首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
High‐pressure (HP) metabasites from the Sancti Spiritus dome (Escambray massif, Central Cuba) have been studied in order to better understand the origin and evolution of the Northern Caribbean boundary plate during the Cretaceous, in a global subduction context. Geochemical and petrological studies of these eclogites reveal two groups with contrasting origins and pre‐subduction metamorphic histories. Eclogites collected from exotic blocks within serpentinite (mélange zone) originated from a N‐MORB type protolith, do not record pre‐eclogitic metamorphic history. Conversely eclogites intercalated in Jurassic metasedimentary rocks (non‐mélange zone) have a calc‐alkaline arc‐like origin and yield evidence for a pre‐subduction metamorphic event in the amphibolite facies. However, all the studied Escambray eclogites underwent the same eclogitic peak (around 600 °C at 16 kbar), and followed a cold thermal gradient during their exhumation (estimated at around 13.5 °C km?1), which can suggest that this exhumation was coeval with subduction. Concordant geochronological data (Rb/Sr and Ar/Ar) support that the main exhumation of HP/LT rocks from the Sancti Spiritus dome occurred at 70 Ma by top to SW thrusting. The retrograde trajectory of these rocks suggests that the north‐east subduction of the Farallon plate continued after 70 Ma. The set‐off to the exhumation can be correlated with the beginning of the collision between the Bahamas platform and the Cretaceous island arc that induced a change of the subduction kinematics. The contrasting origin and ante‐subduction history of the analysed samples imply that the Escambray massif consists of different geological units that evolved in different environments before their amalgamation during exhumation to form the present unit III of the massif.  相似文献   

2.
Wang  Neubauer  Genser  & Yang 《地学学报》1998,10(5):260-267
Petrological, geochronological and structural data show that the eastern Dabie metamorphic complex resulted from two orogenic stages. Precursor rocks of the ultrahigh-pressure (UHP) and high-pressure (HP) units in the present hanging wall tectonic position were buried, penetratively deformed and subsequently exhumed by distributed, ESE-directed shearing during Triassic time. In contrast, rocks of the Dabie orthogneiss domes, now in a footwall tectonic position, were penetratively deformed during temperature-dominated, Early Cretaceous tectonic events, that are likely related to magmatic underplating. The Dabie orthogneiss domes and the UHP/HP units were juxtaposed during Early Cretaceous exhumation of Dabie orthogneiss domes by the formation of an ESE-directed low-angle ductile normal shear zone. Consequently, the UHP/HP units now represent an extensional allochthon in the hanging wall of the younger normal shear zone. The Cretaceous extensional structures are limited by boundary strike-slip faults. Consistent with the South China regional tectonic framework, ESE-directed lateral extrusion is considered to be the driving mechanism for extension and the present-day structure of the Dabie metamorphic complex.  相似文献   

3.
The Kunigami zone in Okinawa is an extension of the Shimanto zone, Japan. The rocks make up the main part of the Nago metamorphic rocks, and such metamorphic rocks are exceptional in the Shimanto zone. The Anne complex, in the older Motobu zone, is also metamorphosed. The reason for why and how this kind of the metamorphism occurred, and especially why and how the metamorphic rocks were exhumed, is yet uncertain and unresolved. To understand the metamorphic and exhumation process in Okinawa, a structural study is undertaken, and its relation to the Eocene ridge subduction is discussed. We believe exhumation was performed by formation of a D2 extrusion wedge, made up of the Nago metamorphic rocks. The base for this wedge is a subduction thrust, and the roof is a detachment fault. Internally, there exists another Kijoka detachment fault, which is a brittle low-angle fault with top to the northwest shear sense, and the D2 major recumbent folds and thrusts show top to the southeast opposite shear sense in the Kunigami zone. This is the first report that finds detachment faults from the typical and ancient accretionary complex. M2 is mostly retrograde related to exhumation, but its medium P/T-type prograde metamorphism, abnormal at subduction zones, represents a high thermal gradient during ridge subduction. As a result, this ridge subduction is responsible for exhumation. At the time of accretion of the Kunigami zone, D1 ductile contraction and constriction exhibited top to the southeast shear sense, but an opposite and extensional shear sense is recognized in the proto-wedge. During D1, the wedge had already been active and begun to exhume. M1 of the Miyagi complex is accretion related and also of medium P/T-type metamorphism, and is a consequence of Cretaceous ridge subduction without any ability to cause much exhumation.  相似文献   

4.
The Southern Rhodope Core Complex is a wide metamorphic dome exhumed in the northern Aegean as a result of large-scale extension from mid-Eocene to mid-Miocene times. Its roughly triangular shape is bordered on the SW by the Jurassic and Cretaceous metamorphic units of the Serbo-Macedonian in the Chalkidiki peninsula and on the N by the eclogite bearing gneisses of the Sideroneron massif. The main foliation of metamorphic rocks is flat lying up to 100 km core complex width. Most rocks display a stretching lineation trending NE–SW. The Kerdylion detachment zone located at the SW controlled the exhumation of the core complex from middle Eocene to mid-Oligocene. From late Oligocene to mid-Miocene exhumation is located inside the dome and is accompanied by the emplacement of the synkinematic plutons of Vrondou and Symvolon. Since late Miocene times, extensional basin sediments are deposited on top of the exhumed metamorphic and plutonic rocks and controlled by steep normal faults and flat-ramp-type structures. Evidence from Thassos Island is used to illustrate the sequence of deformation from stacking by thrusting of the metamorphic pile to ductile extension and finally to development of extensional Plio-Pleistocene sedimentary basin. Paleomagnetic data indicate that the core complex exhumation is controlled by a 30° dextral rotation of the Chalkidiki block. Extensional displacements are restored using a pole of rotation deduced from the curvature of stretching lineation trends at core complex scale. It is argued that the Rhodope Core Complex has recorded at least 120 km of extension in the North Aegean, since the last 40 My.  相似文献   

5.
A new occurrence of eclogites was found in the Kesandere valley in the eastern most part of the Bitlis complex, SE Anatolia. These high-pressure (HP) relics were preserved in calc-arenitic metasediments within the high-grade metamorphic basement of the Bitlis complex. The eclogitic parageneses were strongly overprinted during decompression and heating. These new eclogites locality complements the evidence of blueschist-facies metamorphism documented recently in the meta-sedimentary cover sequence of this part of the Bitlis complex. Thermodynamic calculations suggest peak conditions of ca. 480–540 °C/1.9–2.4 GPa. New U/Pb dates of 84.4 ± .9 and 82.4 ± .9 Ma were obtained on zircons from two Kesandere eclogite samples. On the basis of geochemical criteria, these dates are interpreted to represent zircon crystallization during the eclogitic peak stage. Kesandere eclogites differ from those previously described in the western Bitlis complex (Mt. Gablor locality) in terms of lithologic association, protolithic origin, and peak P–T conditions (600–650 °C/1.0–2.0 GPa, respectively). On the other hand, eclogitic metamorphism of Kesandere metasediments occurred shortly before blueschist-facies metamorphism of the sedimentary cover (79–74 Ma 40Ar/39Ar white mica). Therefore, the exhumation of Kesandere eclogites started between ca. 82 and 79 Ma, while the meta-sedimentary cover was being buried. During this short time span, Kesandere eclogite were likely uplifted from ~65 to 35 km depth, indicating a syn-subduction exhumation rate of ~4.3 mm/a. Subsequently, eclogite- and blueschist-facies rocks were likely retrogressed contemporarily during collision-type metamorphism (around 72–69 Ma). The Bitlis HP rocks thus sample a subduction zone that separated the Bitlis–Pütürge (Bistun?) block from the South-Armenian block, further north. To the south, Eocene metasediments of the Urse formation are imbricated below the Bitlis complex. They contain (post Eocene) blueschists, testifying separation from the Arabian plate and southward migration of the subduction zone. The HT overprint of Kesandere eclogites can be related to the asthenospheric flow provoked by subducting slab retreat or break off.  相似文献   

6.
松辽盆地变质核杂岩和伸展断陷的构造特征及成因   总被引:18,自引:3,他引:15  
文中讨论了松辽盆地北部中央基底隆起变质核杂岩和徐家围子伸展断陷的构造特征、成因和演化 ,重点讨论了下列问题 :( 1)中央基底隆起变质核杂岩具有科迪勒拉变质核杂岩的许多特征 ;( 2 )识别出组成中央基底隆起变质核杂岩的多层次、低角度韧性拆离体系 ,它们是使中地壳的中深变质岩层抽拉至上地壳的主要原因 ;( 3)穹窿状火山岩台地于晚侏罗世 ( 145.7±6.2 )Ma形成 ,受顶部拆离断层控制的伸展断陷于早白垩世 ( 133~ 12 0Ma)形成 ,而邻近顶部拆离断层的糜棱岩年龄为 ( 12 6.7± 1.54)Ma。这表明变质核杂岩的形成始于晚侏罗世。早白垩世递进的伸展构造与变质核杂岩较深部的部分上拱至地表相伴生 ,推测该变质核杂岩的上拱和剥露、火山岩台地和伸展断陷盆地的形成可能是由伊泽奈奇和亚洲板块陆陆碰撞后的地幔拆沉作用、地幔的岩浆底侵作用以及伸展垮塌作用联合造成的。  相似文献   

7.
《Geodinamica Acta》2013,26(1-2):99-118
The Alpine Corsica (Corsica Island, France) is characterized by a stack of continent- and ocean-derived tectonic units, known as Schistes Lustrés complex. This complex is affected by deformation and metamorphic imprint achieved during Late Cretaceous – Early Tertiary subduction- related processes connected with the closure of the Ligure-Piemontese oceanic basin and subsequent continental collision. In the Schistes Lustrés complex, the Lento oceanic unit is characterized by four deformation phases, from D1 to D4 phase. The D1 phase, characterized by blueschist metamorphism, is regarded as related to coherent underplating in a subduction zone at a depth of about 25-30 km. The subsequent deformation phases can be referred to exhumation history, as suggested by the continuous decrease of metamorphic conditions. The transition from accretion to exhumation is represented by the D2 phase, achieved during the development of a duplex structure of accreted units. The D3 phase is in turn achieved by a further horizontal shortening, whereas the D4 phase is developed during an extensional event representing the final exhumation of the Lento unit.

On the whole, the data collected for the Lento unit suggest an history that include an accretion by coherent underplating followed by exhumation, more complex than previous described.  相似文献   

8.
The present-day observable tectonic framework of the ultrahigh-pressure (UHP) and high-pressure (HP) metamorphic belts in the Dabie-Sulu region was dominantly formed by an extensional process, mostly between 200 and 170 Ma, following the Triassic collision between the Sino-Korean and Yangtze cratons. The framework that controls the present spatial distribution of UHP and HP metamorphic rocks in particular displays the typical features of a Cordilleran-type metamorphic core complex, in which at least four regional-scale, shallow-dipping detachment zones are recognized. Each of these detachment zones corresponds to a pressure gap of 0.5 to 2.0 GPa. The detachment zones separate the rocks exposed in the region into several petrotectonic units with different P-T conditions. The geometry and kinematics of both the detachment zones and the petrotectonic units show that the exhumation of UHP and HP metamorphic rocks in the Dabie-Sulu region was achieved, at least in part, by non-coaxial ductile flow in the mul  相似文献   

9.
通过对郯庐断裂带南段桐城地区高压-超高压变质带详细的岩石学和构造学研究,将研究区从空间结构上划分为三个构造单元:上部低温-高压单元、中部中温-高压单元和下部超高压单元。根据研究区多期构造变形分析,共识别出了五期有区域构造地质学含义的事件(D_1-D_5):D_1代表高压-超高压变质岩中-晚三叠世同碰撞早期折返过程;D_2表征了高压-超高压变质岩晚三叠世同碰撞晚期折返过程;D_3记录了早白垩世中大别变质核杂岩的形成,也即整个中国东部晚中生代大规模伸展构造在研究区的表现;D_4可能标志着郯庐断裂走滑构造对高压-超高压造山带的叠加;D_5表现为脆性正断作用,控制了晚白垩世-古近纪潜山半地堑盆地的形成。这些结果表明了研究区所经历构造演化的复杂性,其构造几何形态很难用郯庐断裂左行平移南大别超高压变质岩来解释,也不支持桐城地区存在巨大走滑作用的证据。  相似文献   

10.
《地学前缘(英文版)》2019,10(6):2189-2202
Apatite fission-track analysis and thermochronologic statistical modeling of Precambrian-Oligocenc plutonic and metamorphic rocks from the Lesser Caucasus resolve two discrete cooling episodes.Cooling occurred during incremental crustal shortening due to obduction and continental accretion along the margins of the northern branch of the Neotethys.(1) The thermochronometric record of a Late Cretaceous(Turonian-Maastrichtian) cooling/exhumation event,coeval to widespread ophiolite obduction,is still present only in a relatively small area of the upper plate of the Amasia-Sevan-Akera(ASA) suture zone,i.e.the suture marking the final closure of the northern Neotethys during the Paleogene.Such area has not been affected by significant later exhumation.(2) Rapid cooling/exhumation occurred in the Early-Middle Miocene in both the lower and upper plates of the ASA suture zone,obscuring previous thermochronologic signatures over most of the study area.Miocene contractional reactivation of the ASA suture zone occurred contemporaneously with the main phase of shortening and exhumation along the Bitlis suture zone marking the closure of the southern branch of the Neotethys and the ensuing ArabiaEurasia collision.Miocene collisional stress from the Bitlis suture zone was transmitted northward across the Anatolian hinterland,which was left relatively undeformed,and focused along preexisting structural discontinuities such as the eastern Pontides and the ASA suture zone.  相似文献   

11.
 The kinematic pattern and associated metamorphism of the predominant ductile deformation and the subsequent deformational stages of the Serbomacedonian metamorphic rocks and granitoids are presented in terms of peri-Tethyan tectonics. A systematic record of structural and metamorphic data gives evidence of a main top-to-ENE to ESE ductile flow of Cretaceous age (120–90 Ma) associated with a crustal stretching and unroofing. A subordinate WSW to WNW antithetic sense of movement of the tectonic top is observed in places. The associated metamorphic conditions are estimated at 4.5–7.5 kbar and 510–580  °C. During Eocene to Miocene times these fabrics were successively deformed by low-angle extensional De ductile shear zones with top-to-NE and SW sense of movement and brittle shear zones of similar kinematic pattern, suggesting a transition from ductile to brittle deformation. De deformation was accompanied during its later stages by NW/SE-directed shortening. We also discuss the relation of this Cretaceous–Tertiary deformation of the Serbomacedonian metamorphic rocks with the Eocene to Miocene ductile, top-to-southwestward crustal shear of the adjacent Rhodope crystalline rocks. We regard the Serbomacedonian and the Rhodope metamorphic rocks to represent related metamorphic provinces, the most recent exhumation and cooling history of which is bracketed between the Eocene and Neogene. Received: 8 December 1998 / Accepted: 19 April 1999  相似文献   

12.
《Geodinamica Acta》1999,12(2):97-111
In the southwestern part of the Belledonne Massif (External Crystalline Massifs, French Alps), superimposition of three distinct crustal units has been interpreted as the consequence of Late Devonian-Early Carboniferous thrusting toward the ENE under typical collisional metamorphic conditions (9-7 kbar, 600–650 °C). Structural relationships between the different units and the kinematic analysis of microstructures suggest that ductile extensional tectonics with a sinistral component towards the southwest is responsible for the late structure of this domain. Extensional tectonics are responsible for the exhumation of the deep level of the nappe pile (Allemont unit) that recorded an earlier HP-LT tectonometamorphic evolution ( 10 ± 1 kbar, 550 ± 50 °C and for the syn-kinematic adiabatic decompression path recorded in the two lowest units (Livet and Allemont). Such isothermal decompression may have been related to rapid thinning (~ 3mm y−1) and led to local decompressional melting at the base of the nappe pile. The thinning is best explained by extensional tectonics processes affecting the previously thickened Variscan crust during the Upper Carboniferous prior to its restoration to normal thickness.  相似文献   

13.
大别山造山带高压-超高压变质岩的折返过程   总被引:1,自引:1,他引:0  
王清晨 《岩石学报》2013,29(5):1607-1620
高压-超高压变质岩的形成与折返是地球动力学过程,虽人眼不能见及,但在岩石中留下种种记录。本文以大别山为例对高压-超高压变质岩的折返过程进行了探讨。文中(1)综合构造地质学和地球物理学观测资料,剖析了大别山造山带的结构构造,指出了作为高压-超高压变质岩折返通道的莫霍面断口和折返形成的挤压穹隆地壳结构;(2)综合变质岩石学P-T-t轨迹研究资料,追踪高压-超高压变质岩在地下的运动轨迹,揭示了其在俯冲-折返过程不同时段经过的深度和运动速率,并指出其向南的折返极性;(3)结合沉积岩石学研究资料,利用合肥盆地中砾岩成分和碎屑白云母Si含量记录,限定了高压-超高压变质岩折返至地表的时间为中侏罗世前。基于上述资料,本文重建了大别山高压-超高压变质岩的三阶段折返过程,指出大别山包含三个岩片,于230Ma左右分别从不同深度快速折返,折返速率为3~10km/Ma,于210Ma左右进入中地壳,并于180Ma左右快速折返(折返速率为3km/Ma左右)至上地壳,白垩纪折返速率极慢(0.1km/Ma左右)。  相似文献   

14.
The Erzgebirge dome consists of several superimposed composite tectonometamorphic units of medium- to high-grade metamorphic rocks from different crustal depths. These exhibit high pressure-high temperature and even ultrahigh-pressure imprints inherited from the root zone of a Variscan orogen and were exhumed almost immediately after attainment of maximum pressures at ~341 Ma. At present, the entire stack of tectonometamorphic units lies underneath an upper-crustal sequence of Paleozoic metasediments and tectonic slivers of pre-Carboniferous metamorphic rocks.

Shear zones active at different times and at different depths are preserved, mainly recording two successive stages of the exhumation history between 340 and 330 Ma. Tectonic transport during exhumation was remarkably constant in an E-W direction, swinging to NW-SE in the eastern part of the Erzgebirge parallel to a ductile transtensional zone (Elbe zone) that was concomitantly active. The various tectonometamorphic units have characteristically correlated, convergent P-T-t-d paths (both “cooling during decompression” and “heating during decompression”) that can be deduced from the dominant quartzofeldspathic rocks. These paths indicate successive exhumation of hotter rocks from increasingly deeper structural positions and juxtaposition against cooler rocks in higher positions, concomitant with the excision of intermediate crustal levels. We interpret this type of successive vertical telescoping of the metamorphic profile to be the result of extension of the thickened tectonometamorphic stack.

Extensional unroofing in the middle and upper crust was contemporaneous with and outlasted underthrusting and hence prograde metamorphism and deformation at deeper levels of the tectonometamorphic pile. Underthrusting is documented by a major inversion of the maximum pressure conditions in the lowermost units. However, structures related to compressional stacking now generally occur only as relics transposed by extensional deformation at lower pressure, or are restricted to rare small slivers with preserved prograde structures. Sedimentation of Lower Dinantian turbidites occurred along the flanks of the Erzgebirge dome during the exhumation process.

The extrusion of high-pressure rocks is interpreted to have been driven mainly by a major regional buoyancy instability caused by the delamination of the lithospheric mantle underneath the neighboring Bohemian Massif, which represented overthickened crust at least from the Devonian to the early Visean. Major controlling factors were boundary forces exerted by the thickened crustal bulge on the neighboring thin crustal segments in the north and east, effecting lateral extension of this orogenic wedge and extrusion-i.e., convective upward flow of gravitationally unstable crustal material.  相似文献   

15.
In the Eastern Alps Alpine eclogites are generally associated with rocks of continental lithosphere, while eclogites that are associated with oceanic assemblages are restricted to minor exposures. Such eclogites are exposed both in the Penninic unit of the Tauern Window and in the Austroalpine nappe complex. (1) In the central southern part of the Tauern Window (Eclogite Zone) eclogites and associated high pressure metasediments of a distal continental margin are intercalated between Penninic basement units. A mylonitic eclogitic foliation and stretching lineation are contemporaneous to the high pressure metamorphism and are related to the subduction of distal Penninic continental margin sequences. Continuous subduction of cool lithosphere resulted in blueschist facies overprint of the whole Penninic nappe pile. (2) Within the Middle-AustroAlpine Koralm/Saualm region most eclogites are eclogitic mylonites documenting plastic deformation of omphacite and garnet. The meso- and macroscale structures indicate an overall extensional regime possibly related to a large-scale SE-directed ductile low-angle normal shear zone. The eclogites are associated with migmatite-like structures and are intruded by pegmatites. This indicates decreasing pressure, but isothermal or even increasing temperature conditions during exhumation.These relationships argue for the subduction of Penninic continental lithosphere in the foot-wall of the Austroalpine unit at the time of exhumation of the Koralm/Saualm eclogites. Formation of the Austroalpine eclogites is explained by subduction of continental lithosphere, and subsequent, rapid exhumation in an upper plate tectonic position within an extensional regime.  相似文献   

16.
大别造山带东段扬子陆块和华北陆块间缝合带的位置   总被引:3,自引:0,他引:3  
大别山为扬子陆块和华北陆块之间的碰撞造山带.构造-岩石单元的岩石组成、同位素年代学资料和构造关系表明, 大别山东段主要由扬子陆块北缘不同变质程度的变质基底和少量浅变质盖层组成, 没有代表蛇绿混杂岩和华北陆块南缘古生代活动大陆边缘的火山-侵入岩建造.各主要构造-岩石单元间的界线为超高压变质岩折返过程中形成的伸展型剪切带, 大别山北部的伸展-逆冲推覆构造也是超高压变质岩折返过程中伸展构造的一部分, 其中不存在具有缝合带意义的重要构造界线.因此, 在大别山东段, 华北陆块和扬子陆块间的缝合带既不是水吼-五河剪切带, 也不是磨子潭-晓天断裂.根据地球物理资料推测, 南北陆块间的缝合带应分布在信阳-舒城断裂的前缘, 但现在覆于合肥盆地中新生代沉积之下.   相似文献   

17.
张长厚  柴育成 《地质论评》1998,44(3):225-232
尽管许多地质学家提出了不同的超高压变质岩石形成与折返模式,但高压、超高压变质岩折返与剥露机制仍是大陆造山带动力学研究中的热点和焦点问题。本文明确提出并研究了分布于苏北-胶南变质岩区西北和北部边缘的地壳规模的拆离伸展型韧性剪切带。通过韧性剪切带几何学、运动学、变形环境分析和形成时代的讨论,认为与高压、超高压变质带展布方向斜交的斜向伸展构造作用,是苏北-鲁东南高压、超高压变质带从中地壳抬升至地表的主导  相似文献   

18.
In the Dabieshan, the available models for exhumation of ultrahigh-pressure (UHP) rocks are poorly constrained by structural data. A comprehensive structural and kinematic map and a general cross-section of the Dabieshan including its foreland fold belt and the Northern Dabieshan Domain (Foziling and Luzenguang groups) are presented here. South Dabieshan consists from bottom to top of stacked allochtons: (1) an amphibolite facies gneissic unit, devoid of UHP rocks, interpreted here as the relative autochton; (2) an UHP allochton; (3) a HP rock unit (Susong group) mostly retrogressed into greenschist facies micaschists; (4) a weakly metamorphosed Proterozoic slate and sandstone unit; and (5) an unmetamorphosed Cambrian to Early Triassic sedimentary sequence unconformably covered by Jurassic sandstone. All these units exhibit a polyphase ductile deformation characterized by (i) a NW–SE lineation with a top-to-the-NW shearing, and (ii) a southward refolding of early ductile fabrics.

The Central Dabieshan is a 100-km scale migmatitic dome. Newly discovered eclogite xenoliths in a Cretaceous granitoid dated at 102 Ma by the U–Pb method on titanite demonstrate that migmatization post-dates HP–UHP metamorphism. Ductile faults formed in the subsolidus state coeval to migmatization allow us to characterize the structural pattern of doming. Along the dome margins, migmatite is gneissified under post-solidus conditions and mylonitic–ultramylonitic fabrics commonly develop. The north and west boundaries of the Central Dabieshan metamorphics, i.e. the Xiaotian–Mozitan and Macheng faults, are ductile normal faults formed before Late Jurassic–Early Cretaceous. A Cretaceous reworking is recorded by synkinematic plutons.

North of the Xiaotian–Mozitan fault, the North Dabieshan Domain consists of metasediments and orthogneiss (Foziling and Luzenguang groups) metamorphosed under greenschist to amphibolite facies which never experienced UHP metamorphism. A rare N–S-trending lineation with top-to-the-south shearing is dated at 260 Ma by the 40Ar/39Ar method on muscovite. This early structure related to compressional tectonics is reworked by top-to-the-north extensional shear bands.

The main deformation of the Dabieshan consists of a NW–SE-stretching lineation which wraps around the migmatitic dome but exhibits a consistently top-to-the-NW sense of shear. The Central Dabieshan is interpreted as an extensional migmatitic dome bounded by an arched, top-to-the-NW, detachment fault. This structure may account for a part of the UHP rock exhumation. However, the abundance of amphibolite restites in the Central Dabieshan migmatites and the scarcity of eclogites (found only in a few places) argue for an early stage of exhumation and retrogression of UHP rocks before migmatization. This event is coeval to the N–S extensional structures described in the North Dabieshan Domain. Recent radiometric dates suggest that early exhumation and subsequent migmatization occurred in Triassic–Liassic times. The main foliation is deformed by north-verging recumbent folds coeval to the south-verging folds of the South Dabieshan Domain. An intense Cretaceous magmatism accounts for thermal resetting of most of the 40Ar/39Ar dates.

A lithosphere-scale exhumation model, involving continental subduction, synconvergence extension with inversion of southward thrusts into NW-ward normal faults and crustal melting is presented.  相似文献   


19.
Phase relationships in the model mafic system and geothermobarometry allow discrimination of four main groups of high-P rocks in the nappes of the Western Alps: very high-P eclogite-facies (including kyanite eclogites and coesite-pyrope assemblages), eclogite-facies (paragonite-zoisite eclogites), high-T blueschist-facies (glaucophane-garnet ± lawsonite assemblages) and low-T blueschist-facies (glaucophane-lawsonite ± pumpellyite assemblages). The blueschist-facies-eclogite-facies transition is promoted chiefly by increasing T, low bulk XMg and relatively low μH2O. The variety of assemblages and the heterogeneous approach to equilibrium observed in the Alpine rocks are not only constrained by the intersection of the reaction surfaces in P-T-X space, but also by the effect and timing of the processes which control kinetics (i.e. pervasive deformation and fluid infiltration). The faster rate of dehydration reactions relative to hydration reactions along with the fact that different bulk compositions crossed the reaction curves at different temperatures (and times), all may have induced μH2O gradients and contributed to the heterogeneous distribution of deformation through a process of reaction-enhanced ductility. Also mass-transfer may have been an effective process in determining the type of high-P assemblage in particular rock volumes. As regards the P-T-t paths, only the post-climax histories are recorded well in the Alpine nappes. Post-eclogitic exhumation paths at decreasing temperatures characterize structurally higher nappes which were first subducted during the early-Alpine (Cretaceous) event. In contrast, more or less isothermal decompression paths characterize structurally deeper nappes formed by westward propagation of the underthrust surfaces during the early-Alpine event and the subsequent meso-Alpine (Palaeogene) collision between the ‘European’and ‘African’plates. In the Western Alps, prevalent eclogite-facies conditions were attained during the metamorphic climax of the early-Alpine subduction, while blueschist-facies recrystallization characterizes the early-Alpine exhumation of the eclogitized units and the subsequent intracontinental underthrusts linked to the meso-Alpine continental collision.  相似文献   

20.
INTRODUCTIONUptonowthereisinagreementonthetectonic-dynamicbackgroundoftheformationofUHPmetamorphicrocks,i.e.,theUHPMrocksareproductsofobliquecollisionbe-tweentheYangtzeandSinokoreancratonsinIndosinianstage(Jahn,1998lWangandCong,l998,1996;Lietal.,l997,l996iHackeretal.,l996ILiouet.al.,l9961Okay;Sen-gor,l993,CongandWang,l994;Sengor,1993).Buthowthesemetamorphicrocksareformedatmantledepthexhumedbacktothesurfacesorapidlyisstillastandingproblem-TheexhumationofUHPMrocksisacomplextectoni…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号