首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract— Correlated in situ analyses of the oxygen and magnesium isotopic compositions of aluminum‐rich chondrules from unequilibrated enstatite chondrites were obtained using an ion microprobe. Among eleven aluminum‐rich chondrules and two plagioclase fragments measured for 26Al‐26Mg systematics, only one aluminum‐rich chondrule contains excess 26Mg from the in situ decay of 26Al; the inferred initial ratio (26Al/27Al)o = (6.8 ± 2.4) × 10?6 is consistent with ratios observed in chondrules from carbonaceous chondrites and unequilibrated ordinary chondrites. The oxygen isotopic compositions of five aluminum‐rich chondrules and one plagioclase fragment define a line of slope ?0.6 ± 0.1 on a three‐oxygen‐isotope diagram, overlapping the field defined by ferromagnesian chondrules in enstatite chondrites but extending to more 16O‐rich compositions with a range in δ18O of about ?12‰. Based on their oxygen isotopic compositions, aluminum‐rich chondrules in unequilibrated enstatite chondrites are probably genetically related to ferromagnesian chondrules and are not simple mixtures of materials from ferromagnesian chondrules and calcium‐aluminum‐rich inclusions (CAIs). Relative to their counterparts from unequilibrated ordinary chondrites, aluminum‐rich chondrules from unequilibrated enstatite chondrites show a narrower oxygen isotopic range and much less resolvable excess 26Mg from the in situ decay of 26Al, probably resulting from higher degrees of equilibration and isotopic exchange during post‐crystallization metamorphism. However, the presence of 26Al‐bearing chondrules within the primitive ordinary, carbonaceous, and now enstatite chondrites suggests that 26Al was at least approximately homogeneously distributed across the chondrite‐forming region.  相似文献   

2.
Abstract— Calcium‐aluminum‐rich refractory inclusions (CAIs) in CR chondrites are rare (<1 vol%), fairly small (<500 μm) and irregularly‐shaped, and most of them are fragmented. Based on the mineralogy and petrography, they can be divided into grossite ± hibonite‐rich, melilite‐rich, and pyroxene‐anorthite‐rich CAIs. Other types of refractory objects include fine‐grained spinel‐melilite‐pyroxene aggregates and amoeboid olivine aggregates (AOAs). Some of the pyroxene‐anorthite‐rich CAIs have igneous textures, and most melilite‐rich CAIs share similarities to both the fluffy and compact type A CAIs found in CV chondrites. One major difference between these CAIs and those in CV, CM, and CO chondrites is that secondary mineral phases are rare. In situ ion microprobe analyses of oxygen‐isotopic compositions of 27 CAIs and AOAs from seven CR chondrites demonstrate that most of the CAIs are 16O‐rich (δ17O of hibonite, melilite, spinel, pyroxene, and anorthite < ?22‰) and isotopically homogeneous within 3–4‰. Likewise, forsterite, spinel, anorthite, and pyroxene in AOAs have nearly identical, 16O‐rich compositions (?24‰ < δ17O < ?20‰). In contrast, objects which show petrographic evidence for extensive melting are not as 16O‐rich (δ17O less than ?18‰). Secondary alteration minerals replacing 16O‐rich melilite in melilite‐rich CAIs plot along the terrestrial fractionation line. Most CR CAIs and AOAs are mineralogically pristine objects that largely escaped thermal metamorphism and secondary alteration processes, which is reflected in their relatively homogeneous 16O‐rich compositions. It is likely that these objects (or their precursors) condensed in an 16O‐rich gaseous reservoir in the solar nebula. In contrast, several igneous CAIs are not very enriched in 16O, probably as a result of their having melted in the presence of a relatively 16O‐poor nebular gas. If the precursors of these CAIs were as 16O‐rich as other CR CAIs, this implies either temporal excursions in the isotopic composition of the gas in the CAI‐forming regions and/or radial transport of some CAI precursors into an 16O‐poor gas. The absence of oxygen isotope heterogeneity in the primary minerals of melilite‐rich CAIs containing alteration products suggests that mineralogical alteration in CR chondrites did not affect oxygen‐isotopic compositions of their CAIs.  相似文献   

3.
The distribution of the short‐lived radionuclide 26Al in the early solar system remains a major topic of investigation in planetary science. Thousands of analyses are now available but grossite‐bearing Ca‐, Al‐rich inclusions (CAIs) are underrepresented in the database. Recently found grossite‐bearing inclusions in CO3 chondrites provide an opportunity to address this matter. We determined the oxygen and magnesium isotopic compositions of individual phases of 10 grossite‐bearing CAIs in the Dominion Range (DOM) 08006 (CO3.0) and DOM 08004 (CO3.1) chondrites. All minerals in DOM 08006 CAIs as well as hibonite, spinel, and pyroxene in DOM 08004 are uniformly 16O‐rich (Δ17O = ?25 to ?20‰) but grossite and melilite in DOM 08004 CAIs are not; Δ17O of grossite and melilite range from ~ ?11 to ~0‰ and from ~ ?23 up to ~0‰, respectively. Even within this small suite, in the two chondrites a bimodal distribution of the inferred initial 26Al/27Al ratios (26Al/27Al)0 is seen, with four having (26Al/27Al)0 ≤1.1 × 10?5 and six having (26Al/27Al)0 ≥3.7 × 10?5. Five of the 26Al‐rich CAIs have (26Al/27Al)0 within error of 4.5 × 10?5; these values can probably be considered indistinguishable from the “canonical” value of 5.2 × 10?5 given the uncertainty in the relative sensitivity factor for grossite measured by secondary ion mass spectrometry. We infer that the 26Al‐poor CAIs probably formed before the radionuclide was fully mixed into the solar nebula. All minerals in the DOM 08006 CAIs, as well as spinel, hibonite, and Al‐diopside in the DOM 08004 CAIs retained their initial oxygen isotopic compositions, indicating homogeneity of oxygen isotopic compositions in the nebular region where the CO grossite‐bearing CAIs originated. Oxygen isotopic heterogeneity in CAIs from DOM 08004 resulted from exchange between the initially 16O‐rich (Δ17O ~?24‰) melilite and grossite and 16O‐poor (Δ17O ~0‰) fluid during hydrothermal alteration on the CO chondrite parent body; hibonite, spinel, and Al‐diopside avoided oxygen isotopic exchange during the alteration. Grossite and melilite that underwent oxygen isotopic exchange avoided redistribution of radiogenic 26Mg and preserved undisturbed internal Al‐Mg isochrons. The Δ17O of the fluid can be inferred from O‐isotopic compositions of aqueously formed fayalite and magnetite that precipitated from the fluid on the CO parent asteroid. This and previous studies suggest that O‐isotope exchange during fluid–rock interaction affected most CAIs in CO ≥3.1 chondrites.  相似文献   

4.
We identified 66 chromite grains from 42 of ~5000 micrometeorites collected from Indian Ocean deep‐sea sediments and the South Pole water well. To determine the chromite grains precursors and their contribution to the micrometeorite flux, we combined quantitative electron microprobe analyses and oxygen isotopic analyses by high‐resolution secondary ion mass spectrometry. Micrometeorite chromite grains show variable O isotopic compositions with δ18O values ranging from ?0.8 to 6.0‰, δ17O values from 0.3 to 3.6‰, and Δ17O values from ?0.9 to 1.6‰, most of them being similar to those of chromites from ordinary chondrites. The oxygen isotopic compositions of olivine, considered as a proxy of chromite in chromite‐bearing micrometeorites where chromite is too small to be measured in ion microprobe have Δ17O values suggesting a principal relationship to ordinary chondrites with some having carbonaceous chondrite precursors. Furthermore, the chemical compositions of chromites in micrometeorites are close to those reported for ordinary chondrite chromites, but some contribution from carbonaceous chondrites cannot be ruled out. Consequently, carbonaceous chondrites cannot be a major contributor of chromite‐bearing micrometeorites. Based on their oxygen isotopic and elemental compositions, we thus conclude with no ambiguity that chromite‐bearing micrometeorites are largely related to fragments of ordinary chondrites with a small fraction from carbonaceous chondrites, unlike other micrometeorites deriving largely from carbonaceous chondrites.  相似文献   

5.
Abstract– Different oxygen isotopic reservoirs have been recognized in the early solar system. Fluffy type A Ca‐Al‐rich inclusions (CAIs) are believed to be direct condensates from a solar nebular gas, and therefore, have acquired oxygen from the solar nebula. Oxygen isotopic and chemical compositions of melilite crystals in a type A CAI from Efremovka CV3 chondrite were measured to reveal the temporal variation in oxygen isotopic composition of surrounding nebular gas during CAI formation. The CAI is constructed of two domains, each of which has a core‐mantle structure. Reversely zoned melilite crystals were observed in both domains. Melilite crystals in one domain have a homogeneous 16O‐poor composition on the carbonaceous chondrite anhydrous mineral (CCAM) line of δ18O = 5–10‰, which suggests that the domain was formed in a 16O‐poor oxygen isotope reservoir of the solar nebula. In contrast, melilite crystals in the other domain have continuous variations in oxygen isotopic composition from 16O‐rich (δ18O = ?40‰) to 16O‐poor (δ18O = 0‰) along the CCAM line. The oxygen isotopic composition tends to be more 16O‐rich toward the domain rim, which suggests that the domain was formed in a variable oxygen isotope reservoir of the solar nebula. Each domain of the type A CAI has grown in distinct oxygen isotope reservoir of the solar nebula. After the domain formation, domains were accumulated together in the solar nebula to form a type A CAI.  相似文献   

6.
The petrologic and oxygen isotopic characteristics of calcium‐aluminum‐rich inclusions (CAIs) in CO chondrites were further constrained by studying CAIs from six primitive CO3.0‐3.1 chondrites, including two Antarctic meteorites (DOM 08006 and MIL 090010), three hot desert meteorites (NWA 10493, NWA 10498, and NWA 7892), and the Colony meteorite. The CAIs can be divided into hibonite‐bearing inclusions (spinel‐hibonite spherules, monomineralic grains, hibonite‐pyroxene microspherules, and irregular/nodular objects), grossite‐bearing inclusions (monomineralic grains, grossite‐melilite microspherules, and irregular/nodular objects), melilite‐rich inclusions (fluffy Type A, compact type A, monomineralic grains, and igneous fragments), spinel‐pyroxene inclusions (fluffy objects resembling fine‐grained spinel‐rich inclusions in CV chondrites and nodular/banded objects resembling those in CM chondrites), and pyroxene‐anorthite inclusions. They are typically small (98.4 ± 54.4 µm, 1SD) and comprise 1.54 ± 0.43 (1SD) area% of the host chondrites. Melilite in the hot desert and Colony meteorites was extensively replaced by a hydrated Ca‐Al‐silicate during terrestrial weathering and converted melilite‐rich inclusions into spinel‐pyroxene inclusions. The CAI populations of the weathered COs are very similar to those in CM chondrites, suggesting that complete replacement of melilite by terrestrial weathering, and possibly parent body aqueous alteration, would make the CO CAIs CM‐like, supporting the hypothesis that CO and CM chondrites derive from similar nebular materials. Within the CO3.0‐3.1 chondrites, asteroidal alteration significantly resets oxygen isotopic compositions of CAIs in CO3.1 chondrites (?17O: ?25 to ?2‰) but left those in CO3.0‐3.05 chondrites mostly unchanged (?17O: ?25 to ?20‰), further supporting the model whereby thermal metamorphism became evident in CO chondrites of petrologic type ≥3.1. The resistance of CAI minerals to oxygen isotope exchange during thermal metamorphism follows in the order: melilite + grossite < hibonite + anorthite < spinel + diopside + forsterite. Meanwhile, terrestrial weathering destroys melilite without changing the chemical and isotopic compositions of melilite and other CAI minerals.  相似文献   

7.
Chondrites consist of three major components: refractory inclusions (Ca,Al‐rich inclusions [CAIs] and amoeboid olivine aggregates), chondrules, and matrix. Here, I summarize recent results on the mineralogy, petrology, oxygen, and aluminum‐magnesium isotope systematics of the chondritic components (mainly CAIs in carbonaceous chondrites) and their significance for understanding processes in the protoplanetary disk (PPD) and on chondrite parent asteroids. CAIs are the oldest solids originated in the solar system: their U‐corrected Pb‐Pb absolute age of 4567.3 ± 0.16 Ma is considered to represent time 0 of its evolution. CAIs formed by evaporation, condensation, and aggregation in a gas of approximately solar composition in a hot (ambient temperature >1300 K) disk region exposed to irradiation by solar energetic particles, probably near the protoSun; subsequently, some CAIs were melted in and outside their formation region during transient heating events of still unknown nature. In unmetamorphosed, type 2–3.0 chondrites, CAIs show large variations in the initial 26Al/27Al ratios, from <5 × 10–6 to ~5.25 × 10–5. These variations and the inferred low initial abundance of 60Fe in the PPD suggest late injection of 26Al by a wind from a nearby Wolf–Rayet star into the protosolar molecular cloud core prior to or during its collapse. Although there are multiple generations of CAIs characterized by distinct mineralogies, textures, and isotopic (O, Mg, Ca, Ti, Mo, etc.) compositions, the 26Al heterogeneity in the CAI‐forming region(s) precludes determining the duration of CAIs formation using 26Al‐26Mg systematics. The existence of multiple generations of CAIs and the observed differences in CAI abundances in carbonaceous and noncarbonaceous chondrites may indicate that CAIs were episodically formed and ejected by a disk wind from near the Sun to the outer solar system and then spiraled inward due to gas drag. In type 2–3.0 chondrites, most CAIs surrounded by Wark–Lovering rims have uniform Δ17O (= δ17O?0.52 × δ18O) of ~ ?24‰; however, there is a large range of Δ17O (from ~?40 to ~ ?5‰) among them, suggesting the coexistence of 16O‐rich (low Δ17O) and 16O‐poor (high Δ17O) gaseous reservoirs at the earliest stages of the PPD evolution. The observed variations in Δ17O of CAIs may be explained if three major O‐bearing species in the solar system (CO, H2O, and silicate dust) had different O‐isotope compositions, with H2O and possibly silicate dust being 16O‐depleted relative to both the Genesis solar wind Δ17O of ?28.4 ± 3.6‰ and even more 16O‐enriched CO. Oxygen isotopic compositions of CO and H2O could have resulted from CO self‐shielding in the protosolar molecular cloud (PMC) and the outer PPD. The nature of 16O‐depleted dust at the earliest stages of PPD evolution remains unclear: it could have either been inherited from the PMC or the initially 16O‐rich (solar‐like) MC dust experienced O‐isotope exchange during thermal processing in the PPD. To understand the chemical and isotopic composition of the protosolar MC material and the degree of its thermal processing in PPD, samples of the primordial silicates and ices, which may have survived in the outer solar system, are required. In metamorphosed CO3 and CV3 chondrites, most CAIs exhibit O‐isotope heterogeneity that often appears to be mineralogically controlled: anorthite, melilite, grossite, krotite, perovskite, and Zr‐ and Sc‐rich oxides and silicates are 16O‐depleted relative to corundum, hibonite, spinel, Al,Ti‐diopside, forsterite, and enstatite. In texturally fine‐grained CAIs with grain sizes of ~10–20 μm, this O‐isotope heterogeneity is most likely due to O‐isotope exchange with 16O‐poor (Δ17O ~0‰) aqueous fluids on the CO and CV chondrite parent asteroids. In CO3.1 and CV3.1 chondrites, this process did not affect Al‐Mg isotope systematics of CAIs. In some coarse‐grained igneous CV CAIs, O‐isotope heterogeneity of anorthite, melilite, and igneously zoned Al,Ti‐diopside appears to be consistent with their crystallization from melts of isotopically evolving O‐isotope compositions. These CAIs could have recorded O‐isotope exchange during incomplete melting in nebular gaseous reservoir(s) with different O‐isotope compositions and during aqueous fluid–rock interaction on the CV asteroid.  相似文献   

8.
Abstract— In situ SIMS oxygen isotope data were collected from a coarse‐grained type B1 Ca‐Al‐rich inclusion (CAI) and an adjacent fine‐grained CAI in the reduced CV3 Efremovka to evaluate the timing of isotopic alteration of these two objects. The coarse‐grained CAI (CGI‐10) is a sub‐spherical object composed of elongate, euhedral, normally‐zoned melilite crystals ranging up to several hundreds of Pm in length, coarse‐grained anorthite and Al, Ti‐diopside (fassaite), all with finegrained (~10 μm across) inclusions of spinel. Similar to many previously examined coarse‐grained CAIs from CV chondrites, spinel and fassaite are 16O‐rich and melilite is 16O‐poor, but in contrast to many previous results, anorthite is 16O‐rich. Isotopic composition does not vary with textural setting in the CAI: analyses of melilite from the core and mantle and analyses from a variety of major element compositions yield consistent 16O‐poor compositions. CGI‐10 originated in an 16O‐rich environment, and subsequent alteration resulted in complete isotopic exchange in melilite. The fine‐grained CAI (FGI‐12) also preserves evidence of a 1st‐generation origin in an 16O‐rich setting but underwent less severe isotopic alteration. FGI‐12 is composed of spinel ± melilite nodules linked by a mass of Al‐diopside and minor forsterite along the CAI rim. All minerals are very fine‐grained (<5 μm) with no apparent igneous textures or zoning. Spinel, Al‐diopside, and forsterite are 16O‐rich, while melilite is variably depleted in 16O (δ17,18O from ~‐40‰ to ?5‰). The contrast in isotopic distributions in CGI‐10 and FGI‐12 is opposite to the pattern that would result from simultaneous alteration: the object with finer‐grained melilite and a greater surface area/ volume has undergone less isotopic exchange than the coarser‐grained object. Thus, the two CAIs were altered in different settings. As the CAIs are adjacent to each other in the meteorite, isotopic exchange in CGI‐10 must have preceded incorporation of this CAI in the Efremovka parent body. This supports a nebular setting for isotopic alteration of the commonly observed 16O‐poor melilite in coarse‐grained CAIs from CV chondrites.  相似文献   

9.
Abstract— Oxygen isotopes have been measured by ion microprobe in individual minerals (spinel, Al‐Ti‐diopside, melilite, and anorthite) within four relatively unaltered, fine‐grained, spinel‐rich Ca‐Al‐rich inclusions (CAIs) from the reduced CV chondrite Efremovka. Spinel is uniformly 16O‐rich (Δ17O ≤ ?20‰) in all four CAIs; Al‐Ti‐diopside is similarly 16O‐rich in all but one CAI, where it has smaller 16O excesses (‐15‰ ≤ Δ17O ≤ ?10‰). Anorthite and melilite vary widely in composition from 16O‐rich to 16O‐poor (‐22‰ ≤ Δ17O ≤ ?5‰). Two of the CAIs are known to have group II volatility‐fractionated rare‐earth‐element patterns, which is typical of this variety of CAI and which suggests formation by condensation. The association of such trace element patterns with 16O‐enrichment in these CAIs suggests that they formed by gas‐solid condensation from an 16O‐rich gas. They subsequently experienced thermal processing in an 16O‐poor reservoir, resulting in partial oxygen isotope exchange. Within each inclusion, oxygen isotope variations from mineral to mineral are consistent with solid‐state oxygen self‐diffusion at the grain‐to‐grain scale, but such a model is not consistent with isotopic variations at a larger scale in two of the CAIs. The spatial association of 16O depletions with both elevated Fe contents in spinel and the presence of nepheline suggests that late‐stage iron‐alkali metasomatism played some role in modifying the isotopic patterns in some CAIs. One of the CAIs is a compound object consisting of a coarse‐grained, melilite‐rich (type A) lithology joined to a fine‐grained, spinel‐rich one. Melilite and anorthite in the fine‐grained portion are mainly 16O‐rich, whereas melilite in the type A portion ranges from 16O‐rich to 16O‐poor, suggesting that oxygen isotope exchange predated the joining together of the two parts and that both 16O‐rich and 16O‐poor gaseous reservoirs existed simultaneously in the early solar nebula.  相似文献   

10.
Abstract— The metal‐rich chondrites Hammadah al Hamra (HH) 237 and Queen Alexandra Range (QUE) 94411, paired with QUE 94627, contain relatively rare (<1 vol%) calcium‐aluminum‐rich inclusions (CAIs) and Al‐diopside‐rich chondrules. Forty CAIs and CAI fragments and seven Al‐diopside‐rich chondrules were identified in HH 237 and QUE 94411/94627. The CAIs, ~50–400 μm in apparent diameter, include (a) 22 (56%) pyroxene‐spinel ± melilite (+forsterite rim), (b) 11 (28%) forsterite‐bearing, pyroxene‐spinel ± melilite ± anorthite (+forsterite rim) (c) 2 (5%) grossite‐rich (+spinel‐melilite‐pyroxene rim), (d) 2 (5%) hibonite‐melilite (+spinel‐pyroxene ± forsterite rim), (e) 1 (2%) hibonite‐bearing, spinel‐perovskite (+melilite‐pyroxene rim), (f) 1 (2%) spinel‐melilite‐pyroxene‐anorthite, and (g) 1 (2%) amoeboid olivine aggregate. Each type of CAI is known to exist in other chondrite groups, but the high abundance of pyroxene‐spinel ± melilite CAIs with igneous textures and surrounded by a forsterite rim are unique features of HH 237 and QUE 94411/94627. Additionally, oxygen isotopes consistently show relatively heavy compositions with Δ17O ranging from ?6%0 to ?10%0 (1σ = 1.3%0) for all analyzed CAI minerals (grossite, hibonite, melilite, pyroxene, spinel). This suggests that the CAIs formed in a reservoir isotopically distinct from the reservoir(s) where “normal”, 16O‐rich (Δ17O < ?20%0) CAIs in most other chondritic meteorites formed. The Al‐diopside‐rich chondrules, which have previously been observed in CH chondrites and the unique carbonaceous chondrite Adelaide, contain Al‐diopside grains enclosing oriented inclusions of forsterite, and interstitial anorthitic mesostasis and Al‐rich, Ca‐poor pyroxene, occasionally enclosing spinel and forsterite. These chondrules are mineralogically similar to the Al‐rich barred‐olivine chondrules in HH 237 and QUE 94411/94627, but have lower Cr concentrations than the latter, indicating that they may have formed during the same chondrule‐forming event, but at slightly different ambient nebular temperatures. Aluminum‐diopside grains from two Al‐diopside‐rich chondrules have O‐isotopic compositions (Δ17O ? ?7 ± 1.1 %0) similar to CAI minerals, suggesting that they formed from an isotopically similar reservoir. The oxygen‐isotopic composition of one Ca, Al‐poor cryptocrystalline chondrule in QUE 94411/94627 was analyzed and found to have Δ17O ? ?3 ± 1.4%0. The characteristics of the CAIs in HH 237 and QUE 94411/94627 are inconsistent with an impact origin of these metal‐rich meteorites. Instead they suggest that the components in CB chondrites are pristine products of large‐scale, high‐temperature processes in the solar nebula and should be considered bona fide chondrites.  相似文献   

11.
Bulk major element composition, petrography, mineralogy, and oxygen isotope compositions of twenty Al‐rich chondrules (ARCs) from five CV3 chondrites (Northwest Africa [NWA] 989, NWA 2086, NWA 2140, NWA 2697, NWA 3118) and the Ningqiang carbonaceous chondrite were studied and compared with those of ferromagnesian chondrules and refractory inclusions. Most ARCs are marginally Al‐richer than ferromagnesian chondrules with bulk Al2O3 of 10–15 wt%. ARCs are texturally similar to ferromagnesian chondrules, composed primarily of olivine, pyroxene, plagioclase, spinel, Al‐rich glass, and metallic phases. Minerals in ARCs have intermediate compositions. Low‐Ca pyroxene (Fs0.6–8.8Wo0.7–9.3) has much higher Al2O3 and TiO2 contents (up to 12.5 and 2.3 wt%, respectively) than that in ferromagnesian chondrules. High‐Ca pyroxene (Fs0.3–2.0Wo33–54) contains less Al2O3 and TiO2 than that in Ca,Al‐rich inclusions (CAIs). Plagioclase (An77–99Ab1–23) is much more sodic than that in CAIs. Spinel is enriched in moderately volatile element Cr (up to 6.7 wt%) compared to that in CAIs. Al‐rich enstatite coexists with anorthite and spinel in a glass‐free chondrule, implying that the formation of Al‐enstatite was not due to kinetic reasons but is likely due to the high Al2O3/CaO ratio (7.4) of the bulk chondrule. Three ARCs contain relict CAIs. Oxygen isotope compositions of ARCs are also intermediate between those of ferromagnesian chondrules and CAIs. They vary from ?39.4‰ to 13.9‰ in δ18O and yield a best fit line (slope = 0.88) close to the carbonaceous chondrite anhydrous mineral (CCAM) line. Chondrules with 5–10 wt% bulk Al2O3 have a slightly more narrow range in δ18O (?32.5 to 5.9‰) along the CCAM line. Except for the ARCs with relict phases, however, most ARCs have oxygen isotope compositions (>?20‰ in δ18O) similar to those of typical ferromagnesian chondrules. ARCs are genetically related to both ferromagnesian chondrules and CAIs, but the relationship between ARCs and ferromagnesian chondrules is closer. Most ARCs were formed during flash heating and rapid cooling processes like normal chondrules, only from chemically evolved precursors. ARCs extremely enriched in Al and those with relict phases could have had a hybrid origin (Krot et al. 2002) which incorporated refractory inclusions as part of the precursors in addition to ferromagnesian materials. The occurrence of melilite in ARCs indicates that melilite‐rich CAIs might be present in the precursor materials of ARCs. The absence of melilite in most ARCs is possibly due to high‐temperature interactions between a chondrule melt and the solar nebula.  相似文献   

12.
Abstract– High‐precision isotope imaging analyses of reversely zoned melilite crystals in the gehlenitic mantle of Type A CAI ON01 of the Allende carbonaceous chondrite reveal that there are four types of oxygen isotopic distributions within melilite single crystals: (1) uniform depletion of 16O (δ18O ≈ ?10‰), (2) uniform enrichment of 16O (δ18O ≈ ?40‰), (3) variations in isotopic composition from 16O‐poor core to 16O‐rich rim (δ18O ≈ ?10‰ to ?30‰, ?20‰ to ?45‰, and ?10‰ to ?35‰) with decreasing åkermanite content, and (4) 16O‐poor composition (δ18O ≥ ?10‰) along the crystal rim. Hibonite, spinel, and perovskite grains are 16O‐rich (δ18O ≈ ?45‰), and adjoin 16O‐poor melilites. Gas‐solid or gas‐melt isotope exchange in the nebula is inconsistent with both the distinct oxygen isotopic compositions among the minerals and the reverse zoning of melilite. Fluid‐rock interaction on the parent body resulted in 16O‐poor compositions of limited areas near holes, cracks, or secondary phases, such as anorthite or grossular. We conclude that reversely zoned melilites mostly preserve the primary oxygen isotopic composition of either 16O‐enriched or 16O‐depleted gas from which they were condensed. The correlation between oxygen isotopic composition and åkermanite content may indicate that oxygen isotopes of the solar nebula gas changed from 16O‐poor to 16O‐rich during melilite crystal growth. We suggest that the radial excursions of the inner edge of the protoplanetary disk gas simultaneously resulted in both the reverse zoning and oxygen isotopic variation of melilite, due to mixing of 16O‐poor disk gas and 16O‐rich coronal gas. Gas condensates aggregated to form the gehlenite mantle of the Type A CAI ON01.  相似文献   

13.
Abstract— In order to investigate the distribution of 26A1 in chondrites, we measured aluminum‐magnesium systematics in four calcium‐aluminum‐rich inclusions (CAIs) and eleven aluminum‐rich chondrules from unequilibrated ordinary chondrites (UOCs). All four CAIs were found to contain radiogenic 26Mg (26Mg*) from the decay of 26A1. The inferred initial 26Al/27Al ratios for these objects ((26Al/27Al)0 ? 5 × 10?5) are indistinguishable from the (26Al/27Al)0 ratios found in most CAIs from carbonaceous chondrites. These observations, together with the similarities in mineralogy and oxygen isotopic compositions of the two sets of CAIs, imply that CAIs in UOCs and carbonaceous chondrites formed by similar processes from similar (or the same) isotopic reservoirs, or perhaps in a single location in the solar system. We also found 26Mg* in two of eleven aluminum‐rich chondrules. The (26Al/27Al)0 ratio inferred for both of these chondrules is ~1 × 10?5, clearly distinct from most CAIs but consistent with the values found in chondrules from type 3.0–3.1 UOCs and for aluminum‐rich chondrules from lightly metamorphosed carbonaceous chondrites (~0.5 × 10?5 to ~2 × 10?5). The consistency of the (26Al/27Al)0 ratios for CAIs and chondrules in primitive chondrites, independent of meteorite class, implies broad‐scale nebular homogeneity with respect to 26Al and indicates that the differences in initial ratios can be interpreted in terms of formation time. A timeline based on 26Al indicates that chondrules began to form 1 to 2 Ma after most CAIs formed, that accretion of meteorite parent bodies was essentially complete by 4 Ma after CAIs, and that metamorphism was essentially over in type 4 chondrite parent bodies by 5 to 6 Ma after CAIs formed. Type 6 chondrites apparently did not cool until more than 7 Ma after CAIs formed. This timeline is consistent with 26Al as a principal heat source for melting and metamorphism.  相似文献   

14.
Abstract— Primary minerals in calcium‐aluminum‐rich inclusions (CAIs), Al‐rich and ferromagnesian chondrules in each chondrite group have δ18O values that typically range from ?50 to +5%0. Neglecting effects due to minor mass fractionations, the oxygen isotopic data for each chondrite group and for micrometeorites define lines on the three‐isotope plot with slopes of 1.01 ± 0.06 and intercepts of ?2 ± 1. This suggests that the same kind of nebular process produced the 16O variations among chondrules and CAIs in all groups. Chemical and isotopic properties of some CAIs and chondrules strongly suggest that they formed from solar nebula condensates. This is incompatible with the existing two‐component model for oxygen isotopes in which chondrules and CAIs were derived from heated and melted 16O‐rich presolar dust that exchanged oxygen with 16O‐poor nebular gas. Some FUN CAIs (inclusions with isotope anomalies due to fractionation and unknown nuclear effects) have chemical and isotopic compositions indicating they are evaporative residues of presolar material, which is incompatible with 16O fractionation during mass‐independent gas phase reactions in the solar nebula. There is only one plausible reason why solar nebula condensates and evaporative residues of presolar materials are both enriched in 16O. Condensation must have occurred in a nebular region where the oxygen was largely derived from evaporated 16O‐rich dust. A simple model suggests that dust was enriched (or gas was depleted) relative to cosmic proportions by factors of ~10 to >50 prior to condensation for most CAIs and factors of 1–5 for chondrule precursor material. We infer that dust‐gas fractionation prior to evaporation and condensation was more important in establishing the oxygen isotopic composition of CAIs and chondrules than any subsequent exchange with nebular gases. Dust‐gas fractionation may have occurred near the inner edge of the disk where nebular gases accreted into the protosun and Shu and colleagues suggest that CAIs formed.  相似文献   

15.
We report the mineralogy and texture of magnetite grains, a magnetite‐dolomite assemblage, and the adjacent mineral phases in five hydrated fine‐grained Antarctic micrometeorites (H‐FgMMs). Additionally, we measured the oxygen isotopic composition of magnetite grains and a magnetite‐dolomite assemblage in these samples. Our mineralogical study shows that the secondary phases identified in H‐FgMMs have similar textures and chemical compositions to those described previously in other primitive solar system materials, such as carbonaceous chondrites. However, the oxygen isotopic compositions of magnetite in H‐FgMMs span a range of ?17O values from +1.3‰ to +4.2‰, which is intermediate between magnetites measured in carbonaceous and ordinary chondrites (CCs and OCs). The δ18O values of magnetites in one H‐FgMM have a ~27‰ mass‐dependent spread in a single 100 × 200 μm particle, indicating that there was a localized control of the fluid composition, probably due to a low water‐to‐rock mass ratio. The ?17O values of magnetite indicate that H‐FgMMs sampled a different aqueous fluid than ordinary and carbonaceous chondrites, implying that the source of H‐FgMMs is probably distinct from the asteroidal source of CCs and OCs. Additionally, we analyzed the oxygen isotopic composition of a magnetite‐dolomite assemblage in one of the H‐FgMMs (sample 03‐36‐46) to investigate the temperature at which these minerals coprecipitated. We have used the oxygen isotope fractionation between the coexisting magnetite and dolomite to infer a precipitation temperature between 160 and 280 °C for this sample. This alteration temperature is ~100–200 °C warmer than that determined from a calcite‐magnetite assemblage from the CR2 chondrite Al Rais, but similar to the estimated temperature of aqueous alteration for unequilibrated OCs, CIs, and CMs. This suggests that the sample 03‐36‐46 could come from a parent body that was large enough to attain temperatures as high as the OCs, CIs, and CMs, which implies an asteroidal origin for this particular H‐FgMM.  相似文献   

16.
Abstract— We describe the mineralogy, petrology, oxygen, and magnesium isotope compositions of three coarse‐grained, igneous, anorthite‐rich (type C) Ca‐Al‐rich inclusions (CAIs) (ABC, TS26, and 93) that are associated with ferromagnesian chondrule‐like silicate materials from the CV carbonaceous chondrite Allende. The CAIs consist of lath‐shaped anorthite (An99), Cr‐bearing Al‐Ti‐diopside (Al and Ti contents are highly variable), spinel, and highly åkermanitic and Na‐rich melilite (Åk63–74, 0.4–0.6 wt% Na2O). TS26 and 93 lack Wark‐Lovering rim layers; ABC is a CAI fragment missing the outermost part. The peripheral portions of TS26 and ABC are enriched in SiO2 and depleted in TiO2 and Al2O3 compared to their cores and contain relict ferromagnesian chondrule fragments composed of forsteritic olivine (Fa6–8) and low‐Ca pyroxene/pigeonite (Fs1Wo1–9). The relict grains are corroded by Al‐Ti‐diopside of the host CAIs and surrounded by haloes of augite (Fs0.5Wo30–42). The outer portion of CAI 93 enriched in spinel is overgrown by coarse‐grained pigeonite (Fs0.5–2Wo5–17), augite (Fs0.5Wo38–42), and anorthitic plagioclase (An84). Relict olivine and low‐Ca pyroxene/pigeonite in ABC and TS26, and the pigeonite‐augite rim around 93 are 16O‐poor (Δ17O ~ ?1‰ to ?8‰). Spinel and Al‐Ti‐diopside in cores of CAIs ABC, TS26, and 93 are 16O‐enriched (Δ17O down to ?20‰), whereas Al‐Ti‐diopside in the outer zones, as well as melilite and anorthite, are 16O‐depleted to various degrees (Δ17O = ?11‰ to 2‰). In contrast to typical Allende CAIs that have the canonical initial 26Al/27Al ratio of ~5 × 10?5 ABC, 93, and TS26 are 26Al‐poor with (26Al/27Al)0 ratios of (4.7 ± 1.4) × 10?6 (1.5 ± 1.8) × 10?6 <1.2 × 10?6 respectively. We conclude that ABC, TS26, and 93 experienced remelting with addition of ferromagnesian chondrule silicates and incomplete oxygen isotopic exchange in an 16O‐poor gaseous reservoir, probably in the chondrule‐forming region. This melting episode could have reset the 26Al‐26Mg systematics of the host CAIs, suggesting it occurred ~2 Myr after formation of most CAIs. These observations and the common presence of relict CAIs inside chondrules suggest that CAIs predated formation of chondrules.  相似文献   

17.
Palisade bodies, mineral assemblages with spinel shells, in coarse‐grained Ca‐, Al‐rich inclusions (CAIs) have been considered either as exotic “mini‐CAIs” captured by their host inclusions (Wark and Lovering 1982 ) or as in situ crystallization products of a bubble‐rich melt (Simon and Grossman 1997 ). In order to clarify their origins, we conducted a comprehensive study of palisade bodies in an Allende Type B CAI (BBA‐7), using electron backscatter diffraction (EBSD), micro‐computed tomography (Micro‐CT), electron probe microanalysis (EPMA), and secondary ion mass spectrometry (SIMS). New observations support the in situ crystallization mechanism: early/residual melt infiltrated into spinel‐shelled bubbles and crystallized inside. Evidence includes (1) continuous crystallography of anorthite from the interior of the palisade body to the surrounding host; (2) partial consolidation of two individual palisade bodies revealed by micro‐CT; (3) a palisade body was entirely enclosed in a large anorthite crystal, and the anorthite within the palisade body shows the same crystallographic orientation as the anorthite host; and (4) identical chemical and oxygen isotopic compositions of the constituent minerals between the palisade bodies and the surrounding host. Oxygen isotopic compositions of the major minerals in BBA‐7 are bimodal‐distributed. Spinel and fassaite are uniformly 16O‐rich with ?17O = ?23.3 ± 1.5‰ (2SD), and melilite and anorthite are homogeneously 16O‐poor with ?17O = ?3.2 ± 0.7‰ (2SD). The latter ?17O value overlaps with that of the Allende matrix (?17O ~ ?2.87‰) (Clayton and Mayeda 1999 ), which could be explained by secondary alteration with a 16O‐poor fluid in the parent body. The mobility of fluid could be facilitated by the high porosity (1.56–2.56 vol%) and connectivity (~0.17–0.55 vol%) of this inclusion.  相似文献   

18.
Abstract— Oxygen‐isotopic compositions were determined for a suite of enstatite chondrites and aubrites. In agreement with previous work (Clayton et al., 1984), most samples have O‐isotopic compositions close to the terrestrial fractionation line (TFL), and there appear to be no significant differences in O‐isotopic compositions between individual EH and EL chondrites and aubrites. Five enstatite meteorites have O‐isotopic compositions that are significantly different from the other samples and >0.2% away from the TFL. Two of these have petrographic evidence of brecciation and interaction between other meteorite types; for the other three, similar scenarios are suggested. There appears to be a systematic increase in δ18O from enstatite chondrites (both EH and EL) of petrologic type 3 to those of type 6. There is also good evidence that the EH meteorites do not fall along a mass fractionation line but along a line slope 0.66. At the present time, detailed understanding of the origin of these O‐isotopic systematics remain elusive but clearly point to a complex accretion history, parent‐body evolution, or both.  相似文献   

19.
Abstract— Like calcium‐aluminum‐rich inclusions (CAIs) from carbonaceous and ordinary chondrites, enstatite chondrite CAIs are composed of refractory minerals such as spinel, perovskite, Al, Ti‐diopside, melilite, hibonite, and anorthitic plagioclase, which may be partially to completely surrounded by halos of Na‐(±Cl)‐rich minerals. Porous, aggregate, and compact textures of the refractory cores in enstatite chondrite CAIs and rare Wark—Lovering rims are also similar to CAIs from other chondrite groups. However, the small size (<100μm), low abundance (<1% by mode in thin section), occurrence of only spinel or hibonite‐rich types, and presence of primary Ti‐(±V)‐oxides, and secondary geikelite and Ti, Fe‐sulfides distinguish the assemblage of enstatite chondrite CAIs from other groups. The primary mineral assemblage in enstatite chondrite CAIs is devoid of indicators (e.g., oldhamite, osbornite) of low O fugacities. Thus, high‐temperature processing of the CAIs did not occur under the reducing conditions characteristic of enstatite chondrites, implying that either (1) the CAIs are foreign to enstatite‐chondrite‐forming regions or (2) O fugacities fluctuated within the enstatite‐chondrite‐forming region. In contrast, secondary geikelite and Ti‐Fe‐sulfide, which replace perovskite, indicate that alteration of perovskite occurred under reducing conditions distinct from CAIs in the other chondrite groups. We have not ascertained whether the reduced alteration of enstatite chondrite CAIs occurred in a nebular or parent‐body setting. We conclude that each chondrite group is correlated with a unique assemblage of CAIs, indicating spatial or temporal variations in physical conditions during production or dispersal of CAIs.  相似文献   

20.
Abstract– Detailed petrologic and oxygen isotopic analysis of six forsterite‐bearing Type B calcium‐aluminum‐rich inclusions (FoBs) from CV3 chondrites indicates that they formed by varying degrees of melting of primitive precursor material that resembled amoeboid olivine aggregates. A continuous evolutionary sequence exists between those objects that experienced only slight partial melting or sintering through objects that underwent prolonged melting episodes. In most cases, melting was accompanied by surface evaporative loss of magnesium and silicon. This loss resulted in outer margins that are very different in composition from the cores, so much so that in some cases, the mantles contain mineral assemblages that are petrologically incompatible with those in the cores. The precursor objects for these FoBs had a range of bulk compositions and must therefore have formed under varying conditions if they condensed from a solar composition gas. Five of the six objects show small degrees of mass‐dependent oxygen isotopic fractionation in pyroxene, spinel, and olivine, consistent with the inferred melt evaporation, but there are no consistent differences among the three phases. Forsterite, spinel, and pyroxene are 16O‐rich with Δ17O ~ ?24‰ in all FoBs. Melilite and anorthite show a range of Δ17O from ?17‰ to ?1‰.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号