首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 240 毫秒
1.
Abstract— Cooling rate experiments were performed on P‐free Fe‐Ni alloys that are compositionally similar to ordinary chondrite metal to study the taenite ? taenite + kamacite reaction. The role of taenite grain boundaries and the effect of adding Co and S to Fe‐Ni alloys were investigated. In P‐free alloys, kamacite nucleates at taenite/taenite grain boundaries, taenite triple junctions, and taenite grain corners. Grain boundary diffusion enables growth of kamacite grain boundary precipitates into one of the parent taenite grains. Likely, grain boundary nucleation and grain boundary diffusion are the applicable mechanisms for the development of the microstructure of much of the metal in ordinary chondrites. No intragranular (matrix) kamacite precipitates are observed in P‐free Fe‐Ni alloys. The absence of intragranular kamacite indicates that P‐free, monocrystalline taenite particles will transform to martensite upon cooling. This transformation process could explain the metallography of zoneless plessite particles observed in H and L chondrites. In P‐bearing Fe‐Ni alloys and iron meteorites, kamacite precipitates can nucleate both on taenite grain boundaries and intragranularly as Widmanstätten kamacite plates. Therefore, P‐free chondritic metal and P‐bearing iron meteorite/pallasite metal are controlled by different chemical systems and different types of taenite transformation processes.  相似文献   

2.
Abstract— The purpose of this study is to examine, using light optical and electron optical techniques, the microstructure and composition of metal particles in ordinary chondritic meteorites. This examination will lead to the understanding of the low temperature thermal history of metal particles in their host chondrites. Two type 6 falls were chosen for study: Kernouvé (H6) and Saint Severin (LL6). In both meteorites, the taenite particles consisted of a narrow rim of high Ni taenite and a central region of cloudy zone similar to the phases observed in iron meteorites. The cloudy zone microstructure was coarser in Saint Severin than in Kernouvé due to the higher bulk Ni content of the taenite and the slower cooling rate, 3 K Ma?1 vs. 17 K Ma?1. Three microstructural zones were observed within the high Ni taenite region in both meteorites. The origin of the multiple zones is unknown but is most likely due to the high Ni taenite cooling into the two phase γ″ (FeNi) + γ′ (FeNi3) region of the low temperature Fe-Ni phase diagram. Another explanation may be the presence of uniform size antiphase boundaries within the high Ni taenite. Finally, abnormally wide high Ni taenite regions are observed bordering troilite. The wide zones are probably caused by the diffusion of Ni from troilite into the high Ni taenite borders at low cooling temperatures.  相似文献   

3.
Abstract— Portales Valley (PV) is an unusual metal‐veined meteorite that has been classified as an H6 chondrite. It has been regarded either as an annealed impact melt breccia, as a primitive achondrite, or as a meteorite with affinities to silicated iron meteorites. We studied the petrology of PV using a variety of geochemical‐mineralogical techniques. Our results suggest that PV is the first well‐documented metallic‐melt meteorite breccia. Mineral‐chemical and other data suggest that the protolith to PV was an H chondrite. The composition of FeNi metal in PV is somewhat fractionated compared to H chondrites and varies between coarse vein and silicate‐rich portions. It is best modeled as having formed by partial melting at temperatures of ?940–1150 °C, with incomplete separation of solid from liquid metal. Solid metal concentrated in the coarse vein areas and S‐bearing liquid metal concentrated in the silicate‐rich areas, possibly as a result of a surface energy effect. Both carbon and phosphorus must have been scavenged from large volumes and concentrated in metallic liquid. Graphite nodules formed by crystallization from this liquid, whereas phosphate formed by reaction between P‐bearing metal and clinopyroxene components, depleting clinopyroxene throughout much of the meteorite and growing coarse phosphate at metal‐silicate interfaces. Some phosphate probably crystallized from P‐bearing liquids, but most probably formed by solid‐state reaction at ?975‐725 °C. Phosphate‐forming and FeO‐reduction reactions were widespread in PV and entailed a change in the mineralogy of the stony portion on a large scale. Portales Valley experienced protracted annealing from supersolidus to subsolidus temperatures, probably by cooling at depth within its parent body, but the main differences between PV and H chondrites arose because maximum temperatures were higher in PV. A combination of a relatively weak shock event and elevated pre‐shock temperatures probably produced the vein‐and‐breccia texture, with endogenic heating being the main heat source for melting, and with stress waves from an impact event being an essential trigger for mobilizing metal. Portales Valley is best classified as an H7 metallic‐melt breccia of shock stage S1. The meteorite is transitional between more primitive (chondritic) and evolved (achondrite, iron) meteorite types and offers clues as to how differentiation could have occurred in some asteroidal bodies.  相似文献   

4.
Abstract— This paper reports one of the first attempts to investigate by analytical transmission electron microscopy (ATEM) the microstructures and compositions of Fe‐Ni metal grains in ordinary chondrites. Three ordinary chondrites, Saint Séverin (LL6), Agen (H5), and Tsarev (L6) were selected because they display contrasting microstructures, which reflects different thermal histories. In Saint Séverin, the microstructure of the Ni‐rich metal grains is due to slow cooling. It consists of a two‐phase assemblage with a honeycomb structure resulting from spinodal decomposition similar to the cloudy zone of iron meteorites. Microanalyses show that the Ni‐rich phase is tetrataenite (Ni = 47 wt%) and the Ni‐poor phase, with a composition of ~25% Ni, is either martensite or taenite, these two occurring adjacent to each other. The observation that the Ni‐poor phase is partly fcc resolves the disagreement between previous transmission electron microscopy (TEM) and Mössbauer studies on iron meteorites and ordinary chondrite metal. The Ni content of the honeycomb phase is much higher than in mesosiderites, confirming that mesosiderites cooled much more slowly. The high‐Ni tetrataenite rim in contact with the cloudy zone displays high‐Ni compositional variability on a very fine scale, which suggests that the corresponding area was destabilized and partially decomposed at low temperature. Both Agen and Tsarev display evidence of reheating and subsequent fast cooling obviously related to shock events. Their metallic particles mostly consist of martensite, the microstructure of which depends on local Ni content. Microstructures are controlled by both the temperature at which martensite forms and that at which it possibly decomposes. In high‐Ni zones (>15 wt%), martensitic transformation started at low temperature (<300 °C). Because no further recovery occurred, these zones contain a high density of lattice defects. In low‐Ni zones (<15 wt%), martensite grains formed at higher temperature and their lattice defects recovered. These martensite grains present a lath texture with numerous tiny precipitates of Ni‐rich taenite (Ni = 50 wt%) at lath boundaries. Nickel composition profiles across precipitate‐matrix interfaces show that the growth of these precipitates was controlled by preferential diffusion of Ni along lattice defects. The cooling rates deduced from Ni concentration profiles and precipitate sizes are within the range 1–10 °C/year for Tsarev and 10–100 °C/year for Agen.  相似文献   

5.
Abstract— A new empirical cooling rate indicator for metal particles is proposed. The cooling rate indicator is based on the relationship between the size of the island phase in the cloudy zone, which abuts the outer taenite rim (clear taenite I), and the cooling rate of the host meteorite as obtained by conventional metallographic techniques. The size of the island phase was measured by high-resolution scanning electron microscopy (SEM) in 26 meteorites and decreases from 470 nm to 17 nm, while the cooling rate of the host meteorite increases from 0.5 K/Ma to 325 K/Ma. This island phase size vs. cooling rate relationship is independent of whether the host is an iron, stony-iron, or stony meteorite and can be used to estimate the low-temperature cooling rate of the host meteorite. The measurement of the size of the island phase in the cloudy zone can also be applied to a large number of meteorites.  相似文献   

6.
Abstract— We studied the metallography of Fe‐Ni metal particles in 17 relatively unshocked ordinary chondrites and interpreted their microstructures using the results of P‐free, Fe‐Ni alloy cooling experiments (described in Reisener and Goldstein 2003). Two types of Fe‐Ni metal particles were observed in the chondrites: zoned taenite + kamacite particles and zoneless plessite particles, which lack systematic Ni zoning and consist of tetrataenite in a kamacite matrix. Both types of metal particles formed during metamorphism in a parent body from homogeneous, P‐poor taenite grains. The phase transformations during cooling from peak metamorphic temperatures were controlled by the presence or absence of grain boundaries in the taenite particles. Polycrystalline taenite particles transformed to zoned taenite + kamacite particles by kamacite nucleation at taenite/taenite grain boundaries during cooling. Monocrystalline taenite particles transformed to zoneless plessite particles by martensite formation and subsequent martensite decomposition to tetrataenite and kamacite during the same cooling process. The varying proportions of zoned taenite + kamacite particles and zoneless plessite particles in types 4–6 ordinary chondrites can be attributed to the conversion of polycrystalline taenite to monocrystalline taenite during metamorphism. Type 4 chondrites have no zoneless plessite particles because metamorphism was not intense enough to form monocrystalline taenite particles. Type 6 chondrites have larger and more abundant zoneless plessite particles than type 5 chondrites because intense metamorphism in type 6 chondrites generated more monocrystalline taenite particles. The distribution of zoneless plessite particles in ordinary chondrites is entirely consistent with our understanding of Fe‐Ni alloy phase transformations during cooling. The distribution cannot be explained by hot accretion‐autometamorphism, post‐metamorphic brecciation, or shock processing.  相似文献   

7.
Abstract— Characterization of the microstructural features of the metal of the Santa Catharina meteorite was performed using a variety of electron optical techniques. Sample USNM#6293 is chemically homogeneous on the micron scale and has a Ni content of 28.2 wt.%. Its microstructure is similar to that of the Twin City ataxite and contains clear taenite II, i.e., fcc taenite with domains of tetrataenite, < 10 nm in size. Sample USNM#3043 is a more typical Santa Catharina specimen with dark and light regions as observed with the light optical microscope. The dark regions are inhomogeneous and contain 45–50 wt.% Ni and 7–12 wt.% O. The light regions are homogeneous and contain 35 wt.% Ni and no detectable oxygen. The microstructure is that of cloudy zone, i.e., islands of tetrataenite, ~20 nm in size, in a honeycomb matrix. The honeycomb phase contains Ni rich oxide in the dark regions and contains metal, fcc taenite, in the light regions. The original metal structure of USNM#3043 is cloudy zone which formed during cooling into the low temperature miscibility gap of the Fe-Ni phase diagram. The dark regions were developed from the metal by selective corrosion of the honeycomb structure, transforming it into Ni containing oxides, possibly non-stoichiometric Fe2NiO4 while retaining the tetrataenite islands. Using the results of this study, many of the existing discrepancies concerning the microstructure of Santa Catharina can be explained.  相似文献   

8.
Abstract— We measured nickel isotopes via multicollector inductively coupled plasma mass spectrometry (MC‐ICPMS) in the bulk metal from 36 meteorites, including chondrites, pallasites, and irons (magmatic and non‐magmatic). The Ni isotopes in these meteorites are mass fractionated; the fractionation spans an overall range of ~0.4‰ amu?1. The ranges of Ni isotopic compositions (relative to the SRM 986 Ni isotopic standard) in metal from iron meteorites (~0.0 to ~0.3‰ amu?1) and chondrites (~0.0 to ~0.2‰ amu?1) are similar, whereas the range in pallasite metal (~–0.1 to 0.0‰ amu?1) appears distinct. The fractionation of Ni isotopes within a suite of fourteen IIIAB irons (~0.0 to ~0.3‰ amu?1) spans the entire range measured in all magmatic irons. However, the degree of Ni isotopic fractionation in these samples does not correlate with their Ni content, suggesting that core crystallization did not fractionate Ni isotopes in a systematic way. We also measured the Ni and Fe isotopes in adjacent kamacite and taenite from the Toluca IAB iron meteorite. Nickel isotopes show clearly resolvable fractionation between these two phases; kamacite is heavier relative to taenite by ~0.4‰ amu?1. In contrast, the Fe isotopes do not show a resolvable fractionation between kamacite and taenite. The observed isotopic compositions of kamacite and taenite can be understood in terms of kinetic fractionation due to diffusion of Ni during cooling of the Fe‐Ni alloy and the development of the Widmanstätten pattern.  相似文献   

9.
Abstract– The microstructures of six reheated iron meteorites—two IVA irons, Maria Elena (1935), Fuzzy Creek; one IVB iron, Ternera; and three ungrouped irons, Hammond, Babb’s Mill (Blake’s Iron), and Babb’s Mill (Troost’s Iron)—were characterized using scanning and transmission electron microscopy, electron‐probe microanalysis, and electron backscatter diffraction techniques to determine their thermal and shock history and that of their parent asteroids. Maria Elena and Hammond were heated below approximately 700–750 °C, so that kamacite was recrystallized and taenite was exsolved in kamacite and was spheroidized in plessite. Both meteorites retained a record of the original Widmanstätten pattern. The other four, which show no trace of their original microstructure, were heated above 600–700 °C and recrystallized to form 10–20 μm wide homogeneous taenite grains. On cooling, kamacite formed on taenite grain boundaries with their close‐packed planes aligned. Formation of homogeneous 20 μm wide taenite grains with diverse orientations would have required as long as approximately 800 yr at 600 °C or approximately 1 h at 1300 °C. All six irons contain approximately 5–10 μm wide taenite grains with internal microprecipitates of kamacite and nanometer‐scale M‐shaped Ni profiles that reach approximately 40% Ni indicating cooling over 100–10,000 yr. Un‐decomposed high‐Ni martensite (α2) in taenite—the first occurrence in irons—appears to be a characteristic of strongly reheated irons. From our studies and published work, we identified four progressive stages of shock and reheating in IVA irons using these criteria: cloudy taenite, M‐shaped Ni profiles in taenite, Neumann twin lamellae, martensite, shock‐hatched kamacite, recrystallization, microprecipitates of taenite, and shock‐melted troilite. Maria Elena and Fuzzy Creek represent stages 3 and 4, respectively. Although not all reheated irons contain evidence for shock, it was probably the main cause of reheating. Cooling over years rather than hours precludes shock during the impacts that exposed the irons to cosmic rays. If the reheated irons that we studied are representative, the IVA irons may have been shocked soon after they cooled below 200 °C at 4.5 Gyr in an impact that created a rubblepile asteroid with fragments from diverse depths. The primary cooling rates of the IVA irons and the proposed early history are remarkably consistent with the Pb‐Pb ages of troilite inclusions in two IVA irons including the oldest known differentiated meteorite ( Blichert‐Toft et al. 2010 ).  相似文献   

10.
An assemblage with FeNi metal, troilite, Fe‐Mn‐Na phosphate, and Al‐free chromite was identified in the metal‐troilite eutectic nodules in the shock‐produced chondritic melt of the Yanzhuang H6 meteorite. Electron microprobe and Raman spectroscopic analyses show that a few phosphate globules have the composition of Na‐bearing graftonite (Fe,Mn,Na)3(PO4)2, whereas most others correspond to Mn‐bearing galileiite Na(Fe,Mn)4(PO4)3 and a possible new phosphate phase of Na2(Fe,Mn)17(PO4)12 composition. The Yanzhuang meteorite was shocked to a peak pressure of 50 GPa and a peak temperature of approximately 2000 °C. All minerals were melted after pressure release to form a chondritic melt due to very high postshock heat that brought the chondrite material above its liquidus. The volatile elements P and Na released from whitlockite and plagioclase along with elements Cr and Mn released from chromite are concentrated into the shock‐produced Fe‐Ni‐S‐O melt at high temperatures. During cooling, microcrystalline olivine and pyroxene first crystallized from the chondritic melt, metal‐troilite eutectic intergrowths, and silicate melt glass finally solidified at about 950–1000 °C. On the other hand, P, Mn, and Na in the Fe‐Ni‐S‐O melt combined with Fe and crystallized as Fe‐Mn‐Na phosphates within troilite, while Cr combined with Fe and crystallized as Al‐free chromite also within troilite.  相似文献   

11.
Abstract— We have measured the size of the high‐Ni particles in the cloudy zone and the width of the outer taenite rim in eight low shocked and eight moderately to heavily shocked IVA irons using a transmission electron microscope (TEM). Thin sections for TEM analysis were produced by a focused ion beam instrument. Use of the TEM allowed us to avoid potential artifacts which may be introduced during specimen preparation for SEM analysis of high Ni particles <30 nm in size and to identify microchemical and microstructural changes due to the effects of shock induced reheating. No cloudy zone was observed in five of the eight moderately to highly shocked (>13 GPa) IVA irons that were examined in the TEM. Shock induced reheating has allowed for diffusion from 20 nm to 400 nm across kamacite/taenite boundaries, recrystallization of kamacite, and the formation, in Jamestown, of taenite grain boundaries. In the eleven IVA irons with cloudy zone microstructures, the size of the high‐Ni particles in the cloudy zone increases directly with increasing bulk Ni content. Our data and the inverse correlation between cooling rate and high‐Ni particle size for irons and stony‐irons show that IVA cooling rates at 350‐200 °C are inversely correlated with bulk Ni concentration and vary by a factor of about 15. This cooling rate variation is incompatible with cooling in a metallic core that was insulated with a silicate mantle, but is compatible with cooling in a metallic body of radius 150 ± 50 km. The widths of the tetrataenite regions next to the cloudy zone correlate directly with high‐Ni particle size providing another method to measure low temperature cooling rates.  相似文献   

12.
Abstract— Electron microprobe studies of several H5 and H6 chondrites reveal that olivine crystals exhibit systematic Fe‐Mg zoning near olivine‐metal interfaces. Olivine Fa concentrations decrease by up to 2 mol% toward zoned taenite + kamacite particles (formed after relatively small amounts of taenite undercooling) and increase by up to 2 mol% toward zoneless plessite particles (formed after ?200 °C of taenite undercooling). The olivine zoning can be understood in terms of localized olivine‐orthopyroxene‐metal reactions during cooling from the peak metamorphic temperature. The silicate‐metal reactions were influenced by solid‐state metal phase transformations, and the two types of olivine zoning profiles resulted from variable amounts of taenite undercooling at temperatures <700 °C. The relevant silicate‐metal reactions are modeled using chemical thermodynamics. Systematic olivine Fe‐Mg zoning adjacent to metal is an expected consequence of retrograde silicate‐metal reactions, and the presence of such zoning provides strong evidence that the silicate and metallic minerals evolved in situ during cooling from the peak metamorphic temperature.  相似文献   

13.
Abstract— A shower of meteorite fragments fell at ~0730 h local time on 1998 June 13 near the town of Portales, New Mexico. Thus far, 51 pieces of the Portales Valley (H6) meteorite have been recovered. This meteorite has an unusually large number of metallic veins. Some of these veins are also unusually thick, having widths on the order of centimeters. These wide veins have fine Widmanstätten structure, which is the first time it has been seen in an ordinary chondrite. This structure indicates the metallic veins and the host chondrite cooled slowly. These veins appear to have been produced by shock-metamorphic processes, which we infer produced a >20 km diameter impact crater on an H-chondrite planetesimal.  相似文献   

14.
We report the first combined atom‐probe tomography (APT) and transmission electron microscopy (TEM) study of a kamacite–tetrataenite (K–T) interface region within an iron meteorite, Bristol (IVA). Ten APT nanotips were prepared from the K–T interface with focused ion beam scanning electron microscopy (FIB‐SEM) and then studied using TEM followed by APT. Near the K‐T interface, we found 3.8 ± 0.5 wt% Ni in kamacite and 53.4 ± 0.5 wt% Ni in tetrataenite. High‐Ni precipitate regions of the cloudy zone (CZ) have 50.4 ± 0.8 wt% Ni. A region near the CZ and martensite interface has <10 nm sized Ni‐rich precipitates with 38.4 ± 0.7 wt% Ni present within a low‐Ni matrix having 25.5 ± 0.6 wt% Ni. We found that Cu is predominantly concentrated in tetrataenite, whereas Co, P, and Cr are concentrated in kamacite. Phosphorus is preferentially concentrated along the K‐T interface. This study is the first precise measurement of the phase composition at high spatial resolution and in 3‐D of the K‐T interface region in a IVA iron meteorite and furthers our knowledge of the phase composition changes in a fast‐cooled iron meteorite below 400 °C. We demonstrate that APT in conjunction with TEM is a useful approach to study the major, minor, and trace elemental composition of nanoscale features within fast‐cooled iron meteorites.  相似文献   

15.
Abstract– Sacramento Wash 005 (SaW) 005, Meteorite Hills 00428 (MET) 00428, and Mount Howe 88403 (HOW) 88403 are S‐rich Fe,Ni‐rich metal meteorites with fine metal structures and homogeneous troilite. We compare them with the H‐metal meteorite, Lewis Cliff 88432. Phase diagram analyses suggest that SaW 005, MET 00428, and HOW 88403 were liquids at temperatures above 1350 °C. Tridymite in HOW 88403 constrains formation to a high‐temperature and low‐pressure environment. The morphology of their metal‐troilite structures may suggest that MET 00428 cooled the slowest, SaW 005 cooled faster, and HOW 88403 cooled the quickest. SaW 005 and MET 00428 contain H‐chondrite like silicates, and SaW 005 contains a chondrule‐bearing inclusion that is texturally and compositionally similar to H4 chondrites. The compositional and morphological similarities of SaW 005 and MET 00428 suggest that they are likely the result of impact processing on the H‐chondrite parent body. SaW 005 and MET 00428 are the first recognized iron‐ and sulfide‐rich meteorites, which formed by impact on the H‐chondrite parent body, which are distinct from the IIE‐iron meteorite group. The morphological and chemical differences of HOW 88403 suggest that it is not from the H‐chondrite body, although it likely formed during an impact on a chondritic parent body.  相似文献   

16.
The silica glass extracted from the bulbous parts of Stardust tracks is riddled by electron‐opaque nanograins with compositions that are mostly between pyrrhotite and metallic iron with many fewer nanograins having a Fe‐Ni‐S composition. Pure taenite nanograins are extremely rare, but exist among the terminal particles. Assuming that these Fe‐Ni‐S compositions are due to mixing of pyrrhotite and taenite melt droplets, it is remarkable that the taenite melt grains had discrete Fe/Ni ratios. This paper presents the data from an igneous pyrrhotite/taenite fragment of cluster IDP L2011#21, wherein the taenite compositions have the same discrete Fe/Ni clusters as those inferred for the Stardust nanograins. These Fe/Ni clusters are a subsolidus feature with compositions that are constrained by the Fe‐Ni phase diagram. They formed during cooling of the parent body of this cluster IDP fragment. These specific Fe/Ni ratios, 12.5, 24, 40, and 53 atom% Ni, were preserved in asteroidal taenite that survived radially outward transport to the Kuiper Belt where it accreted into the (future) comet Wild 2 nucleus.  相似文献   

17.
We report in situ NanoSIMS siderophile minor and trace element abundances in individual Fe‐Ni metal grains in the unequilibrated chondrite Krymka (LL3.2). Associated kamacite and taenite of 10 metal grains in four chondrules and one matrix metal were analyzed for elemental concentrations of Fe, Ni, Co, Cu, Rh, Ir, and Pt. The results show large elemental variations among the metal grains. However, complementary and correlative variations exist between adjacent kamacite‐taenite. This is consistent with the unequilibrated character of the chondrite and corroborates an attainment of chemical equilibrium between the metal phases. The calculated equilibrium temperature is 446 ± 9 °C. This is concordant with the range given by Kimura et al. (2008) for the Krymka postaccretion thermal metamorphism. Based on Ni diffusivity in taenite, a slow cooling rate is estimated of the Krymka parent body that does not exceed ~1K Myr?1, which is consistent with cooling rates inferred by other workers for unequilibrated ordinary chondrites. Elemental ionic radii might have played a role in controlling elemental partitioning between kamacite and taenite. The bulk compositions of the Krymka metal grains have nonsolar (mostly subsolar) element/Ni ratios suggesting the Fe‐Ni grains could have formed from distinct precursors of nonsolar compositions or had their compositions modified subsequent to chondrule formation events.  相似文献   

18.
NWA 2737, a Martian meteorite from the Chassignite subclass, contains minute amounts (0.010 ± 0.005 vol%) of metal‐saturated Fe‐Ni sulfides. These latter bear evidence of the strong shock effects documented by abundant Fe nanoparticles and planar defects in Northwest Africa (NWA) 2737 olivine. A Ni‐poor troilite (Fe/S = 1.0 ± 0.01), sometimes Cr‐bearing (up to 1 wt%), coexists with micrometer‐sized taenite/tetrataenite‐type native Ni‐Fe alloys (Ni/Fe = 1) and Fe‐Os‐Ir‐(Ru) alloys a few hundreds of nanometers across. The troilite has exsolved flame‐like pentlandite (Fe/Fe + Ni = 0.5–0.6). Chalcopyrite is almost lacking, and no pyrite has been found. As a hot desert find, NWA 2737 shows astonishingly fresh sulfides. The composition of troilite coexisting with Ni‐Fe alloys is completely at odds with Chassigny and Nahkla sulfides (pyrite + metal‐deficient monoclinic‐type pyrrhotite). It indicates strongly reducing crystallization conditions (close to IW), several log units below the fO2 conditions inferred from chromites compositions and accepted for Chassignites (FMQ‐1 log unit). It is proposed that reduction in sulfides into base and precious metal alloys is operated via sulfur degassing, which is supported by the highly resorbed and denticulated shape of sulfide blebs and their spongy textures. Shock‐related S degassing may be responsible for considerable damages in magmatic sulfide structures and sulfide assemblages, with concomitant loss of magnetic properties as documented in some other Martian meteorites.  相似文献   

19.
Abstract— Metal‐troilite textures are examined in metamorphosed and impact‐affected ordinary chondrites to examine the response of these phases to rapid changes in temperature. Complexly intergrown metal‐troilite textures are shown to form in response to three different impact‐related processes. (1) During impacts, immiscible melt emulsions form in response to spatially focused heating. (2) Immediately after impact events, re‐equilibration of heterogeneously distributed heat promotes metamorphism adjacent to zones of maximum impact heating. Where temperatures exceed ~850 ° C, this post‐impact metamorphism results in melting of conjoined metal‐troilite grains in chondrites that were previously equilibrated through radiogenic metamorphism. When the resulting Fe‐Ni‐S melt domains crystallize, a finely intergrown mixture of troilite and metal forms, which can be zoned with kamacite‐rich margins and taenite‐rich cores. (3) At lower temperatures, post‐impact metamorphism can also cause liberation of sulfur from troilite, which migrates into adjacent Fe‐Ni metal, allowing formation of troilite and occasionally copper within the metal during cooling. Because impact events cause heating within a small volume, post‐impact metamorphism is a short duration event (days to years) compared with radiogenic metamorphism (>106 years). The fast kinetics of metal‐sulfide reactions allows widespread textural changes in conjoined metal‐troilite grains during post‐impact metamorphism, whereas the slow rate of silicate reactions causes these to be either unaffected or only partially annealed, except in the largest impact events. Utilizing this knowledge, information can be gleaned as to whether a given meteorite has suffered a post‐impact thermal overprint, and some constraints can be placed on the temperatures reached and duration of heating.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号