首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
It is proposed that the Bentong–Raub Suture Zone represents a segment of the main Devonian to Middle Triassic Palaeo-Tethys ocean, and forms the boundary between the Gondwana-derived Sibumasu and Indochina terranes. Palaeo-Tethyan oceanic ribbon-bedded cherts preserved in the suture zone range in age from Middle Devonian to Middle Permian, and mélange includes chert and limestone clasts that range in age from Lower Carboniferous to Lower Permian. This indicates that the Palaeo-Tethys opened in the Devonian, when Indochina and other Chinese blocks separated from Gondwana, and closed in the Late Triassic (Peninsular Malaysia segment). The suture zone is the result of northwards subduction of the Palaeo-Tethys ocean beneath Indochina in the Late Palaeozoic and the Triassic collision of the Sibumasu terrane with, and the underthrusting of, Indochina. Tectonostratigraphic, palaeobiogeographic and palaeomagnetic data indicate that the Sibumasu Terrane separated from Gondwana in the late Sakmarian, and then drifted rapidly northwards during the Permian–Triassic. During the Permian subduction phase, the East Malaya volcano-plutonic arc, with I-Type granitoids and intermediate to acidic volcanism, was developed on the margin of Indochina. The main structural discontinuity in Peninsular Malaysia occurs between Palaeozoic and Triassic rocks, and orogenic deformation appears to have been initiated in the Upper Permian to Lower Triassic, when Sibumasu began to collide with Indochina. During the Early to Middle Triassic, A-Type subduction and crustal thickening generated the Main Range syn- to post-orogenic granites, which were emplaced in the Late Triassic–Early Jurassic. A foredeep basin developed on the depressed margin of Sibumasu in front of the uplifted accretionary complex in which the Semanggol “Formation” rocks accumulated. The suture zone is covered by a latest Triassic, Jurassic and Cretaceous, mainly continental, red bed overlap sequence.  相似文献   

2.
Tectonic framework and Phanerozoic evolution of Sundaland   总被引:1,自引:0,他引:1  
Sundaland comprises a heterogeneous collage of continental blocks derived from the India–Australian margin of eastern Gondwana and assembled by the closure of multiple Tethyan and back-arc ocean basins now represented by suture zones. The continental core of Sundaland comprises a western Sibumasu block and an eastern Indochina–East Malaya block with an island arc terrane, the Sukhothai Island Arc System, comprising the Linchang, Sukhothai and Chanthaburi blocks sandwiched between. This island arc formed on the margin of Indochina–East Malaya, and then separated by back-arc spreading in the Permian. The Jinghong, Nan–Uttaradit and Sra Kaeo Sutures represent this closed back-arc basin. The Palaeo-Tethys is represented to the west by the Changning–Menglian, Chiang Mai/Inthanon and Bentong–Raub Suture Zones. The West Sumatra block, and possibly the West Burma block, rifted and separated from Gondwana, along with Indochina and East Malaya in the Devonian and were accreted to the Sundaland core in the Triassic. West Burma is now considered to be probably Cathaysian in nature and similar to West Sumatra, from which it was separated by opening of the Andaman Sea basin. South West Borneo and/or East Java-West Sulawesi are now tentatively identified as the missing “Argoland” which must have separated from NW Australia in the Jurassic and these were accreted to SE Sundaland in the Cretaceous. Revised palaeogeographic reconstructions illustrating the tectonic and palaeogeographic evolution of Sundaland and adjacent regions are presented.  相似文献   

3.
THE PERMIAN SYSTEM OF THE NUJIANG—LANCANGJIANG—JINSHAJIANG AREA, SOUTHWESTERN CHINA  相似文献   

4.
An alternative model for the geodynamic evolution of Southeast Asia is proposed and inserted in a modern plate tectonic model. The reconstruction methodology is based on dynamic plate boundaries, constrained by data such as spreading rates and subduction velocities; in this way it differs from classical continental drift models proposed so far. The different interpretations about the location of the Palaeotethys suture in Thailand are revised, the Tertiary Mae Yuam fault is seen as the emplacement of the suture. East of the suture we identify an Indochina derived terrane for which we keep the name Shan–Thai, formerly used to identify the Cimmerian block present in Southeast Asia, now called Sibumasu. This nomenclatural choice was made on the basis of the geographic location of the terrane (Eastern Shan States in Burma and Central Thailand) and in order not to introduce new confusing terminology. The closure of the Eastern Palaeotethys is related to a southward subduction of the ocean, that triggered the Eastern Neotethys to open as a back-arc, due to the presence of Late Carboniferous–Early Permian arc magmatism in Mergui (Burma) and in the Lhasa block (South Tibet), and to the absence of arc magmatism of the same age East of the suture. In order to explain the presence of Carboniferous–Early Permian and Permo-Triassic volcanic arcs in Cambodia, Upper Triassic magmatism in Eastern Vietnam and Lower Permian–Middle Permian arc volcanites in Western Sumatra, we introduce the Orang Laut terranes concept. These terranes were detached from Indochina and South China during back-arc opening of the Poko–Song Ma system, due to the westward subduction of the Palaeopacific. This also explains the location of the Cathaysian West Sumatra block to the West of the Cimmerian Sibumasu block.  相似文献   

5.
遵循刘宝珺院士提出的“构造控盆、盆地控相”指导思想,在系统厘定地层格架和构造单元划分基础上,确定青藏高原巨型造山带晚三叠世构造-古地理从北往南依次发育:羌塘-三江多岛海、班公湖-双湖-怒江洋、冈底斯-喜马拉雅多岛海和若干次级构造-古地理单元。班公湖-双湖-怒江洋是分隔冈瓦纳大陆和欧亚大陆的特提斯大洋,南羌塘地块是漂浮在特提斯大洋中的块体。本次重点对北羌塘前陆盆地和北喜马拉雅被动大陆边缘盆地的沉积相带展布和古地理进行了研究。造成两个盆地沉积序列及古气候差别的主要因素是构造地质事件。构造事件决定了盆地性质,盆地性质又控制了沉积相带的空间展布。北喜马拉雅盆地位于冈瓦纳构造域,晚三叠世盆地基底南浅北深,继承了古生代构造离散型被动大陆边缘沉积,印支造山作用不发育;北羌塘盆地位于泛华夏构造域,晚三叠世发育印支挤压造山作用及其前陆盆地沉积记录。盆地分析研究表明,北羌塘南部江爱达日那和热觉茶卡等地下三叠统康鲁组底部均发现灰紫色中厚层复成分砾岩、含砾粗砂岩、细砂岩组成向上变细的海侵型地层结构,沉积相为滨岸三角洲;上三叠统土门格拉群沉积相为含煤盆地边缘三角洲。从沉积相展布型式和北东向古水流方向分析,三叠纪北羌塘沉积盆地的物源主要来自羌塘中部双湖造山剥蚀区或“中央隆起带”。  相似文献   

6.
龙木错-双湖-澜沧江板块缝合带与石炭二叠纪冈瓦纳北界   总被引:29,自引:0,他引:29  
1982—1983年间,作者在改则幅和日土幅1:100万区域地质调查中,发现在黑头山—冈玛错—角木日—双湖一带,存在严重解体的蛇绿岩带。后经进一步工作,获悉该带明显地控制了冈瓦纳相和特提斯相石炭、二叠系的分布,并有高压变质带的岩石出露。因此,该带为一条北西西—南东东向的板块缝合带,它应是目前国内外地质界都在寻找的冈瓦纳大陆的北界。  相似文献   

7.
The northwestern corner of New South Wales consists of the paratectonic Late Proterozoic to Early Cambrian Adelaide Fold Belt and older rocks, which represent basement inliers in this fold belt. The rest of the state is built by the composite Late Proterozoic to Triassic Tasman Fold Belt System or Tasmanides.In New South Wales the Tasman Fold Belt System includes three fold belts: (1) the Late Proterozoic to Early Palaeozoic Kanmantoo Fold Belt; (2) the Early to Middle Palaeozoic Lachlan Fold Belt; and (3) the Early Palaeozoic to Triassic New England Fold Belt. The Late Palaeozoic to Triassic Sydney—Bowen Basin represents the foredeep of the New England Fold Belt.The Tasmanides developed in an active plate margin setting through the interaction of East Gondwanaland with the Ur-(Precambrian) and Palaeo-Pacific plates. The Tasmanides are characterized by a polyphase terrane accretion history: during the Late Proterozoic to Triassic the Tasmanides experienced three major episodes of terrane dispersal (Late Proterozoic—Cambrian, Silurian—Devonian, and Late Carboniferous—Permian) and six terrane accretionary events (Cambrian—Ordovician, Late Ordovician—Early Silurian, Middle Devonian, Carboniferous, Middle-Late Permian, and Triassic). The individual fold belts resulted from one or more accretionary events.The Kanmantoo Fold Belt has a very restricted range of mineralization and is characterized by stratabound copper deposits, whereas the Lachlan and New England Fold Belts have a great variety of metallogenic environments associated with both accretionary and dispersive tectonic episodes.The earliest deposits in the Lachlan Fold Belt are stratabound Cu and Mn deposits of Cambro-Ordovician age. In the Ordovician Cu deposits were formed in a volcanic are. In the Silurian porphyry Cu---Au deposits were formed during the late stages of development of the same volcanic are. Post-accretionary porphyry Cu---Au deposits were emplaced in the Early Devonian on the sites of the accreted volcanic arc. In the Middle to Late Silurian and Early Devonian a large number of base metal deposits originated as a result of rifting and felsic volcanism. In the Silurian and Early Devonian numerous Sn---W, Mo and base metal—Au granitoid related deposits were formed. A younger group of Mo---W and Sn deposits resulted from Early—Middle Carboniferous granitic plutonism in the eastern part of the Lachlan Fold Belt. In the Middle Devonian epithermal Au was associated with rifting and bimodal volcanism in the extreme eastern part of the Lachlan Fold Belt.In the New England Fold Belt pre-accretionary deposits comprise stratabound Cu and Mn deposits (pre-Early Devonian): stratabound Cu and Mn and ?exhalite Au deposits (Late Devonian to Early Carboniferous); and stratabound Cu, exhalite Au, and quartz—magnetite (?Late Carboniferous). S-type magmatism in the Late Carboniferous—Early Permian was responsible for vein Sn and possibly Au---As---Ag---Sb deposits. Volcanogenic base metals, when compared with the Lachlan Fold Belt, are only poorly represented, and were formed in the Early Permian. The metallogenesis of the New England Fold Belt is dominated by granitoid-related mineralization of Middle Permian to Triassic age, including Sn---W, Mo---W, and Au---Ag---As Sb deposits. Also in the Middle Permian epithermal Au---Ag mineralization was developed. During the above period of post-orogenic magmatism sizeable metahydrothermal Sb---Au(---W) and Au deposits were emplaced in major fracture and shear zones in central and eastern New England. The occurrence of antimony provides an additional distinguishing factor between the New England and Lachlan Fold Belts. In the New England Fold Belt antimony deposits are abundant whereas they are rare in the Lachlan Fold Belt. This may suggest fundamental crustal differences.  相似文献   

8.
华夏植物群及其与全球同期植物群的比较   总被引:9,自引:0,他引:9  
孙克勤 《地学前缘》2002,9(3):73-84
文中研究的焦点是华夏植物群及其与全球同期植物群的比较 ,并论证了石炭纪和二叠纪的古植物地理再造。在石炭纪和二叠纪 ,华夏植物区和欧美植物区皆位于具热带气候的赤道区 ,在类似的气候条件下 ,这两个地区的一些植物具有形态上的相似性。此外 ,华夏植物群含有一些与欧美植物群共有的分子 ;因此 ,这两个植物群的关系比较密切。尽管华夏植物群具有相当数量的分子是与欧美植物群所共有的 ,但是在大羽羊齿类植物中 ,在种级上两者并没有相同的成分。华夏植物群是以热带雨林气候为特征。在二叠纪 ,华夏区的气候比欧美区的气候更为湿润。华夏植物群的分子不同于安加拉植物群的分子 ;此外 ,安加拉植物群代表了温带气候条件。在石炭纪和二叠纪 ,冈瓦纳植物群分布在南半球高纬度地区 ,不同于分布于北半球低纬度的华夏植物群的组成分子 ;因此 ,这两个植物群没有必然联系。在石炭纪和二叠纪 ,在北半球华夏植物群与欧美植物群的一些植物在形态上的相似性以及在南半球 (西藏、沙特阿拉伯、土耳其、新几内亚和伊拉克 )一些华夏型分子的分布可以是起因于类似的气候条件、大陆位置、板块运动、洋流作用、古地理环境等因素的影响。华夏植物群与其同期植物群的差异反映了植物群成分、古气候、古地理位置和陆地生态系在时?  相似文献   

9.
Detachment of the sliver-like Cimmerian terrane from eastern Gondwana in the Early Permian triggered mafic volcanism in many parts of the rift zone. To understand this tectonic episode we have carried out paleomagnetic investigations on mafic volcanic for-mations that were erupted on key terranes that now form part of Tibet. Specifically, we will present data from sections near Lhasa City (central Lhasa block) and Tuotuohe (central Qiangtang Block) as well as near Gyanyima (Paleotethyan sea-mount) that was emplaced onto the floor of Palaeotethys during the Late Permian. Paleomagnetic plots from each location will be used for tectonic calculations. Our new data will be used to evaluate regional scale models con-cerned with how the Cimmerian terranes in southern and SE Asia (from Iran-Tibet-SW China-Myanmar- Thailand-Sumatra) formerly abutted eastern Gond-wana.  相似文献   

10.
吐哈盆地及邻区早二叠世沉积特征与构造发育的耦合关系   总被引:7,自引:0,他引:7  
通过对不同露头剖面和探井资料的分析,在吐哈盆地及邻区区分出三种不同类型沉积相:(1)裂谷型海相火山喷发沉积相;(2)裂谷型陆相火山喷发沉积相;(3)造山带磨拉石相;不同沉积相特征并结合构造分析认为,早二叠世在吐哈及邻区存在二种不同类型的盆地,即前陆盆地和裂谷盆地,同时,还探讨了大陆一大陆碰撞带上两种不同类型盆地的形成机理。  相似文献   

11.
A large number of fractures, faults and folds trending normal and oblique to the Himalayan tectonic trend have been recognized in recent years. The tear faults of Kumaun and Nepal have caused predominant right-lateral shear movements. There are eloquent indications of tectonic and seismic activities along some of these faults. In Kumaun, some of the NNW—SSE oriented tear faults coincide with the great thrusts that have brought older Precambrian crystallines over the sedimentary rock. This phenomenon has led many workers to interpret the thrusts as high-angled faults. Significantly, these transverse and oblique faults and fractures are parallel to the great faults discovered in the basement of the Ganga Basin and in the South Indian block, implying a certain genetic connection between the two sets.Likewise, the transverse folds of mesoscopic and macroscopic dimensions superposed on earlier folds of normal Himalayan trend are parallel to the great hidden ridges in the base ment of the Ganga Basin, representing undersurface extension of the Peninsular orogenic trends such as the Satpura, Bundelkhand and Aravali.The presence in the Lesser Himalaya of transverse structures having striking parallelism with those of Peninsular India, coupled with the strong lithostratigraphic similarities between the Purana (Riphean) sedimentary formations of the Lesser Himalaya and the greater Vindhyan Basin and the occurrence in many parts of the Himalaya of coalbearing continental Gondwana and marine Permian formations, reminiscent of similar horizons of the Bihar-Madhya Pradesh borders, is a pointer to the tectonic unity of the two provinces and suggests involvement of Peninsular India in the tectonic framework of the Himalaya.  相似文献   

12.
In Permian times the Baoshan Block of western Yunnan, southwest China formed the eastern part of the Cimmerian Continent. Most biogeographical and sedimentological data indicate that the Early Permian Dingjiazhai Formation formed on the block under conditions strongly influenced by the Permo-Carboniferous glaciation. After Early Permian rifting, with post-glaciation climatic amelioration, and as the Baoshan Block drifted northwards to approach South China and Indochina, faunal elements characteristic of Gondwana affinity decreased, while those of Cathaysian affinity increased. Finally, Late Permian faunas are characterized by exclusively Cathaysian elements. This shift of marine provinciality becomes an important indicator in understanding the Permian paleoclimatic evolution of the region. This research investigated the composition of carbonate grain associations and the early diagenetic features of limestones from the upper part of the Dingjiazhai Formation, and from the overlying Yongde and Shazipo formations. A sharp distinction in petrological and diagenetic features is recognized between the Dingjiazhai Formation and the two overlying formations. The Dingjiazhai carbonates are characterized by the bryonoderm (bryozoan-echinoderm)-extended facies of the heterozoan association, with no non-skeletal grains. Because early diagenetic cement was rarely formed, the Dingjiazhai carbonates experienced strong diagenetic compaction. In contrast, the Yongde and Shazipo carbonates show a chloroforam facies of photozoan association, with the common occurrence of non-skeletal grains. These carbonates were well cemented during early diagenetic processes. From comparison with Permian cool-water carbonates from northern Pangea and Tasmania, Australia, the Dingjiazhai carbonates are interpreted as deposits of warm-temperate conditions, while the overlying carbonates are considered to be deposits of subtropical or tropical conditions. This climatic interpretation, based on the petrographic features of the Permian carbonates, agrees well with existing biogeographical data from the region.  相似文献   

13.
牛志军  吴俊 《地球科学》2015,40(2):346-356
冈瓦纳与欧亚大陆间的昌都地块构造属性存在争议,解决问题的关键是生物古地理区系判别.青海南部二叠纪类化 石群的研究表明昌都地块该生物群一直表现为暖水的特提斯型,与华南地区始终表现出更多的相似性,其生物古地理归属应 为特提斯大区华夏-特提斯区华南亚区.昌都地块南界龙木错-双湖-澜沧江缝合带在早二叠世为划分青藏高原暖水型特提 斯区的南界,不仅是华南亚区与藏北冷暖混合亚区的分界线,也是特提斯大区与冈瓦纳大区的分界线.中二叠世以后该带不再 构成大区界线,但在确定次一级分区界线上仍是一个很好的划分标志;北界金沙江缝合带二叠纪两侧生物群表现出一致性, 未形成浅海底栖生物自由迁移的障碍,不具有生物古地理分区意义.   相似文献   

14.
During Late Palaeozoic time a wide ocean, known as Palaeotethys, separated the future Eurasian and African continents. This ocean closed in Europe in the west during the Variscan orogeny, whereas in Asia further east it remained open and evolved into the Mesozoic Tethys, only finally closing during Late Cretaceous–Early Cenozoic.Three Upper Palaeozoic lithological assemblages, the Chios Melange (on the Aegean Greek island), the Karaburun Melange (westernmost Aegean Turkey) and the Teke Dere Unit (Lycian Nappes, SW Turkey) provide critical information concerning sedimentary and tectonic processes during closure of Palaeotethys. The Chios and Karaburun melanges in the west are mainly terrigenous turbidites with blocks and dismembered sheets of Silurian–Upper Carboniferous platform carbonate rocks (shallow-water and slope facies) and poorly dated volcanic rocks. The Teke Dere Unit to the southeast begins with alkaline, within-plate-type volcanics, depositionally overlain by Upper Carboniferous shallow-water carbonates. This intact succession is overlain by a tectonic slice complex comprising sandstone turbidites that are intersliced with shallow-water, slope and deep-sea sediments (locally dated as Early Carboniferous). Sandstone petrography and published detrital mineral dating imply derivation from units affected by the Panafrican (Cadomian) and Variscan orogenies.All three units are interpreted as parts of subduction complexes in which pervasive shear zones separate component parts. Silurian–Lower Carboniferous black cherts (lydites) and slope carbonates accreted in a subduction trench where sandstone turbidites accumulated. Some blocks retain primary depositional contacts, showing that gravitational processes contributed to formation of the melange. Detached blocks of Upper Palaeozoic shallow-water carbonates (e.g. Chios) are commonly mantled by conglomerates, which include water-worn clasts of black chert. The carbonate blocks are restored as one, or several, carbonate platforms that collided with an active margin, fragmenting into elongate blocks that slid into a subduction trench. This material was tectonically accreted at shallow levels within a subduction complex, resulting in layer-parallel extension, shearing and slicing. The accretion mainly took place during Late Carboniferous time.Alternative sedimentary-tectonic models are considered in which the timing and extent of closure of Palaeotethys differ, and in which subduction was either northwards towards Eurasia, or southwards towards Gondwana (or both). Terrane displacement is also an option. A similar (but metamorphosed) accretionary unit, the Konya Complex, occurs hundreds of kilometres further east. All of these units appear to have been assembled along the northern margin of Gondwana by Permian time, followed by deposition of overlying Tauride-type carbonate platforms. Northward subduction of Palaeotethys beneath Eurasia is commonly proposed. However, the accretionary units studied here are more easily explained by southward subduction towards Gondwana. Palaeotethys was possibly consumed by long-lived (Late Palaeozoic) northward subduction beneath Eurasia, coupled with more short-lived (Late Carboniferous) southward subduction near Gondwana, during or soon after closure of Palaeotethys in the Balkan region to the west.  相似文献   

15.
A narrow belt of highly inclined coal-bearing Gondwana strata occurs in the extreme south-eastern part of Bhutan Himalaya. Recently, a systematic survey was undertaken along this coal belt and coals of three areas were analyzed in detail for the evaluation of their physico-chemical properties and petrographic characteristics.The entire region is in the midst of the Great Himalayan orogenic belt, and the whole stratigraphic sequence underwent several diastrophic movements in the geological past. The massive effects of these orogenies is more pronounced in the coal beds of Gondwana sequence, and due to severe crushing and tectonic shearing these coals became powdery and flaky in nature. Significantly, the coals retained their pre-deformational rank exhibiting typical high-volatile, low-rank, bituminous characters, with mild caking propensities. Also these coals are markedly low in sulphur, phosphorus, chlorine and carbonate content like that of Peninsular Gondwana coals.Petrographic studies of these Bhutan coals revealed a close similarity with the eastern Raniganj coals (Upper Permian) of Peninsular India. The tectonic shearing and crushing of the coals are exhibited by the frequent presence of microfolding, microfaulting, and other compressional structures. However, the coals of all the three areas have shown a consistently low order of reflectance values.This typical retention of pre-deformational low-rank bituminous character is a significant feature of Bhutan coals. It shows that massive orogenic movements were only able to physically crush these coals but could not generate the requisite thermal regime to raise the rank of these coals.  相似文献   

16.
A new, Lower Carboniferous geomagnetic pole at 4.8S, 55.5E has been added for Morocco and the Permian (31.6S, 61.7E), Triassic (70.8S.67.4E), Jurassic (63.9S,39.5E) and Cretaceous (60.8S, 61.9E) for Africa modified by the incorporation of new data. The Lower Carboniferous pole requires a re-interpretation of the Carboniferous—Permian path. The Mesozoic geomagnetic poles while not significantly different line up to suggest a small loop.  相似文献   

17.
虽然在滇西昌宁-孟连带内发现了泥盆纪至中三叠世的放射虫硅质岩,但是目前对其构造古地理意义仍然有争议。对昌宁-孟连带晚石炭世至早二叠世碳酸盐岩地层内鲕粒灰岩进行了研究,结果表明,该套碳酸盐岩形成于动荡浅水沉积环境,其成因可能与古特提斯洋内碳酸盐岩洋岛海山有关,并且反映了温暖、较为干燥的古气候背景。根据地质背景资料分析,它们应该形成于南亚热带较干燥的气候环境。与东西两侧同期地层形成的古气候背景对比发现,在石炭纪-二叠纪时,昌宁-孟连带是分隔滨冈瓦纳地块群和华夏地块群的主支洋盆;在早二叠世时,该洋盆宽度约10°古纬距。  相似文献   

18.
本区已获晚海西-早印支期花岗岩类6件锆石高精度测年数据和两件继承锆石年龄,确定了其活动时限305~242 Ma,主体分属早中三叠世岩石序列、晚二叠世岩石序列、中二叠世岩石序列相应的岩石单元.小四平岩体的年龄及其被晚三叠世地层不整合覆盖,指明古亚洲洋构造域完成在242~228 Ma间.基于上述岩石年龄及形成构造环境和邻近地区磨拉石相发育的层位,揭示古吉黑造山带晚海西-早印支期构造运动或构造-岩浆旋回具有多幕式的递进演化模式,并受显生宙泛大陆旋回所制约.  相似文献   

19.
Abstract The Lancang metamorphic terrane consists of an eastern low- P/T belt and a western high- P/T belt divided by a N–S-trending fault. Protoliths of both units are mid–late Proterozoic basement and its cover. The low- P/T belt includes the Permian Lincang batholith, related amphibolite facies rocks of the Damenglong and Chongshan groups, and Permo-Triassic volcanic and volcaniclastic rocks. Most whole-rock Rb–Sr isochron and U–Pb zircon ages of the Lincang batholith are in the range 290–279 and 254–212 Ma, respectively. Metamorphism of the low- P/T belt reaches upper amphibolite with local granulite facies (735°C at 5 kbar), subsequently retrogressed at 450–500°C during post-Triassic time. The high- P/T rocks grade from west to east from blueschist through transitional blueschist/greenschist to epidote amphibolite facies. Estimated P–T conditions follow the high- P intermediate facies series up to about 550–600°C, at which oligoclase is stable. The 40Ar/39Ar plateau age of sodic amphibole in blueschist is 279 Ma.
The paired metamorphic belts combined with the spatial and temporal distribution of other blueschist belts lead us to propose a tentative tectonic history of south-east Asia since the latest Precambrian. Tectonic juxtaposition of paired belts with contrasting P–T conditions, perhaps during collision of the Baoshan block with south-east Asia, suggests that an intervening oceanic zone existed that has been removed. The Baoshan block is a microcontinent rifted from the northern periphery of Gondwana. Successive collision and amalgamation of microcontinents from either Gondwana or the Panthalassan ocean resulted in rapid southward continental growth of c. 500 km during the last 200 Ma. Hence, the Lancang region in south-east Asia represents a suture zone between two contrasting microcontinents.  相似文献   

20.
吉林省延边地区二叠纪的三类植物群与古陆缘再造   总被引:10,自引:0,他引:10  
彭玉鲸  刘爱 《吉林地质》1999,18(1):1-12
吉林省延边地区早二叠世晚期-晚二叠世早期存在着开山屯、解放村、青沟子等二处不同类型的植物群、前者属华夏植物群,中间为华夏与安加拉混生植物群,后者则是安 拉植物群,反映出和龙地块北部陆缘活动带、兴凯地块西部陆缘活动带、佳木斯地块东南部陆缘活带达三者鼎足而立的古地理展布格局。阐明这三类不同植物群的古植物地理区的属性,不仅藉以证明上三地块间各自陆缘活动带的存在及其相互关系,且将为解决延边地区争论至今的二  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号