首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
本文对印度拉贾斯坦邦北部以地下水为主要饮用水源的一些乡村进行了地下水氟化物污染评价。分析了利用手压泵从深含水层采集的水样的氟化物含量。目前,研究区内记录在案的氟化物的浓度范围为1.01m4.78mg/L。研究区地下水中氟化物的平均浓度为2.82mg/L。根据世界卫生组织(WHO)或者印度标准办公署制定的饮用水中氟化物的期望浓度(desirable limit)和最大容许浓度,研究区内约95%的地下水不适于饮用。在研究区,由于饮用水中氟化物的浓度很高,目前氟斑牙和氟骨征患者正以惊人的速率增长。在印度最北部的哈努芒加尔县的中部和东部地区,由于地下水中氟化物的浓度相对较高(3-4mg/L),因此,可把这些地区列为氟中毒高风险地区。对本项研究所得数据进行评价后得出结论,在研究区采取改良措施来预防居民氟中毒刻不容缓。  相似文献   

2.
论述了底泥中氟的存在形态及其浸提方法。通过洋沙泡水库底泥氟各种形态的分析实验,发现底泥氟形态的含量分布为残余态水溶态>有机态>铁锰结合态>可交换态;底泥各形态氟含量呈对数分布;水溶性氟质量分数为26.77~112.39 mg/kg,占总氟的2.699%~19.114%。底泥全氟含量、氟的来源、气候因素的影响、区域理化环境以及湖泊曾数度干涸是造成水溶性氟含量高的主要原因。  相似文献   

3.
煤中氟化物的测量及分布规律初探   总被引:9,自引:0,他引:9  
采用高温碱熔-离子选择性电极法测量煤中氟化物浓度,并对测量过程中的影响因素进行了研究;同时对常用的几类煤中氟的分布规律作了初步探讨,结果表明,该测量方法准确度较高,误差小,测量方便快速,实用性强,可作为煤中氟含量测量的一种有效方法;测量结果对煤种的筛选及消除煤中氟污染有一定的指导意义。   相似文献   

4.
伊朗西北部南Azarbaijan省北部的Maku区存在高氟地下水。地下水是常住区域主要的水源。2006年6月和8月期间,对选择的72个点包括40个玄武岩和32个非玄武岩的泉和井分两个阶段进行地下水采样。确定高氟区域,调查氟浓度变化的潜在因素。区域水文地球化学调查说明水.岩关系可能是导致地下水中离子浓度高的主要原因。地下水中的F^+浓度与HCO3和Na^+是正相关性,这说明高浓度的HCO3、Na^+的地下水有助于溶解一些富含氟化物的矿物质。所有的水样都是采自氟化物浓度和其他参数不符合水质标准的玄武岩区域。因此,这些水如果不进行预先处理是不适合饮用的。饮用玄武岩区域的泉和井的水的居民都患有氟斑牙病。研究区域的居民,由于缺乏对氟化物的了解,没有意识到过多摄入氟化物的量对人体的危害,所以,居住在这里的居民都存在氟中毒的高风险。  相似文献   

5.
本文评价了印度集中产粮区农业活动引起的饮用地下水中NO3—N和氟化物(F)的潜在污染。从不同深度、不同类型水井中共采集了342个地下水样品,分析了地下水样品中NO3—N和氟化物的含量以及pH值和导电率(EC)。也收集了研究区内有关主要种植模式、肥料和杀虫剂使用情况等数据。地下水样品中NO3—N的含量较低,浓度范围为0.01-5.97mg/L,仅6.7%的样品中NO3-N的含量大于3.0mg/L。居民区地下水样品中的NO3-N含量高于农田区。但所有样品中NO3州的浓度均低于世界卫生组织规定的饮用水中NO3—N的容许浓度。地下水样品中NO3—N的含量随水井深度的增大而减小(r=-0.297,P≤0.01),而随含氮肥料施肥率的增加而增大(r=0,931,P〈0.01)。种植浅根性作物地区地下水中NO3—N的浓度高于种植深根性作物的地区。地下水样品中氟化物的浓度也普遍较低(0.02-1.19mg/L),仅2.4%的样品中氟化物浓度大于1.0mg/L,这对局部地区居民造成了潜在的氟中毒威胁。总的来说,研究区内地下水中氟化物浓度的空间变化和随含水层深度的变化不大,这表明,研究区的地层岩性是均质的。地下水样品中氟化物的浓度与农业磷酸盐肥料(普通过磷酸钙)的施肥量呈明显的正相关关系(r=0.237,P〈0.01)。研究结果表明,目前研究区内居民饮用的地下水是安全的,但集中产粮区有关的一些人为活动的确对地下水中NO3—N和氟化物的浓度产生了影响。  相似文献   

6.
100多年以来,各领域的学者一直在研究着环境中的氟化物与人类健康的关系。大多数学者认为,摄入少量的氟有助于预防龋齿、强健骨骼,而长期摄入大剂量的氟会给健康带来不利的影响,包括氟斑牙、氟骨症,骨折机率增加;生育能力下降;尿结石机率增加;甲状腺机能下降;儿童智力下降。长期接触氟灰尘和气体,膀胱癌和呼吸系统疾病患病率增高。另据报道,摄入氟化钠杀虫剂和护牙用品会患急性氟中毒,严重者甚至死亡。自然环境中氟化物的分布非常不均一,主要是氟元素的地球化学特征所致。氟元素最先选择岩浆和热液释放地带富集,这就可以解释为什么正长岩、花岗类岩、火成岩、碱性火山岩和热液沉积岩的氟化物浓度一般比较高的原因。氟化物还常存在于沉积地层,该层包括来自原生岩的含氟化物矿物、富集氟化物的粘土、或者磷灰石。溶解的氟化物浓度一般受萤石(CaF2)的溶解度控制,因此,氟化物浓度高常常与软、碱性和钙含量不足的水体有关。尽管人们对氟化物的形成和其对健康的影响已经有很高的认识,但是,仍有很多氟化物与环境健康问题存在于第三世界国家,这些国家的居民几乎不能选择自己的饮用水和食物。即便是在发达国家,如果忽略了饮用水源之外的水源,那么,居民摄入的氟化物的含量也超过了推荐的剂量。  相似文献   

7.
由于印度集中产粮区的岩性和农业活动,我们评价该区氟化物(F)污染对饮用地下水的潜在危害。从不同类型的井中采集308个水样并分析水样的pH、EC、NO3-N荷载和氟含量。记录有代表性的岩性,把该区使用肥料和杀虫剂的区域也要录入数据库。这些水样在反应中几乎是中性的而且不含盐,N03—N含量低(0.02~4.56μgmL^-1),水中氟化物含量也低(0.01~1.18μgmL^-1),其中2.27%超过1.0μgmL^-1,对地下水有氟中毒潜在的威胁。随着采样的含水层深度的变化,上述水样平均含量空间变化甚微,因为这个区域的岩性是同质均匀的。这些水样的氟含量表明,氟含量与农用磷肥的量(个别地区超量使用)之间是正相关(r=0.12,P=≤0.05),但是,研究发现,氟含量与杀虫剂使用的人为活动以及与这些水样的NO3—N含量、pH值和EC值之间都不存在这种关系。研究结果表明,磷肥的使用也许对地下水中氟的富集起到一定的作用。  相似文献   

8.
地下水中氟化物的浓度受Ca^2 和SO4^2-的强度和其成分中络合离子的存在形式控制。在研究区域,位于印度RangaReddy区的AndhraPradesh,在季风季节前后,地下水中的氟化物的浓度分别是从0.7-408ragd和0.4-4.2mg/l。根据相关系数的研究,氟化物与Ca^2 反向相关,与HCO^3-正向相关,而在两种季节期间,氟化物和其他离子之间的相关系数是很低的。季风季节前后,F^-浓度的差异是存在的,因为在季风季节后由于雨水的稀释。地下水的离子浓度一般小于它们的原定值。相反,许多地方的氟化物的浓度在季风季节之后都相对的高。这就表明地下水受到了地表污染物的污染。  相似文献   

9.
墨西哥各区含水层的监测结果表明,地下水砷浓度和氟浓度都高于饮用水标准,调查表明,污染物是原生的;而少数区域的监测结果表明,污染主要是由于对水特殊处理后,将一些有毒元素释放到地下水中所致。在墨西哥北部Comarca Lagunera,就砷对健康的影响进行了大量的研究,而且在这些区域还发现了高氟水。这些地方砷的来源问题仍有争议。天然的和人为排放的砷污染了采矿活动频繁区域的地下水。墨西哥中部Zimapan裂隙石灰岩含水层被富砷矿物污染。尾矿和富含烟气的沉积物的冶炼污染了浅层小颗粒含水层(granular aquifer)。在SanAntonio-El Triunfo采矿区、加利福尼亚南部Baja和San Luis Potosi州的Santa Maria de la Paz也报道砷污染的情况。水文地球化学和统计学手段调查表明,即便不采矿,毒砂氧化也可能污染水体,如墨西哥高原的Independencia含水层就是这样的实例。在Los Azufres、Los Humeros和Acoculco地热区也有高浓度的砷检出,在Aguascalientes、Los Azufres、Los Humeros和Acoculco州调查了氟斑牙的发病率。水中的氟化物导致酸性的火山岩分解。墨西哥大部分居民都饮用地下水。目前对墨西哥地质概况的调查表明,在所有的水富集区,必须把测定地下水砷和氟化物浓度的工作提到日程上来,进行学科间的研究,评价污染物的来源。  相似文献   

10.
国际氟化物学会付主席、岩手医科大学教授角田文男博士于十月五日应邀来我局作了题为《大气中氟化物及氟化物污染研究》的学术报告。该报告大体上分为三个部分: 一、日本氟中毒的今昔:1950年以前日本饮水水质不好,饮水最高氟含量达5ppm,在广岛、京都、宝家等地均发现氟中毒。此后,逐年建立了自来水,饮水氟含量降到0.8ppm,到1958年93.6%的居民已饮上自来水。现已无氟中毒流行。二、大气中氟化物的来源及其对人体和动植物的危害:大气中的氟化物主要来源于冶炼工业,如铝厂、磷肥厂等。其它工业,如砖厂等,均可将其生产过程中排放的氟化物排入大气,污染大气。大气中的氟化物首先危害植物,以水稻、红松和杉树对氟化物最敏感。中毒的最初阶段是枝叶枯黄,继而叶落和新  相似文献   

11.
氟试剂分光光度法测定氟化物的方法分析   总被引:4,自引:0,他引:4  
张玉明  石庆 《水文》2002,22(6):50-53
在氟试剂分光光度法的基础上,从吸收光谱、比色皿选择、各试剂的pH值及用量对吸光度的影响、工作曲线等方面,分析了影响测定氟化物的因素,并对氟试剂分光光度法提出了改进意见。  相似文献   

12.
《地下水》2016,(1)
通过对研究区的水文地质条件进行分析,建立田畈灰场的水文地质概念模型。选用灰渣溶滤后产生的F~-作为模拟因子,利用地下水模拟软件Visual MODFLOW对研究区地下水中的F~-的运移进行了数值模拟研究,对地下水中的F~-污染的范围和程度进行了预测。结果表明:氟化物在地下水中的运移方向与地下水水流方向基本一致,氟化物浓度随着迁移距离的增大而减小。为灰场地下水环境污染防治提供依据。  相似文献   

13.
张千杰 《岩矿测试》2006,25(1):71-73
根据法拉第电解定律,利用电化学原理自制了净水器,并进行了工作参数的选择,净水器的电生铝离子用来沉淀和分离水中超标的氟离子,以此除去高氟水中的氟化物,得到符合卫生标准的生活饮用水。应用该装置对9.0mg/L的高氟水进行处理,可以达到1.0mg/L的饮用水。  相似文献   

14.
准确检测植物体内的氟含量有助于预测氟化物的生态环境效应。植物中的氟含量低,通常不超过300μg/g,应用离子选择电极法测量氟需选择样品分解效率高的前处理方法使氟不受到损失,获得离子成分简单、空白低的溶液,同时加入适量的缓冲液增强氟离子的强度和掩蔽干扰。本文采用微波消解法处理植物样品,离子选择电极法测定氟的含量,通过优化实验条件确定了缓冲液的浓度。结果表明,在25℃、p H=6.5的样品溶液中加入147 g/L总离子强度缓冲溶液(TISAB)10 m L,避免了溶液中的阳离子与氟离子生成稳定的不溶絮状物,显著降低了沉淀物的产生。本方法检出限为0.242μg/g,精密度(RSD)小于8.5%,回收率为92.0%~108%,能满足地球化学样品分析中对植物样品中低含量氟的检测要求。  相似文献   

15.
大约55年以前,在土耳其安纳托利亚西南的厄斯帕尔塔省(Isparta Province)首次发现了饮用高氟水(1.5-4.0ppm)而导致的氟斑牙即牙齿上生成斑釉。氟化物主要来源于火山岩矿物,火山岩主要由辉石、角闪石、黑云母、氟磷灰石、玻璃质矿物组成。据报道,大约35年以前,在土耳其东部的Tendurek火山附近的Dogubeyazlt和Caldiran地区,在人和家蓄中就发现了严重的氟斑牙和氟骨症,这个地区的原水氟化物含量为2.5~12.5ppm。人们假设氟化物(可以通过火山岩喷气孔或者不透明的火山岩逸出)牢固地附着在一些矿物的表面,与后形成的Tendurek火山区丘陵地带pH值高的地下水中的OH‘发生置换反应。在土耳其中西部Eskisehir省的Beylikova镇的Kizilcaoren村,也发现了氟斑牙和氟骨症,该区水的氟化物含量为3.9~4.8ppm。高氟水的起因与村庄附近补给区氟石的沉积有关。在土耳其中西.南部Esme-Usak的Gillu村调查期间,发现这个村的大多数居民,从出生到现在一直都生活在这个村里,最长的时间为10-30年,这些居民都患有轻度到中度的氟斑牙。该村饮用的深井水氟化物含量为0.7~2.0ppm。人们认为,Pliocene湖石灰岩区的非结晶质极小氟石可能是当地水氟化物的来源。  相似文献   

16.
徐州地氟病区植物中氟的分布及其环境意义   总被引:12,自引:0,他引:12  
徐州地氟病区几种主要粮食中氟的含量变化在0.70-0.85mg/kg之间,均不超过国家卫生标准值。各种主食蔬菜中氟的含量变化在1.88-12.25mg/kg之间,远超过国家卫生标准,其中以青菜氟含量较高(12.25mg/kg),同种蔬菜叶中氟含量高于块茎和果实的氟含量。不同树中氟含量高达24.56-34.29mg/kg。相关分析表明,植物中的氟含量主要取决于土壤中水溶性氟的含量。叶菜(青菜、白菜等)和树叶中氟含量远远超过土壤中水溶性氟的含量(病区土壤中水溶性氟含量平均值9.60mg/kg),说明氟有随水向植物叶子中富集的趋势。徐州地氟病区主食粮食对人体健康不构成伤害,主食蔬菜氟含量高,长期食用是引发地氟病的重要因素之一。  相似文献   

17.
研究区域位于肯尼亚裂谷,包括纳库鲁区的恩乔罗,覆盖面积774km^2。发现岩石、植物、动物、空气和水中有浓度不等的氟化物出现。因为它有很高的活性,氟化物通常以离子形式存在,并通过空气的吸收、吸入物进入水体。水中合的氟化物比食物中合的氟化物更快地被吸收。氟化物被人体吸收后,如果没有排泄出去,能引起牙齿和指甲的细沟、牙的氟中毒或长期处于高氟浓度的环境中,能引起骨胳的氟中毒。  相似文献   

18.
引言虽然地质及地球化学工作者对形成岩浆-热液矿床的组份(如硫、氯、水)的重要性日益感到兴趣,但对除氯以外的其它卤素却注意不够.卤素中氟是最丰富的,除可能参与某些热液过程以外,它是为数不多的地球化学直接找矿中一种有价值的元素.直到现在,地质样品的氟化物"都是在手续烦琐的蒸馏分离以后用滴定法和分光光度法分析.大约在六年前氟化物离子选择电极问世以后,发表了  相似文献   

19.
任金峰 《地下水》2013,(3):103-104
作为德州市农村主要饮用水源之一的深层地下水氟化物含量超标,严重影响了当地人民群众的身体健康。本文对德州市高氟深层地下水的分布及成因进行了分析,阐述了饮用高氟水的危害,结合当地做法对降氟改水措施做了探讨。  相似文献   

20.
评价Hisar市地下水质量,目的是检验该市的饮用水是否适宜饮用。分析采自水井(部分采自城市供水系统)和手动泵提水的分散式供水井的水样的物理化学参数,包括pH值、电导率、总溶解盐、总硬度、总碱度、钠、钾、钙、镁、碳酸盐、重碳酸盐、氯化物和硫酸盐,结果表明,镁、钠、钾、硫酸盐特别是氯化物的浓度都高于WHO饮用水标准。此外,对哈里亚纳邦各个城市和城镇的地下水中的氟化物(F)的浓度进行对比发现,地下水中氟化物的浓度较高,增加了氟中毒的风险,因此,在饮用之前,必须进行处理。本文讨论了选用本地材料防治氟中毒有前景的降氟技术和方法,并对数据进行了统计评估,以寻找有助于监测地下水质的界限。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号