model of seismic agitation from impacts is developed to account for pond formation on Eros. The model predicts that ponds should form readily on Eros but not on the Moon, where ponds are not observed. The model also suggests that the absence of observable ponds in the largest craters of Eros, as well as on Phobos and Deimos, may be related to regolith depth.  相似文献   

6.
Long‐duration gamma‐ray bursts (GRBs) and type Ib/c supernovae (SNe Ib/c) are amongst nature's most magnificent explosions. While GRBs launch relativistic jets, SNe Ib/c are core‐collapse explosions whose progenitors have been stripped of their hydrogen and helium envelopes. Yet for over a decade, one of the key outstanding questions is what conditions lead to each kind of explosion in massive stars. Determining the fates of massive stars is not only a vibrant topic in itself, but also impacts using GRBs as star formation indicators over distances up to 13 billion light‐years and for mapping the chemical enrichment history of the universe. This article reviews a number of comprehensive observational studies that probe the progenitor environments, their metallicities and the explosion geometries of SN with and without GRBs, as well as the emerging field of SN environmental studies. Furthermore, it discusses SN2008D/XRT 080109 which was discovered serendipitously with the Swift satellite via its X‐ray emission from shock breakout and which generated great interest amongst both observers and theorists while illustrating a novel technique for stellar forensics. The article concludes with an outlook on how the most promising venues of research – with the many existing and upcoming large‐scale surveys such as PTF and LSST – will shed new light on the diverse deaths of massive stars (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

7.
We describe the current status and recent results from our Swift/VLT legacy survey, a VLT Large Programme aimed at characterizing the host galaxies of a homogeneously selected sub‐sample of Swift gamma‐ray bursts (GRBs). The immediate goals are to determine the host luminosity function, study the effects of reddening, determine the fraction of Lyα emitters in the hosts, and obtain redshifts for targets without a reported one. We have defined a very carefully selected sample, obeying strict and well‐defined criteria: 68 targets in total. Among the preliminary results is a large optical detection rate, the lack of extremely red objects (only one possible case in the sample), and 10 new GRB redshifts with the mean redshift of the host sample assessed to be 〈z 〉 ≳ 2 (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
To evaluate the feasibility of measuring differences in bulk composition among carbonaceous meteorite parent bodies from an asteroid or comet orbiter, we present the results of a performance simulation of an orbital gamma‐ray spectroscopy (GRS) experiment in a Dawn‐like orbit around spherical model asteroids with a range of carbonaceous compositions. The orbital altitude was held equal to the asteroid radius for 4.5 months. Both the asteroid gamma‐ray spectrum and the spacecraft background flux were calculated using the MCNPX Monte‐Carlo code. GRS is sensitive to depths below the optical surface (to ≈20–50 cm depth depending on material density). This technique can therefore measure underlying compositions beneath a sulfur‐depleted (e.g., Nittler et al. 2001 ) or desiccated surface layer. We find that 3σ uncertainties of under 1 wt% are achievable for H, C, O, Si, S, Fe, and Cl for five carbonaceous meteorite compositions using the heritage Mars Odyssey GRS design in a spacecraft‐deck‐mounted configuration at the Odyssey end‐of‐mission energy resolution, FWHM = 5.7 keV at 1332 keV. The calculated compositional uncertainties are smaller than the compositional differences between carbonaceous chondrite subclasses.  相似文献   

9.
An overview of the history of gamma‐ray astronomy is given starting with predictions in the 1950s and first detections in the 1960s. Tremendous efforts have been made since then, with exciting discoveries, which finally culminated in the “Golden Age” of gamma‐ray astronomy which we are presently experiencing.  相似文献   

10.
Abstract— An intriguing discovery of the NEAR imaging and laser‐ranging experiments was the ridge system known as Rahe Dorsum and its possible relation with global‐scale internal structure. The curved path of the ridge over the surface roughly defines a plane cutting through Eros. Another lineament on the other side of Eros, Calisto Fossae, seems to lie nearly on the same plane. The NEAR teams interpret Rahe as the expression of a compressive fault (a plane of weakness), because portions are a scarp, which on Earth would be indicative of horizontal compression, where shear displacement along a dipping fault has thrust the portion of the lithosphere on one side of the fault up relative to the other side. However, given the different geometry of Eros, a scarp may not have the same relationship to underlying structure as it does on Earth. The plane through Eros runs nearly parallel to, and just below, the surface facet adjacent to Rahe Dorsum. The plane then continues lengthwise through the elongated body, a surprising geometry for a plane of weakness on a battered body. Moreover, an assessment of the topography of Rahe Dorsum indicates that it is not consistent with displacement on the Rahe plane. Rather, the topography suggests that Rahe Dorsum results from resistance of the Rahe plane to impact erosion. Such a plane of strength might have formed in Eros' parent body by a fluid intrusion (e.g., a dike of partial melt) through undifferentiated material, creating a vein of stronger rock. Albedo, color and near‐infrared spectra could be consistent with a distinct material composition and such a history, although the instruments' resolution was not adequate for a definitive detection of such a spatially limited component. However the plane of strength formed, such structural reinforcing might have enabled and controlled the elongated irregular shape of Eros, as well as Rahe Dorsum.  相似文献   

11.
Abstract– We present results of a numerical model of the dynamics of ejecta emplacement on asteroid 433 Eros. Ejecta blocks represent the coarsest fraction of Eros’ regolith and are important, readily visible, “tracer particles” for crater ejecta‐blanket units that may be linked back to specific source craters. Model results show that the combination of irregular shape and rapid rotation of an asteroid can result in markedly asymmetric ejecta blankets (and, it follows, ejecta block spatial distribution), with locally very sharp/distinct boundaries. We mapped boulder number densities in NEAR‐Shoemaker MSI images across a portion of a predicted sharp ejecta‐blanket boundary associated with the crater Valentine and confirm a distinct and real ejecta‐blanket boundary, significant at least at the 3‐sigma level. Using our dynamical model, we “back track” the landing trajectories of three ejecta blocks with associated landing tracks in an effort to constrain potential source regions where those blocks were ejected from Eros’ surface in impact events. The observed skip distances of the blocks upon landing on Eros’ surface and the landing speeds and elevation angles derived from our model allow us to estimate the coefficient of restitution, ε, of Eros’ surface for impacts of 10‐m‐scale blocks at approximately 5 m s?1 impact speeds. We find mean values of ε of approximately 0.09–0.18.  相似文献   

12.
Gamma‐ray bursts (GRBs) are one of the most luminous events in the Universe. In addition, the Universe itself is almost transparent to γ ‐rays, making GRBs detectable up to very high redshifts. As a result, GRBs are very suitable to probe the cosmological parameters. This work shows the potential of long‐duration GRBs for measuring the cosmological parameters ΩM and ΩΛ by comparing the observed log N ‐log P distribution with the theoretical one. Provided that the GRBs rate and luminosity function are well determined, the best values and 1σ confidence intervals obtained are ΩM = 0.22+0.05–0.03 and ΩΛ = 1.06+0.05–0.10. Finally, a set of simulations show the ability of the method to measure ΩM and ΩΛ (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

13.
A method is presented for the identification of high-energy neutrinos from gamma ray bursts (GRBs) by means of a large-scale neutrino telescope. The procedure makes use of a time profile stacking technique of observed neutrino induced signals in correlation with satellite observations. By selecting a rather wide time window, a possible difference between the arrival times of the gamma and neutrino signals may also be identified. This might provide insight in the particle production processes at the source. By means of a toy model it will be demonstrated that a statistically significant signal can be obtained with a km3 scale neutrino telescope on a sample of 500 GRBs for a signal rate as low as 1 detectable neutrino for 3% of the bursts.  相似文献   

14.
Abstract— We have spectrophotometrically observed 433 Eros, the target of the NEAR‐Shoemaker spacecraft, on 1995 December 4 from 1.25 to 3.35 μm. As expected, Eros shows no evidence of an absorption feature >5% in the 3 μm region, and is interpreted to have an anhydrous surface within observational uncertainties. Our observations in the JHK region agree with previous work by Chapman and Morrison (1976) and Murchie and Pieters (1996), but differ from the near‐infrared spectrometer spectra reported by Clark et al. (2001). Our calculations indicate that thermal flux from Eros is not responsible for this mismatch.  相似文献   

15.
In this work we present the results of an investigation aimed at a search for an oscillatory phenomenon during short gamma‐ray bursts. The wavelet technique, used for this analysis, is applied to the data from the BATSE 3B catalogue. We have detected oscillations, which periods are found to be in the milliseconds range and their amplitudes up to dozens of percents. A possible scenario for such a phenomenon is the coalescence of stellar‐mass black holes and neutron stars. During the coalescence process the matter orbiting the black hole produces rapid, periodic phenomena. Such system will also emit gravitational waves which cause the orbital radius to decrease and leads to the emission of a chirp of radiation. Estimates lead to a timescale of milliseconds for the coalescence process and oscillation frequencies of hundreds of Hz. The gamma‐ray bursts considered in this paper, show both frequencies and survival times of oscillations close to the mentioned values. A chirp phenomenon is also present. We therefore argue in favor of the black hole – neutron star coalescence as a scenario for the production of short gamma‐ray bursts (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

16.
Abstract— High signal‐to‐noise near‐infrared spectrometer (NIS) spectra acquired during the low phase flyby of the near‐Earth asteroid rendezvous (NEAR) mission to 433 Eros are analyzed to determine mineral chemistry and proportions of mafic silicates across the asteroid's surface at 2.68 × 5.50 km spatial resolution. Spectral band parameters are derived, and compared with those of laboratory samples of known mineral composition, grain size distribution and terrestrial, meteoritic and lunar pyroxene spectral properties. The NIS derived band parameters are consistent with ordinary chondrite meteorites. We invoke the presence of a clinopyroxene component in the spectra, which is consistent with ordinary chondrite mineralogy and/or some degree of partial melting of ordinary chondritic material. Spectra measured across the surface of Eros can reveal small but real spectral variations. Most relative spectra are uniform to within 1–2%. Some areas suggest compositional variations of a few percent. Spectral slope variations of a few percent are seen indicating a non‐uniform distribution of materials affecting the slope parameter but with no resolved absorption bands. We find no correlation of slope with viewing geometry or compositional variation. The band parameter values do not consistently indicate a specific ordinary chondrite class but Eros is definitely undifferentiated with possible compositional variations of no more than 1–2%.  相似文献   

17.
Abstract— The global high‐resolution imaging of asteroid 433 Eros by the Near‐Earth Asteroid Rendezvous (NEAR) Shoemaker spacecraft has made it possible to develop the first comprehensive picture of the geology of a small S‐type asteroid. Eros displays a variety of surface features, and evidence of a substantial regolith. Large scale facets, grooves, and ridges indicate the presence of at least one global planar structure. Directional and superposition relations of smaller structural features suggest that fracturing has occurred throughout the object. As with other small objects, impact craters dominate the overall shape as well as the small‐scale topography of Eros. Depth/diameter ratios of craters on Eros average ~0.13, but the freshest craters approach lunar values of ~0.2. Ejecta block production from craters is highly variable; the majority of large blocks appear to have originated from one 7.6 km crater (Shoemaker). The interior morphology of craters does not reveal the influence of discrete mechanical boundaries at depth in the manner of craters formed on lunar mare regolith and on some parts of Phobos. This lack of mechanical boundaries, and the abundant evidence of regolith in nearly every high‐resolution image, suggests a gradation in the porosity and fracturing with depth. The density of small craters is deficient at sizes below ~200 m relative to predicted slopes of empirical saturation. This characteristic, which is also found on parts of Phobos and lunar highland areas, probably results from the efficient obliteration of small craters on a body with significant topographic slopes and a thick regolith. Eros displays a variety of regolith features, such as debris aprons, fine‐grained “ponded” deposits, talus cones, and bright and dark streamers on steep slopes indicative of efficient downslope movement of regolith. These processes serve to mix materials in the upper loose fragmental portion of the asteroid (regolith). In the instance of “ponded” materials and crater wall deposits, there is evidence of processes that segregate finer materials into discrete deposits. The NEAR observations have shown us that surface processes on small asteroids can be very complex and result in a wide variety of morphologic features and landforms that today seem exotic. Future missions to comets and asteroids will surely reveal still as yet unseen processes as well as give context to those discovered by the NEAR Shoemaker spacecraft.  相似文献   

18.
The outcomes of asteroid collisional evolution are presently unclear: are most asteroids larger than 1 km size gravitational aggregates reaccreted from fragments of a parent body that was collisionally disrupted, while much smaller asteroids are collisional shards that were never completely disrupted? The 16 km mean diameter S-type asteroid 433 Eros, visited by the NEAR mission, has surface geology consistent with being a fractured shard. A ubiquitous fabric of linear structural features is found on the surface of Eros and probably indicates a globally consolidated structure beneath its regolith cover. Despite the differences in absolute scale and in lighting conditions for NEAR and Hayabusa, similar features should have been found on 25143 Itokawa if present. This much smaller, 320 m diameter S-asteroid was visited by the Hayabusa spacecraft. Comparative analyses of Itokawa and Eros geology reveal fundamental differences, and interpretation of Eros geology is illuminated by comparison with Itokawa. Itokawa lacks a global lineament fabric, and its blocks, craters, and regolith may be inconsistent with formation and evolution as a fractured shard, unlike Eros. An object as small as Itokawa can form as a rubble pile, while much larger Eros formed as a fractured shard. Itokawa is not a scaled-down Eros, but formed by catastrophic disruption and reaccumulation.  相似文献   

19.
The landscape of Galactic X‐ray sources made of accreting binaries, isolated objects and active stellar coronae has been significantly modified by the advent of the Chandra, XMM‐Newton and INTEGRAL satellites. New types of relatively low X‐ray luminosity X‐ray binaries have been unveiled in the Galactic disc, while deep observations of the central regions have revealed large numbers of X‐ray binaries of so far poorly constrained nature. Because of the high spatial resolution needed and faint X‐ray luminosities generally emitted, studying the dependency of the X‐ray source composition with parent stellar population, Galactic disc, bulge, nuclear bulge, etc., is only practicable in our Galaxy. The evolutionary links between low LX X‐ray binaries and classical X‐ray luminous accreting systems are still open in many cases. In addition, the important question of the nature of the compact sources contributing to the Galactic ridge hard X‐ray emission remains unresolved. We review the most important results gathered by XMM‐Newton over the last years in this domain and show how future observations could be instrumental in addressing several of these issues. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
Lucy F. Lim  Larry R. Nittler 《Icarus》2009,200(1):129-146
We present a new calibration of the elemental-abundance data for Asteroid 433 Eros taken by the X-ray spectrometer (XRS) aboard the NEAR-Shoemaker spacecraft. (NEAR is an acronym for “Near-Earth Asteroid Rendezvous.”) Quantification of the asteroid surface elemental abundance ratios depends critically on accurate knowledge of the incident solar X-ray spectrum, which was monitored simultaneously with asteroid observations. Previously published results suffered from incompletely characterized systematic uncertainties due to an imperfect ground calibration of the NEAR gas solar monitor. The solar monitor response function and associated uncertainties have now been characterized by cross-calibration of a large sample of NEAR solar monitor flight data against contemporary broadband solar X-ray data from the Earth-orbiting GOES-8 (Geostationary Operational Environmental Satellite). The results have been used to analyze XRS spectra acquired from Eros during eight major solar flares (including three that have not previously been reported). The end product of this analysis is a revised set of Eros surface elemental abundance ratios with new error estimates that more accurately reflect the remaining uncertainties in the solar flare spectra: Mg/Si=0.753+0.078/−0.055, Al/Si=0.069±0.055, S/Si=0.005±0.008, Ca/Si=0.060+0.023/−0.024, and Fe/Si=1.678+0.338/−0.320. These revised abundance ratios are consistent within cited uncertainties with the results of Nittler et al. [Nittler, L.R., and 14 colleagues, 2001. Meteorit. Planet. Sci. 36, 1673-1695] and thus support the prior conclusions that 433 Eros has a major-element composition similar to ordinary chondrites with the exception of a strong depletion in sulfur, most likely caused by space weathering.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号