首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 508 毫秒
1.
Abstract— Fischer‐Tropsch catalysis, by which CO and H2 are converted to CH4 on the surface of transition metals, has been considered to be one of the most important chemical reactions in many planetary processes, such as the formation of the solar and circumplanetary nebulae, the expansion of vapor clouds induced by cometary impacts, and the atmospheric re‐entry of vapor condensate due to asteroidal impacts. However, few quantitative experimental studies have been conducted for the catalytic reaction under conditions relevant to these planetary processes. In this study, we conduct Fischer‐Tropsch catalytic experiments at low pressures (1.3 times 10?4 bar ≤ P ≤ 5.3 times 10?1 bar) over a wide range of H2/CO ratios (0.25–1000) using pure iron, pure nickel, and iron‐nickel alloys. We analyze what gas species are produced and measure the CH4 formation rate. Our results indicate that the CH4 formation rate for iron catalysts strongly depends on both pressure and the H2/CO ratio, and that nickel is a more efficient catalyst at lower pressures and lower H2/CO ratios. This difference in catalytic properties between iron and nickel may come from the reaction steps concerning disproportionation of CO, hydrogenation of surface carbon, and the poisoning of the catalyst. These results suggest that nickel is important in the atmospheric re‐entry of impact condensate, while iron is efficient in circumplanetary subnebulae. Our results also indicate that previous numerical models of iron catalysis based on experimental data at 1 bar considerably overestimate CH4 formation efficiency at lower pressures, such as the solar nebula and the atmospheric re‐entry of impact condensate.  相似文献   

2.
Abstract— Detailed laboratory studies have been carried out in order to simulate the interaction between nanometer‐sized kamacite metal particles and different gas mixtures consisting of H2:H2S (250:0.1), H2:CO (250:1), and H2:CO:H2S (250:1:0.1) under nebular‐type conditions (5 × 10?4 atm and 473 K). Reaction of H2 + H2S with kamacite particles for 1000 h leads to the formation of pyrrhotite. Incorporation of CO into the gaseous reactant mixture results in the formation of both sulfide and carbide phases. At the same time, amorphous C is deposited onto the metal particles and organic molecules are evolved, namely hydrocarbons and thiols in the C1‐C5 and C1‐C2 range, respectively. Carbon deposition and production of organics are enhanced with respect to experiments performed with H2 + CO, where a carbide phase is formed. There is no evidence for the existence of S‐poisoning effects on the metal‐catalysed hydrogenation of CO through Fischer‐Tropsch‐type reactions in nebular environments. In fact, it is experimentally demonstrated that S‐containing organic species could be synthesized by such reactions from nebular gas.  相似文献   

3.
Abstract— Fischer‐Tropsch‐type (FTT) reactions have been hypothesized to contribute to the formation of organic compounds in the early solar system, but it has been difficult to identify a signature of such reactions in meteoritic organics. The work reported here examined whether temperature‐dependent carbon isotopic fractionation of FTT reactions might provide such a signature. Analyses of bulk organic deposits resulting from FTT experiments show a slight trend toward lighter carbon isotopic ratios with increasing temperature. It is unlikely, however, that these carbon isotopic signatures could provide definitive provenance for organic compounds in solar system materials produced through FTT reactions, because of the small scale of the observed fractionations and the possibility that signatures from many different temperatures may be present in any specific grain.  相似文献   

4.
Organic matter (OM) was widespread in the early solar nebula and might have played an important role for the delivery of prebiotic molecules to the early Earth. We investigated the textures, isotopic compositions, and functional chemistries of organic grains in the Renazzo carbonaceous chondrite by combined high spatial resolution techniques (electron microscopy–secondary ion mass spectrometry). Morphologies are complex on a submicrometer scale, and some organics exhibit a distinct texture with alternating layers of OM and minerals. These layered organics are also characterized by heterogeneous 15N isotopic abundances. Functional chemistry investigations of five focused ion beam‐extracted lamellae by electron energy loss spectroscopy reveal a chemical complexity on a nanometer scale. Grains show absorption at the C‐K edge at 285, 286.6, 287, and 288.6 eV due to polyaromatic hydrocarbons, different carbon‐oxygen, and aliphatic bonding environments with varying intensity. The nitrogen K‐edge functional chemistry of three grains is shown to be highly complex, and we see indications of amine (C‐NHx) or amide (CO‐NR2) chemistry as well as possible N‐heterocycles and nitro groups. We also performed low‐loss vibrational spectroscopy with high energy resolution and identified possible D‐ and G‐bands known from Raman spectroscopy and/or absorption from C=C and C‐O stretch modes known from infrared spectroscopy at around 0.17 and 0.2 eV energy loss. The observation of multiglobular layered organic aggregates, heterogeneous 15N‐anomalous compositions, and indication of NHx‐(amine) functional chemistry lends support to recent ideas that 15N‐enriched ammonia (NH3) was a powerful agent to synthesize more complex organics in aqueous asteroidal environments.  相似文献   

5.
Abstract– Refractory materials, such as calcium‐aluminum‐rich inclusions (CAIs) and crystalline silicates, are widely found in chondritic meteorites as well as comets, taken as evidence for large‐scale mixing in the solar nebula. Most models for mixing in the solar nebula begin with a well‐formed protoplanetary disk. Here, we relax this assumption by modeling the formation and evolution of the solar nebula during and after the period when it accreted material from its parent molecular cloud. We consider how disk building impacts the long‐term evolution of the disk and the implications for grain transport and mixing within it. Our model shows that materials that formed before infall was complete could be preserved in primitive bodies, especially those that accreted in the outer disk. This potentially explains the discovery of refractory objects with low initial 26Al/27Al ratios in comets. Our model also shows that the highest fraction of refractory materials in meteorites formed around the time that infall stopped. Thus, we suggest that the calcium‐aluminum‐rich inclusions in chondrites would be dominated by the population that formed during the transition from class I to class II stage of young stellar objects. This helps us to understand the meaning of t = 0 in solar system chronology. Moreover, our model offers a possible explanation for the existence of isotopic variations observed among refractory materials—that the anomalous materials formed before the collapse of the parent molecular cloud was complete.  相似文献   

6.
Abstract– Asteroids and their fragments have impacted the Earth for the last 4.5 Gyr. Carbonaceous meteorites are known to contain a wealth of indigenous organic molecules, including amino acids, which suggests that these meteorites could have been an important source of prebiotic organic material during the origins of life on Earth and possibly elsewhere. We report the detection of extraterrestrial amino acids in thermally altered type 3 CV and CO carbonaceous chondrites and ureilites recovered from Antarctica. The amino acid concentrations of the thirteen Antarctic meteorites ranged from 300 to 3200 parts‐per‐billion (ppb), generally much less abundant than in amino acid‐rich CI, CM, and CR carbonaceous chondrites that experienced much lower temperature aqueous alteration on their parent bodies. In contrast to low‐temperature aqueously altered meteorites that show complete structural diversity in amino acids formed predominantly by Strecker–cyanohydrin synthesis, the thermally altered meteorites studied here are dominated by small, straight‐chain, amine terminal (n‐ω‐amino) amino acids that are not consistent with Strecker formation. The carbon isotopic ratios of two extraterrestrial n‐ω‐amino acids measured in one of the CV chondrites (δ13C approximately ?25‰) are consistent with 13C‐depletions observed previously in hydrocarbons produced by Fischer‐Tropsch type reactions. The predominance of n‐ω‐amino acid isomers in thermally altered meteorites hints at cosmochemical mechanisms for the preferential formation and preservation of a small subset of the possible amino acids.  相似文献   

7.
Exogenous delivery of amino acids and other organic molecules to planetary surfaces may have played an important role in the origins of life on Earth and other solar system bodies. Previous studies have revealed the presence of indigenous amino acids in a wide range of carbon‐rich meteorites, with the abundances and structural distributions differing significantly depending on parent body mineralogy and alteration conditions. Here we report on the amino acid abundances of seven type 3–6 CK chondrites and two Rumuruti (R) chondrites. Amino acid measurements were made on hot water extracts from these meteorites by ultrahigh‐performance liquid chromatography with fluorescence detection and time‐of‐flight mass spectrometry. Of the nine meteorites analyzed, four were depleted in amino acids, and one had experienced significant amino acid contamination by terrestrial biology. The remaining four, comprised of two R and two CK chondrites, contained low levels of amino acids that were predominantly the straight chain, amino‐terminal (n‐ω‐amino) acids β‐alanine, and γ‐amino‐n‐butyric acid. This amino acid distribution is similar to what we reported previously for thermally altered ureilites and CV and CO chondrites, and these n‐ω‐amino acids appear to be indigenous to the meteorites and not the result of terrestrial contamination. The amino acids may have been formed by Fischer–Tropsch‐type reactions, although this hypothesis needs further testing.  相似文献   

8.
Fischer-Tropsch catalysis, which converts CO and H2 into CH4 on the surface of iron catalyst, has been proposed to produce the CH4 on Titan during its formation process in a circum-planetary subnebula. However, Fischer-Tropsch reaction rate under the conditions of subnebula have not been measured quantitatively yet. In this study, we conduct laboratory experiments to determine CH4 formation rate and also conduct theoretical calculation of clathrate formation to clarify the significance of Fischer-Tropsch catalysis in a subnebula. Our experimental result indicates that the range of conditions where Fischer-Tropsch catalysis proceeds efficiently is narrow (T∼500-600 K) in a subnebula because the catalysts are poisoned at temperatures above 600 K under the condition of subnebula (i.e., H2/CO = 1000). This suggests that an entire subnebula may not become rich in CH4 but rather that only limited region of a subnebula may enriched in CH4 (i.e., CH4-rich band formation). Our experimental result also suggests that both CO and CO2 are converted into CH4 within time significantly shorter than the lifetime of the solar nebula at the optimal temperatures around 550 K. The calculation result of clathration shows that CO2-rich satellitesimals are formed in the catalytically inactive outer region of subnebula. In the catalytically active inner region, CH4-rich satellitesimals are formed. The resulting CH4-rich satellitesimals formed in this region play an important role in the origin of CH4 on Titan. When our experimental data are applied to a high-pressure model for subnebula evolution, it would predict that there should be CO2 underneath the Iapetus subsurface and no thick CO2 ice layer on Titan's icy crust. Such surface and subsurface composition, which may be observed by Cassini-Huygens mission, would provide crucial information on the origin of icy satellites.  相似文献   

9.
CO photodissociation in the solar nebula and/or parent cloud has been proposed to be the mechanism responsible for forming the 16O‐poor reservoir of the calcium‐aluminum‐rich inclusion (CAI) mixing line. However, laboratory experiments on CO photolysis found a wavelength dependence in the oxygen isotope ratios of the product O atoms, which was interpreted as proof that CO photolysis was not a viable mechanism. Here, I report photochemical simulations of these experiments using line‐by‐line CO spectra to identify the origin of the wavelength dependence. At long wavelengths (>105 nm), the line‐by‐line spectra for isotopic CO can explain the experimental data with a combination of C16O self‐shielding and reduced dissociation probabilities for C18O. At short wavelengths, the greater number of diffuse bands increases the importance of mass‐dependent fractionation, lowering the slope to below unity. The line‐by‐line isotopic spectra are then applied to CO photodissociation in a model solar nebula. Three FUV sources are considered (1) HD 303308, an O4 star in Carina; (2) HD 36981, a B5 star in Orion; and (3) TW Hydrae, a T Tauri star of 10 Myr age. Using reduced dissociation probabilities for C18O based on the photolysis experiments yields nebular water slopes approximately 0.95–1.0 for HD 303308 and TW Hya, and approximately 0.8–1.5 for HD 36981. For the central protostar case (TW Hya) with a simplified treatment of the 2‐D radiative transfer, slopes approximately 0.95–1.0 are obtained, independent of the C18O dissociation probability. Greatly improved measurements of the C17O and C18O cross sections and dissociation probabilities are in progress.  相似文献   

10.
Abstract— The reaction between kamacite grains and H2 + CO gas mixture has been tested in the laboratory under experimental conditions presumed for interplanetary dust particle (IDP) formation in a nebular-type environment (H2:CO = 250:1; 5 × 10?4 atm total pressure, and 473 K). Carbon deposition, hydrocarbon production in the C1–C4 range, and the formation of an ?-carbide phase occur when well-defined model FeNi bcc alloy (kamacite) particles are exposed to a mixture of H2 + CO during 103 h. These results strongly support the idea that gas-solid reactions in the solar nebula during CO hydrogenation represent a plausible scenario for the formation of carbides and carbonaceous materials in IDPs, as well as for the production of hydrocarbons through Fischer-Tropsch-type reactions.  相似文献   

11.
Abstract— Ureilites are coarse-grained ultramafic rocks whose petrography, mineral chemistry, lithophile element bulk chemistry, and Sm-Nd isotopic systematics suggest that they are highly fractionated igneous rocks and thus are products of common planetary differentiation processes. However, they also have primitive characteristics that are difficult to reconcile with extensive igneous processing. These include high abundances of siderophile elements, planetary-type noble gases, and the oxygen isotopic signature of unequilibrated solar system materials. The incongruity between igneous and primitive features constitutes the most important problem in understanding ureilite petrogenesis. In this review the petrographic, chemical, and isotopic characteristics of ureilites are summarized, and the petrogenetic implications of these characteristics are discussed. The most important constraints on ureilite petrogenesis are: 1) Ureilites have lost a basaltic complement; 2) Ureilites had a two-stage cooling history; 3) Ureilites are probably residues but partly crystallized from melts; 4) Ureilites are derived from a minimum of six reservoirs which were distinct in oxygen isotopic composition and did not equilibrate with one another; 5) A correlation between oxygen isotopic composition and mg ratio was established in ureilite parent material in the solar nebula; 6) If carbon-metal-silicate-CO/CO2 equilibrium was maintained then the mg ratios of ureilites were pressure/depth-dependent; however, if the pressure was sufficiently high (> 100–200 bars) that a CO/CO2 gas phase was not present then carbon and metal could have been at equilibrium with all ureilite mg ratios at the same pressure; 7) Ureilites either lost a low-melting temperature metal fraction or gained a refractory-rich metal component; 8) Primordial noble gases were retained in carbon in ureilites; 9) The ultramafic ureilite assemblage formed at ~4.55 Ga, but Sm-Nd and Rb-Sr isotopic systematics have been subsequently disturbed. Recently proposed models for ureilite petrogenesis are evaluated in terms of how well they satisfy these constraints; no models unequivocally satisfy all of them. Reconciling constraints 5 and 6 requires a large ureilite parent body.  相似文献   

12.
Abstract— We examine the size sorting of chondrules and metal grains within the context of the jet flow model for chondrule/CAI formation. In this model, chondrules, CAIs, AOAs, metal grains, and related components of meteorites are assumed to have formed in the outflow region of the innermost regions of the solar nebula and then were ejected, via the agency of a bipolar jet flow, to outer regions of the nebula. We wish to see if size sorting of chondrules and metal grains is a natural consequence of this model. To assist in this task, we used a multiprocessor system to undertake Monte Carlo simulations of the early solar nebula. The paths of a statistically significant number of chondrules and metal grains were analyzed as they were ejected from the outflow and travelled over or into the solar nebula. For statistical reasons, only distances ≤3 AU from the Sun were examined. Our results suggest that size sorting can occur provided that the solar nebula jet flow had a relatively constant flow rate as function of time. A constant flow rate outflow produces size sorting, but it also produces a sharp size distribution of particles across the nebula and a metal‐rich Fe/Si ratio. When the other extreme of a fully random flow rate was examined, it was found that size sorting was removed, and the initial material injected into the flow was simply spread over most of the the solar nebula. These results indicate that the outflow can act as a size and density classifier. By simply varying the flow rate, the outflow can produce different types of proto‐meteorites from the same chondrule and metal grain feed stock. As a consequence of these investigations, we observed that the number of particles that impact into the nebula drops off moderately rapidly as a function of distance r from the Sun. We also derive a corrected form of the Epstein stopping time.  相似文献   

13.
We have elaborated an evolutionary turbulent model of the subnebula of Saturn derived from that of Dubrulle (1993, Icarus106, 59-76) for the solar nebula, which is valid for a geometrically thin disk. We demonstrate that if carbon and nitrogen were in the form of CO and N2, respectively, in the early subnebula, these molecules were not subsequently converted into CH4 and NH3 during the evolution of the disk, contrary to the current scenario initially proposed by Prinn and Fegley (1981, Astrophys. J., 249, 308-317). However, if the early subnebula contained some CH4 and NH3, these gases were not subsequently converted into CO and N2. We argue that Titan must have been formed from planetesimals migrating from the outer part of the subnebula to the present orbit of the satellite. These planetesimals were relics of those embedded in the feeding zone of Saturn prior to the completion of the planet and contained hydrates of NH3 and clathrate hydrates of CH4. It is shown that, for plausible abundances of CH4 and NH3 in the solar nebula at 10 AU, the masses of methane and nitrogen trapped in Titan were higher than the estimate of masses of these components in the primitive atmosphere of the satellite. If our scenario is valid and if our turbulent model properly describes the structure and the evolution of the actual subnebula of Saturn, the Xe/C ratio should be six times higher in Titan's atmosphere today than in the Sun, while the current scenario would probably result in a quasi solar Xe/C ratio. The mass spectrometer and gas chromatograph instrument aboard the Huygens Titan probe of the Cassini mission has the capability of measuring this ratio in 2004, thus permitting us to discriminate between the current scenario and the one proposed in this report.  相似文献   

14.
Abstract— The degree of isotopic spatial heterogeneity in the solar nebula has long been a puzzle, with different isotopic systems implying either large‐scale initial spatial homogeneity (e.g., 26Al chronometry) or a significant amount of preserved heterogeneity (e.g., ratios of the three stable oxygen isotopes, 16O, 17O, and 18O). We show here that in a marginally gravitationally unstable (MGU) solar nebula, the efficiency of large‐scale mixing and transport is sufficient to spatially homogenize an initially highly spatially heterogeneous nebula to dispersions of ?10% about the mean value of 26Al/27Al on time scales of thousands of years. A similar dispersion would be expected for 17O/16O and 18O/16O ratios produced by ultraviolet photolysis of self‐shielded molecular CO gas at the surface of the outer solar nebula. In addition to preserving a chronological interpretation of initial 26Al/27Al ratios and the self‐shielding explanation for the oxygen isotope ratios, these solar nebula models offer a self‐consistent environment for achieving large‐scale mixing and transport of thermally annealed dust grains, shock‐wave processing of chondrules and refractory inclusions, and giant planet formation.  相似文献   

15.
Abstract— Primary minerals in calcium‐aluminum‐rich inclusions (CAIs), Al‐rich and ferromagnesian chondrules in each chondrite group have δ18O values that typically range from ?50 to +5%0. Neglecting effects due to minor mass fractionations, the oxygen isotopic data for each chondrite group and for micrometeorites define lines on the three‐isotope plot with slopes of 1.01 ± 0.06 and intercepts of ?2 ± 1. This suggests that the same kind of nebular process produced the 16O variations among chondrules and CAIs in all groups. Chemical and isotopic properties of some CAIs and chondrules strongly suggest that they formed from solar nebula condensates. This is incompatible with the existing two‐component model for oxygen isotopes in which chondrules and CAIs were derived from heated and melted 16O‐rich presolar dust that exchanged oxygen with 16O‐poor nebular gas. Some FUN CAIs (inclusions with isotope anomalies due to fractionation and unknown nuclear effects) have chemical and isotopic compositions indicating they are evaporative residues of presolar material, which is incompatible with 16O fractionation during mass‐independent gas phase reactions in the solar nebula. There is only one plausible reason why solar nebula condensates and evaporative residues of presolar materials are both enriched in 16O. Condensation must have occurred in a nebular region where the oxygen was largely derived from evaporated 16O‐rich dust. A simple model suggests that dust was enriched (or gas was depleted) relative to cosmic proportions by factors of ~10 to >50 prior to condensation for most CAIs and factors of 1–5 for chondrule precursor material. We infer that dust‐gas fractionation prior to evaporation and condensation was more important in establishing the oxygen isotopic composition of CAIs and chondrules than any subsequent exchange with nebular gases. Dust‐gas fractionation may have occurred near the inner edge of the disk where nebular gases accreted into the protosun and Shu and colleagues suggest that CAIs formed.  相似文献   

16.
John T. Wasson 《Icarus》2008,195(2):895-907
Studies of matrix in primitive chondrites provide our only detailed information about the fine fraction (diameter <2 μm) of solids in the solar nebula. A minor fraction of the fines, the presolar grains, offers information about the kinds of materials present in the molecular cloud that spawned the Solar System. Although some researchers have argued that chondritic matrix is relatively unaltered presolar matter, meteoritic chondrules bear witness to multiple high-temperature events each of which would have evaporated those fines that were inside the high-temperature fluid. Because heat is mainly transferred into the interior of chondrules by conduction, the surface temperatures of chondrules were probably at or above 2000 K. In contrast, the evaporation of mafic silicates in a canonical solar nebula occurs at around 1300 K and FeO-rich, amorphous, fine matrix evaporates at still lower temperatures, perhaps near 1200 K. Thus, during chondrule formation, the temperature of the placental bath was probably >700 K higher than the evaporation temperatures of nebular fines. The scale of chondrule forming events is not known. The currently popular shock models have typical scales of about 105 km. The scale of nebular lightning is less well defined, but is certainly much smaller, perhaps in the range 1 to 1000 m. In both cases the temperature pulses were long enough to evaporate submicrometer nebular fines. This interpretation disagrees with common views that meteoritic matrix is largely presolar in character and CI-chondrite-like in composition. It is inevitable that presolar grains (both those recognized by their anomalous isotopic compositions and those having solar-like compositions) that were within the hot fluid would also have evaporated. Chondrule formation appears to have continued down to the temperatures at which planetesimals formed, possibly around 250 K. At temperatures >600 K, the main form of C is gaseous CO. Although the conversion of CO to CH4 at lower temperatures is kinetically inhibited, radiation associated with chondrule formation would have accelerated the conversion. There is now evidence that an appreciable fraction of the nanodiamonds previously held to be presolar were actually formed in the solar nebula. Industrial condensation of diamonds from mixtures of CH4 and H2 implies that high nebular CH4/CO ratios favored nanodiamond formation. A large fraction of chondritic insoluble organic matter may have formed in related processes. At low nebular temperatures appreciable water should have been incorporated into the smoke that condensed following dust (and some chondrule) evaporation. If chondrule formation continued down to temperatures as low as 250 K this process could account for the water concentration observed in primitive chondrites such as LL3.0 and CO3.0 chondrites. Higher H2O contents in CM and CI chondrites may reflect asteroidal redistribution. In some chondrite groups (e.g., CR) the Mg/Si ratio of matrix material is appreciably (30%) lower than that of chondrules but the bulk Mg/Si ratio is roughly similar to the CI or solar ratio. This has been interpreted as a kind of closed-system behavior sometimes called “complementarity.” This leads to the conclusion that nebular fines were efficiently agglomerated. Its importance, however is obscured by the observation that bulk Mg/Si ratios in ordinary and enstatite chondrites are much lower than those in carbonaceous chondrites, and thus that complementarity did not hold throughout the solar nebula.  相似文献   

17.
We propose an interpretation of the composition of volatiles observed in comets based on their trapping in the form of clathrate hydrates in the solar nebula. The formation of clathrates is calculated from the statistical thermodynamics of Lunine and Stevenson (1985, Astrophys. J. Suppl. 58, 493-531), and occurs in an evolutionary turbulent solar nebula described by the model of Hersant et al. (2001, Astrophys. J. 554, 391-407). It is assumed that clathrate hydrates were incorporated into the icy grains that formed cometesimals. The strong depletion of the N2 molecule with respect to CO observed in some comets is explained by the fact that CO forms clathrate hydrates much more easily than does N2. The efficiency of this depletion, as well as the amount of trapped CO, depends upon the amount of water ice available in the region where the clathration took place. This might explain the diversity of CO abundances observed in comets. The same theory, applied to the trapping of volatiles around 5 AU, explains the enrichments in Ar, Kr, Xe, C, and N with respect to the solar abundance measured in the deep troposphere of Jupiter [Gautier et al 2001a] and [Gautier et al 2001b].  相似文献   

18.
Abstract— Amoeboid olivine aggregates (AOAs) in the LL3.0 Semarkona chondrite have been studied by secondary ion mass spectrometry. The AOAs mainly consist of aggregates of olivine grains with interstitial Al‐Ti‐rich diopside and anorthite. Oxygen‐isotopic compositions of all phases are consistently enriched in 16O, with δ17,18O = ~?50‰. The initial 26Al/27Al ratios are calculated to be 5.6 ± 0.9 (2σ) × 10?5. These values are equivalent to those of AOAs and fine‐grained calcium‐aluminum‐rich inclusions (FGIs) from pristine carbonaceous chondrites. This suggests that AOAs in ordinary chondrites formed in the same 16O‐rich calcium‐aluminum‐rich inclusion (CAI)‐forming region of the solar nebula as AOAs and FGIs in carbonaceous chondrites, and subsequently moved to the accretion region of the ordinary chondrite parent body in the solar nebula.  相似文献   

19.
The degree to which dust enrichment enhances the oxygen fugacity (fO2) of a system otherwise solar in composition depends on the dust composition. Equilibrium calculations were performed at 10?3 bar in systems enriched by a factor of 104 in two fundamentally different types of dust to investigate the iron oxidation state in both cases. One type of dust, called SC for solar condensate, stopped equilibrating with solar gas at too high a temperature for FeO or condensed water to be stabilized in any form, and thus has the composition expected of a nebular condensate. The other has CI chondrite composition, appropriate for a parent body that accreted from SC dust and low‐temperature ice. Upon total vaporization at 2300 K, both systems have high fO2, >IW. In the SC dust‐enriched system, FeO of the bulk silicate reaches ~10 wt% at 1970 K but decreases to <1 wt% below 1500 K. The FeO undergoes reduction because consumption of gaseous oxygen by silicate recondensation causes a precipitous drop in fO2. Thus, enrichment in dust having the composition of likely nebular condensates cannot yield a sufficiently oxidizing environment to account for the FeO contents of chondrules. The fO2 of the system enriched in water‐rich, CI dust, however, remains high throughout condensation, as gaseous water remains uncondensed until very low temperatures. This allows silicate condensates to achieve and maintain FeO contents of 27–35 wt%. Water‐rich parent bodies are thus excellent candidate sources of chondrule precursors. Impacts on such bodies may have created the combination of high dust enrichment, total pressure, and fO2 necessary for chondrule formation.  相似文献   

20.
Abstract— The kinetics and mechanisms of kamacite sulfurization were studied experimentally at temperatures and H2S/H2 ratios relevant to the solar nebula. Pieces of the Canyon Diablo meteorite were heated at 558 K, 613 K, and 643 K in 50 parts per million by volume (ppmv) H2S-H2 gas mixtures for up to one month. Optical microscopy and x-ray diffraction analyses show that the morphology and crystal orientation of the resulting sulfide layers vary with both time and temperature. Electron microprobe analyses reveal three distinct phases in the reaction products: monosulfide solid solution (mss), (Fe, Ni, Co)1-xS, pentlandite (Fe, Ni, Co)9-xS8, and a P-rich phase. The bulk composition of the remnant metal was not significantly changed by sulfurization. Kamacite sulfurization at 558 K followed parabolic kinetics for the entire duration of the experiments. Sulfide layers that formed at 613 K grew linearly with time, while those that formed at 643 K initially grew linearly with time then switched to parabolic kinetics upon reaching a critical thickness. The experimental results suggest that a variety of thermodynamic, kinetic, and physical processes control the final composition and morphology of the sulfide layers. We combine morphological, x-ray diffraction, electron microprobe, and kinetic data to produce a comprehensive model of sulfide formation in the solar nebula. Then, we present a set of criteria to assist in the identification of solar nebula condensate sulfides in primitive meteorites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号