首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Because the flexible net barrier is a gradually developed open-type debris-flow counter-measure, there are still uncertainties in its design criterion. By using several small-scale experimental flume model tests, the dynamical evolution properties of debris flows controlled by large and small mesh-sized (equal to D90 and D50, respectively) flexible net barriers are studied, including the debris flow behaviors, segregation, and permeability of sediments, as well as the energy absorption rates and potential overtopping occurring when debris flows impact the small mesh-sized one. Experimental results reveal that (a) two sediment deposition patterns are observed depending on variations in debris flow textures and mesh sizes; (b) the aggregation against flexible net barriers is dominated by flow dynamics; (c) the segregation and permeable functions of the barrier are determined by the mesh size, concentration, and flow dynamics; and (d) the smaller mesh-sized flexible net barrier tends to be more efficient in restraining more turbulent debris flows and can absorb greater rate of kinematic energy, and finally, the great kinematic energy dissipation that occurs when secondary debris flows interact with the post-deposits in front of the small mesh-sized flexible net barrier is believed to cause the failure of overtopping phenomenon. The mesh size is concluded to be the decisive parameter that should be associated with debris flow textures to design the control functions of flexible net barriers.  相似文献   

2.
Effective design of mitigation measures against debris flow hazards remains a challenging geotechnical problem. At present, a pseudo-static approach is commonly used for the calculation of impact load acting on a rigid debris-resisting barrier. The impact load is normally calculated based on the maximum velocity observed in the transportation zone under free-field conditions without considering debris-barrier interaction. In reality, the impact load acting on a barrier varies with the change of debris momentum flux but this is seldom considered in barrier design. To provide a scientific basis for assessing debris momentum flux during impact, this paper presents results from a study of debris-barrier interaction using physical flume modelling. This study showed that, following the first stage of impact, the accumulated debris behind a barrier formed a stationary zone and caused the remaining debris to slow down in a run-up process. In the experiments, the peak debris momentum was 30 % lower compared to that observed under free-field conditions. A new momentum-based model was developed to take into account attenuation of momentum flux for predicting debris impact load on rigid barriers. The new rationalised model was assessed using data from the notable Yu Tung Road debris flow in Hong Kong. The assessment showed that the design bending moment at the base of the barrier wall could be reduced more than 30 % using the proposed model, compared with the current design approach. The adoption of the proposed model could offer a new opportunity for practitioners to optimise the design of rigid barriers.  相似文献   

3.
Driftwood deposition from debris flows at slit-check dams and fans   总被引:3,自引:1,他引:2  
Experience shows that debris flows containing large woody debris (driftwood) can be more damaging than debris flows without driftwood. In this study, the deposition process of debris flows carrying driftwood was investigated using numerical simulations and flume experiments. Debris-flow trapping due to driftwood jamming in a slit-check dam was also investigated. A numerical model was developed with an interacting combination of Eulerian expression of the debris flow and Lagrangian expression of the driftwood, in which the fluctuating coordinates and rotation of the driftwood were treated stochastically. The calculated shapes and thicknesses of a debris-flow fan and the positions and orientations of the deposited driftwood on a debris-flow fan were consistent with experimental flume results. The jamming of driftwood in a slit-check dam was evaluated based on geometry and probability. The simulated results of outflow discharge and the proportion of driftwood passed through the slit-check dam also agreed with the experimental results.  相似文献   

4.
小尺度的水槽实验和数值模型被广泛应用于真实尺度条件下海底碎屑流对海底管道冲击力的研究,但模型与某一特定原型之间的相似性一直未能得到保证,从而严重影响模型结果的适用性。为此,本文采用幂律本构关系(Power-law)描述海底碎屑流的流变特性,并基于雷诺相似准则,推导出海底碎屑流冲击海底管道时模型与原型之间各物理参数的比尺关系。根据该比尺关系,本文对现有水槽实验中模型与某一特定原型之间的相似性进行了分析,发现该水槽实验与预期的原型工况并不相似,继而推算出与该水槽实验相似的原型工况,并设计出与预期的原型工况相似的模型工况。此外,本文还对基于幂律本构关系和雷诺相似准则推导得到的比尺关系的适用性进行了讨论,认为该比尺关系适用于常重力环境下(1g)海底碎屑流冲击海底管道的小尺度水槽实验和数值模型,但不适用于超重力环境下(Ng)的土工离心机实验,也不适用于海底碎屑流的低剪切应变率工况。本文的研究结果将为保证常重力环境下(1g)海底碎屑流冲击海底管道时模型与某一特定原型之间的相似性提供理论依据。  相似文献   

5.
本构模型是描述泥石流流变特性的关键,也是决定其动力过程数值模拟准确性的核心问题之一。泥石流流体属多相混合物,现有的研究已证实其存在剪切增稠或剪切变稀的现象,传统基于Bingham及Cross线性本构关系的数值模型难以准确描述泥石流流变特性。文中探讨了Bingham模型在低剪应变率下的数值发散问题,在光滑粒子流体动力学(SPH)方法框架上建立了整合Herschel-Bulkley-Papanastasiou(HBP)本构关系的稀性泥石流动力过程三维数值模型。相比传统基于浅水波假设的二维数值模型,所述方法从三维尺度建立SPH形式下的泥石流浆体纳维?斯托克斯方程并进行数值求解,可获取泥石流速度场时空分布及堆积形态,同时采用HBP本构关系描述泥石流流变特性,能在确保数值收敛的前提下反映泥石流流体在塑性屈服过渡段及大变形状态下应力?应变的非线性变化。为验证提出方法的合理性,结合小型模型槽实验观测进行了对比,结果表明数值模拟与实测结果基本吻合。  相似文献   

6.
Debris-flow simulations on Cheekye River, British Columbia   总被引:4,自引:4,他引:0  
Cheekye River fan is the best-studied fan complex in Canada. The desire to develop portions of the fan with urban housing triggered a series of studies to estimate debris-flow risk to future residents. A recent study (Jakob and Friele 2010) provided debris-flow frequency-volume and frequency-discharge data, spanning 20-year to 10,000-year return periods that form the basis for modeling of debris flows on Cheekye River. The numerical computer model FLO-2D was chosen as a modelling tool to predict likely flow paths and to estimate debris-flow intensities for a spectrum of debris-flow return periods. The model is calibrated with the so-called Garbage Dump debris flow that occurred some 900  years ago. Field evidence suggests that the Garbage Dump debris flow has a viscous flow phase that deposited a steep-sided debris plug high in organics in centre fan, which then deflected a low-viscosity afterflow that travelled to Squamish River with slowly diminishing flow depths. The realization of a two-phase flow led to a modelling approach in which the debris-flow hydrograph was split into a high viscosity and low viscosity phase that were modelled in chronologic sequence as two separate and independent modelling runs. A perfect simulation of the Garbage Dump debris flow with modelling is not possible because the exact topography at the time of the event is, to some degree, speculative. However, runout distance, debris deposition and deposit thickness are well known and serve as a good basis for calibration. Predictive analyses using the calibrated model parameters suggest that, under existing conditions, debris flows exceeding a 50-year return period are likely to avulse onto the southern fan sector, thereby damaging existing development and infrastructure. Debris flows of several thousand years return period would inundate large portions of the fan, sever Highway 99, CN Rail, and the Squamish Valley road and would impact existing housing development on the fan. These observations suggest a need for debris-flow mitigation for existing and future development alike.  相似文献   

7.
泥石流运动规律及其冲击性能对于泥石流灾害的影响范围及严重程度具有重要决定意义。出于泥石流这类多相介质的复杂性,本文采用离散元仿真软件EDEM 2018对碎屑流冲击流槽试验进行了数值模拟研究,考虑流槽坡度、底部拦挡结构角度以及颗粒级配的影响,在已有研究成果的基础上对固体颗粒运动过程及冲击性能展开了系统研究。本文将数值模拟结果与现存试验数据进行了对比分析,验证了数值模拟方法的可靠性,在此基础上得出了以下结论:(1)在拦挡结构角度与颗粒级配相同的情况下,流槽坡度越大,对应的碎屑流运动速度与冲击力的峰值也越大;(2)在流槽坡度与级配相同的情况下,拦挡结构越陡,与其相互作用的固体颗粒数量越多,碎屑流越快达到速度和冲击力峰值,且对应的速度与冲击力峰值也越大;(3)在运动过程中,各颗粒级配的碎屑流均出现反序现象,且细颗粒含量的提升可提高碎屑流运动速度,但同时冲击力降低,而粗颗粒含量的提升可增大碎屑流对拦挡结构的冲击力,对于运动速度的影响较小。  相似文献   

8.
This paper presents a unified modeling framework to investigate the impacts of debris flow on flexible barriers, based on coupled computational fluid dynamics and discrete element method (CFD‐DEM). We consider a debris flow as a mixture of fluid and particles where the fluid and particle phases are modeled by the CFD and the DEM, respectively. The fluid‐particle coupling is considered by the exchange of interaction forces between CFD and DEM calculations. The flexible barrier is simulated by the DEM as a network of bonded particles with remote interactions. The proposed coupled CFD‐DEM approach enables us to conveniently handle the complicated three‐way interactions among the fluid, the particles, and the flexible barrier structure for debris flow impact simulations. The proposed approach is first used to investigate the influences of channel inclination and the volumetric solid fraction in a debris mixture on the impact force, the resultant deformation, and the retained mass in a flexible barrier. The predictions agree well with existing experimental and numerical studies. We further examine the possible failure modes of a flexible barrier under debris flow impact and their underlying mechanisms. The performance of different components in a flexible barrier system, including single wires, double twists and cables, and their load sharing mechanisms, are carefully evaluated. The proposed unified framework offers a novel, promising pathway towards physically based, quantitative analysis and design of flexible barriers for debris flow mitigation.  相似文献   

9.
Flexible barriers undergo large deformation to extend the impact duration, and thereby reduce the impact load of geophysical flows. The performance of flexible barriers remains a crucial challenge because there currently lacks a comprehensive criterion for estimating impact load. In this study, a series of centrifuge tests were carried out to investigate different geophysical flow types impacting an instrumented flexible barrier. The geophysical flows modelled include covered in this study include flood, hyperconcentrated flow, debris flow, and dry debris avalanche. Results reveal that the relationship between the Froude number, Fr, and the pressure coefficient α strongly depends on the formation of static deposits called dead zones which induce static loads and whether a run-up or pile-up impact mechanism develops. Test results demonstrate that flexible barriers can attenuate peak impact loads of flood, hyperconcentrated flow, and debris flow by up to 50% compared to rigid barriers. Furthermore, flexible barriers attenuate the impact load of dry debris avalanche by enabling the dry debris to reach an active failure state through large deformation. Examination of the state of static debris deposits behind the barriers indicates that hyperconcentrated and debris flows are strongly influenced by whether excessive pore water pressures regulate the depositional process of particles during the impact process. This results in significant particle rearrangement and similar state of static debris behind rigid barrier and the deformed full-retention flexible barrier, and thus the static loads on both barriers converge.  相似文献   

10.
王东坡  张小梅 《岩土力学》2020,41(12):3851-3861
泥石流冲击过程中,坝基位置处承受了较大冲击力,易引起该位置出现应力集中而导致局部冲击破坏。为此,将竖向拦挡坝结构优化为弧形拦挡坝,并基于动量及能量守恒开展泥石流冲击弧形拦挡坝理论计算研究,推导泥石流对弧形拦挡坝的冲击力及爬升高度计算公式。为验证理论公式的正确性,进一步开展泥石流冲击弧形拦挡坝物理模型试验。研究结果表明:物理模型试验结果与所推导的理论公式计算结果具有较高的拟合度,该理论公式可适用于泥石流对弧形拦挡坝的冲击计算;泥石流流速、冲击力、爬升高度与泥石流沟道纵坡坡度呈正相关关系;冲击力及爬升高度主要受弗洛德数Fr、泥石流沟道纵坡坡度α、拦挡坝弧形半径R控制,并与Fr呈二次方正相关,与泥石流沟道纵坡坡度α的余弦值成反比;与竖向型拦挡坝结构相比,弧形拦挡坝结构在爬升高度上无显著影响,然而可较大程度降低泥石流对坝体的法向冲击力,局部结构增强也使得坝体结构强度得到提升。该研究可为泥石流拦挡坝工程的结构设计提供理论及技术支持。  相似文献   

11.
Tan  Dao-Yuan  Feng  Wei-Qiang  Yin  Jian-Hua  Zhu  Zhuo-Hui  Qin  Jie-Qiong 《Acta Geotechnica》2021,16(2):433-448

Retention behavior of a flexible barrier in mitigating a granular flow is still an open problem not fully understood, especially due to the complexity of the granular material and the flexible barrier. Understanding the retention mechanism and quantifying the influencing factors of retention efficiency are desirable for optimizing the design and minimizing the maintenance cost of a debris-resisting flexible barrier. In this paper, a numerical model, based on the discrete element method, is presented, calibrated, and validated to analyze the interaction between a granular flow and a flexible net. A full-scale numerical simulation is first performed to compare with a large-scale physical modeling test in the literature and validate the applied parameters in the simulation. The interaction and deposition characteristics of the granular flow interacting with a flexible net are revealed. Afterward, parametric study is performed to investigate the effects of the internal friction angle (φ) of debris material and the relative mesh size of flexible net on the retention efficiency and clogging mechanism of a flexible barrier. The simulation results illustrate that the particle passing ratio (P) increases with increment of the friction angle of particles and enlargement of the mesh size of a flexible net. Both parameters have critical effects on the retention efficiency of a flexible barrier in intercepting a granular flow. Therefore, the friction angle and the particle size distribution characteristics of the debris material are suggested being used for optimization of the mesh size and more efficient design of debris-resisting flexible barriers.

  相似文献   

12.
泥石流作用下建筑物易损性评价方法分析与评价   总被引:1,自引:0,他引:1  
曾超  贺拿  宋国虎 《地球科学进展》2012,27(11):1211-1220
建筑物易损度评价作为泥石流易损度评价的重要组成部分,其研究是实现城镇及居民点泥石流风险定量化和风险管理的必要环节。综述近30年来,泥石流作用下建筑物易损度研究的发展过程,并指出以统计分析方法建立的建筑物易损度曲线普适性差且力学机理不明等问题,提出数值计算和模型实验的手段获取建筑物结构易损度的机理模型。由于建筑物易损度研究问题本身的复杂性,统计分析方法仍将作为建筑物易损度研究的重要手段,力学机理明晰的研究方法则将成为今后研究的难点和热点。此外,地震、滚石、雪崩等类似灾种的易损度研究方法和成果可被借鉴到泥石流领域。针对灾害中因结构破坏引发人员伤亡的情况,建议采用时间概率和基于条件概率的事件树方法计算建筑物内人员易损度。最终形成综合结构和人员易损度研究成果的建筑物易损度评价方法。  相似文献   

13.
Impact of debris flow consists of two distinctive phases due to its physical composition. One is the dynamic impact from fluid phase, and the other is collision from the solid phase. At present, there is no effective way to differentiate these two phases of impact. An empirical mode decomposition (EMD)-based signal process method was proposed in this paper to extract fluid and solid impact force of debris flow from the mixed signal. Miniaturized flume tests have been carried out with 14 work conditions, and the impact signals were captured by a digital logger. From the experiment, frequencies of fluid phase and solid phase impact signals were identified in the range of 0.05–2 Hz and 300–600 Hz, respectively. The impact signals from solid and liquid phases were reconstructed using the proposed method. In addition, the impact force of fluid phase that measured directly from the flume tests and calculated from isolated signals showed good agreement and the average difference was about 10%. However, large deviation of solid phase impact was observed especially when this method was applied to the full-scale debris flow events and the difference ranged from 26.33 to 61.47%. This proposed method provided an alternative approach to study the debris flow impact force in terms of slurry and large particles separately.  相似文献   

14.
Debris flow with intermittent surges is a major natural hazard. Accurate estimation of the total volume of debris flow is a challenge for academic researchers and engineering practitioners. This paper has proposed a new model for the total volume estimation based on 15 years of observations in Jiangjia Valley, China, from 1987 to 2004. The model uses two input variables: debris flow moving time and average surge peak discharge. The Weibull distribution formula is adopted to describe the relationship between the debris flow surge peak discharge and its relative frequency. By integrating the Weibull function and two-point curve fitting, the relationship between the maximum discharge and average surge peak discharge can be established. The total debris flow volume is linked with the debris flow moving time and the average peak discharge. With statistical regression, the debris flow moving time is derived from the debris flow total time. The proposed model has fitted very well with the validation data and outperformed the existing models. This study has provided a new and more accurate way for estimating the total volume of debris flows with intermittent surges in engineering practice.  相似文献   

15.
物源条件对震后泥石流发展影响的初步分析   总被引:1,自引:0,他引:1  
强震过后一定时期内,泥石流的活跃性增强,即数量增多、规模增大、频率增加。而随着松散物质储量的减少,泥石流的活跃性会随之衰减。为了具体考察物源条件对震后泥石流活动的影响,使用震后泥石流逐年平均输沙量作为刻画泥石流活跃性的指标,在云南蒋家沟和西藏古乡沟泥石流数据的基础上,定量地分析了震后泥石流活跃性的变化过程。分析表明存在降雨控制型和物源控制型两种泥石流流域。前者的泥石流在震后很长一段时间内都不衰减,其发生主要取决于降雨条件。后者最大规模的泥石流发生于地震过后的短时间内,尔后泥石流活动随时间显著减弱。泥石流规模和频率的关系与暴雨不一致。当物源控制型流域的无量纲化活跃性指标值降为0.12左右时,可以认为泥石流进入了稳定或者衰弱期,不会再有大规模的泥石流事件发生。数据拟合结果表明,整个泥石流活跃性的衰减过程可以用幂函数来描述。其衰减指数与剩余物质储量和总物质储量之比存在密切的关系。这为定量预测震后泥石流发展趋势提供了一个初步的模型。  相似文献   

16.
粘性泥石流入汇主河极大地改变了入汇区的河床堆积地貌,其动力学实质是非牛顿流体与牛顿流体的交互作用,合理描述粘性泥石流入汇区河床堆积动力过程对于划定粘性泥石流风险区范围和认知流域地貌演化具有重大意义。粘性泥石流入汇区河床堆积体时空演化过程有别于粘性泥石流在地表的纯堆积过程,通过回顾国内外学者在泥石流入汇区堆积动力学方面的研究成果,可以发现在粘性泥石流入汇区内堆积现象复杂,存在"阵性"输移、"元堆积"和龙头"水滑"等特殊现象。但目前的研究对泥石流和水流交互机制都进行了简化,一是将粘性泥石流视为挟沙水流,直接采用异重流方法;二是将粘性泥石流视为"半固态",只考虑水流的输沙特征,研究认为基于这样的简化不足以描述粘性泥石流入汇的物理过程和特殊现象,也低估了粘性泥石流交汇区冲击速度和堆积范围。同时,根据粘性泥石流入汇区河床堆积动力过程的研究现状,结合粘性泥石流入汇的特殊运动过程,提出未来可开展的工作:一是粘性泥石流入汇的物理过程和其交互机制的合理简化;二是普适性高的粘性泥石流-水流堆积动力学模型的建立。  相似文献   

17.
Debris flow impact force is an important factor for controlling structural damage, and it is the key factor for engineering design and risk assessment. Variation laws of debris flow impact force play an important role in preventing check dam impact damage and providing technology, data and support for check dam construction. Many influencing factors exist in debris flow impact force with different influencing magnitudes. The three main factors, i.e. the debris flow bulk density, the drainage channel slope and the upstream surface gradient of the check dam, were selected to be analyzed. The purpose of the study was to analyze the influencing degree of the three factors. Three levels were set for each factor and nine text schemes were established based on the theory of orthogonal experimental design. What is more, the related miniaturized flume experiment was carried out to measure impact force of debris flow. Finally, taking the impact force mean values of key point as the evaluation index, the flume experiment results were analyzed in detail by extreme difference analysis and variance analysis. Research results indicate: among the three factors, the drainage channel slope has the most significant influence, the upstream surface gradient of the check dam is in the second place and the debris flow slurry density is the third. The form of impact force mean with the maximum value: the drainage channel slope is 15°, the debris flow bulk density is 18.1 kN/m3 and the upstream surface gradient of the check dam is 1:0.  相似文献   

18.
A dry debris avalanche will produce different volumes of colluviums or depositions (loose materials), which can have a significant impact on mountainous rivers or gullies. The loose material supply process caused by a debris avalanche is an important issue for understanding secondary disasters that form via the coupling of water flow and loose materials. Two flumes were designed for laboratory tests of the loose materials supply process to rivers/gullies, and the related impact factors were analyzed. Experimental results show that the supply of loose materials is a continuous process that directly relates to the avalanche’s mass movement processes. The sliding masses with smaller particle sizes are more sensitive to the flume slope and exhibited a longer supply time. The time-consuming for the debris avalanche travel in the flume decreased with the increasing particle size (such as flume B, time-consuming is decreased 0.2 s when the particle size increased from <1.0 to 20–60 mm), landslide volume and flume slope (flume A, consuming 1.6–2.1 s when flume slope is 29° decreased to consuming 1.3–1.5 s when flume slope is 41°), which means the increasing mobility of loose materials. The total supply time increased with the increasing landslide volume or decreasing particle size and flume slope. An empirical model for the process is presented based on numerous laboratory tests and numerical simulations, which can successfully describe the supply process for loose materials to a river/gully. The supply process of loose materials to mountainous gully from a dry debris avalanche is controlled by the material compositions of sliding masses, topographical conditions, landslide volume and bed friction, where large-volume debris avalanches that occur in mountainous river regions are more likely to obstruct the river flow and form a landslide-dammed lake.  相似文献   

19.
The accurate prediction of runout distances, velocities and the knowledge of flow rheology can reduce the casualties and property damage produced by debris flows, providing a means to delineate hazard areas, to estimate hazard intensities for input into risk studies and to provide parameters for the design of protective measures. The application of most of models that describe the propagation and deposition of debris flow requires detailed topography, rheological and hydrological data that are not always available for the debris-flow hazard delineation and estimation. In the Cortina d’Ampezzo area, Eastern Dolomites, Italy, most of the slope instabilities are represented by debris flows; 325 debris-flow prone watersheds have been mapped in the geomorphological hazard map of this area. We compared the results of simulations of two well-documented debris flows in the Cortina d’Ampezzo area, carried on with two different single-phase, non-Newtonian models, the one-dimensional DAN-W and the two-dimensional FLO-2D, to test the possibility to simulate the dynamic behaviour of a debris flow with a model using a limited range of input parameters. FLO-2D model creates a more accurate representation of the hazard area in terms of flooded area, but the results in terms of runout distances and deposits thickness are similar to DAN-W results. Using DAN-W, the most appropriate rheology to describe the debris-flow behaviour is the Voellmy model. When detailed topographical, rheological and hydrological data are not available, DAN-W, which requires less detailed data, is a valuable tool to predict debris-flow hazard. Parameters obtained through back-analysis with both models can be applied to predict hazard in other areas characterized by similar geology, morphology and climate.  相似文献   

20.
泥石流断面内流速垂向分布是研究其流量、冲击力和沟床侵蚀过程的关键。然而,受限于测量装置布设条件,泥石流现场实测及水槽试验中常用的分层流速仪等设备仅能采集断面内少量样本点的流速数据,导致基于实测结果拟合回归的线性分布模型难以准确描述泥石流速度分布规律。对此,本文依托大比例尺泥石流水槽试验开展研究,利用所构建的基于HBP本构的光滑粒子流体动力学(SPH)数值模型反演泥石流三维动力过程,通过分层统计算法对大量粒子速度数据进行分析处理,获得了断面内速度垂向分布规律,并据此提出了基于对数函数的泥石流流速垂向非线性分布模型。为验证所提出模型的准确性,利用其他多组水槽试验数据进行了对比分析,结果表明,本文提出的对数分布模型比传统线性分布模型能够更准确地拟合速度剖面,并在模型参数敏感性方面具有更强鲁棒性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号