首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
2.
3.
4.
The role of the buoyancy barrier of the stratified crust in controlling the ascent of magmas is represented by a model which operates close to lithostatic equilibrium and in which fractional crystallization of the magma or partial melting of the ambient rock can occur. The density structure of the crust has a powerful effect in trapping magma and thereby in controlling the occurrence of high level geothermal systems. The model is tested in Part II (this volume).  相似文献   

5.
关系逻辑是一门古老而又年轻的逻辑学科。它的早期萌芽,曾带来数理逻辑的繁荣和发展。而今,它又在系统化综合化的春雷声中复萌,并获得前所未有的生命力。 本文在思辨和实践的基础上,提出了关系逻辑的基本构想,介绍了笔者由此对地震预报的有关研究和进展。这些研究,到目前为止,仅涉及中长期和中短期预报。本文先介绍中长期预报。  相似文献   

6.
7.
Summary The propagation speed of sinoidal troughs and wedges in a steady state flow is determined from consideration of the mass transport due to the bodily motion of the system. Fundamental propositions are established regarding the mutual motion of wind-, pressure-, temperature-, and density-fields.It is found that in a frictionless barotropic general flow, all perturbations are propagated with the same speed—the speed of the general current. In a baroclinic general flow a perturbation will only be propagated without dispersion if it has a specific (sinoidal) horizontal structure.When a sinoidal perturbation is embedded in a baroclinic general flow-field, it will be propagated as though by a barotropic flow with the sameeffective speed. The effective speed can be computed when the vertical structure of the perturbation and of the mean flow are known.It is frequently assumed that the speed of mean flow at some particular level (500 mb is often assumed) gives the «steering» of the surface perturbation by a baroclinic general flow, that is to say, a baroclinic flow steers a perturbation with the speed of an equivalent barotropic field. The present paper provides a rational basis for the concept of an equivalent barotropic flow, but it is to be remembered that the «steering level» does not depend uniquely on the vertical structure of the mean flow-field, but varies from perturbation to perturbation, being lower for shallow perturbations than for (vertically) deep ones.  相似文献   

8.
9.
The research task described herein aims at the structuring of an analytical tool that traces the time course of geophysical phenomena, regional or global, and compares it to the course of long-term solar conditions, long-term meaning decades or a few centuries. The model is based on the premise that since in a last analysis the preponderance of atmospheric, hydrospheric, and, possibly, some aspects of geospheric phenomena are, or have been, powered by energy issuing from the sun – either now or in the past, the long-term behavior of such phenomena is ultimately connected to long-term changes occurring in the sun itself. Accordingly, the proposed research firstly derives and models a stable surrogate pattern for the long-term solar activity, secondly introduces a transfer-function algorithm for modeling the connection between the surrogate and terrestrial phenomena viewed as partners in the connection, and thirdly probes the connection outcome for episodic or unanticipated effects that may arise due to the fact that in the present context, the connection, should it exist, is very likely nonlinear. Part I of the study presents the theory of the concept, while Part II demonstrates the concepts pertinence to a number of terrestrial phenomena.This essay has been the basis of two earlier papers, one presented at The 8th International Conference of the European Union of Geosciences in Strasbourg, France, 9–13 April 1995; and the other at The 5th International Conference on Precipitation in Elounda, Crete, Greece, 14–16 June 1995.  相似文献   

10.
Numerical simulation of channel pattern changes Part I: Mathematical model   总被引:1,自引:0,他引:1  
This paper presents a computational fluid dynamics model for simulation of two- dimensional (2-D) water flow, sediment transport, bank failure processes, and the subsequent channel pattern changes. Effects of secondary currents at channel bends are included in the modified momentum conservation equation of water flow. An improved bank failure model is applied to calculate bank failure due to riverbed erosion, and to simulate lateral migration and planform changes of alluvial channels. The water flow model has been validated using laboratory measurements of flow in consecutive bends designed by the authors, in addition to flume test data from the literature.  相似文献   

11.
Simple methods of analysis are developed for computing the dynamic steady-state axial response of floating pile groups embedded in homogeneous and non-homogeneous soil deposits. Physically-motivated approximations are introduced to account for the interaction between two individual piles. It is found that such an interaction arises chiefly from the ‘interference’ of wave fields originating along each pile shaft and spreading outward. For homogeneous deposits the wave fronts originating at an individual pile are cylindrical and the interaction is essentially independent of pile flexibility and slenderness. For non-homogeneous deposits the wave fronts are non-cylindrical and ray-theory approximations are invoked to derive pile flexibility-dependent interaction functions. Results are presented for the dynamic stiffness and damping of several pile groups, as well as for distribution of the applied load among individual piles. For deposits with modulus proportional to depth, the agreement with the few rigorous solutions available is encouraging. A comprehensive parameter study focuses on the effects of soil inhomogeneity and pile-group configuration. It is demonstrated that the ‘dynamic group efficiency’ may far exceed unity at certain frequencies. Increasing soil inhomogeneity tends to reduce the respective resonant peaks and lead to smoother interaction functions, in qualitative agreement with field evidence.  相似文献   

12.
A method for evaluating the effect of non-uniform and deficient irrigation is presented. The method is based on a deterministic mathematical model that evaluates the effect of the soil water fluctuation in the root zone during the irrigation season on the crop yield.The problem is viewed in conjunction with the management strategy of irrigation water application under the assumption that only shortage of water causes a reduction in yield. The parameters describing the deficit zone of the application pattern, the soil-crop-atmosphere system and the crop response are incorporated in the model. Crop yield predictions are made through the relative water use and a multiplicative and an additive yield functions.A numerical example is used to illustrate the use of the model in sprinkler irrigation practice. The results agree well with those derived from the mathematical model evaluating the irrigation regime and the yield on each square of the irrigated area separately.  相似文献   

13.

本文提出一种基于地震沉积学原理沿层提取地震波形特征向量,并以谱聚类(spectral clustering)分析进行地震相划分的方法。谱聚类能够处理非线性的数据结构和高维数据的聚类问题,但其相似度矩阵的构建和谱分解的计算较为复杂,需要较高的计算资源和时间成本。为提高谱聚类算法的效率和可扩展性,本文提出将Mini-batch K-means算法与谱聚类算法结合起来的MKSC算法,在提高谱聚类算法精度的同时大大降低谱聚类空间的复杂度。经过对数值模拟、地球物理模型数据和实际地震资料的处理分析,证明该方法在沉积相划分、沉积相特征识别方面的效果明显,是一种具有良好应用前景的新型沉积特征分析工具。

  相似文献   

14.
Most river cross-sections display some degree of asymmetry for which there is no adequate quantitative definition. Indices of asymmetry are derived using two principles based on areal differences and maximum depth displacement relative to the channel centreline. The indices are assessed firstly by comparing values for a set of constructed channel shapes which are ranked in order of increasing visual asymmetry, and secondly by analysing a series of 50 cross-sections from a small mountain stream. Two indices, A* and A2, are probably the most valuable, and could be used to test and generate hypotheses regarding the related changes to cross-sectional and planimetric form which occur during the transition from a straight to a meandering channel, particularly if parallel measures of flow asymmetry are defined. Part II of this paper, concerned with ‘Mode of Development and Local Variation’ will be published in a subsequent issue of this journal.  相似文献   

15.
Current federal ground water monitoring statistical regulation dates from the revised RCRA Subtitle C Final Rule of 1988. That rule was a considerable advance over previous RCRA statistical rules. However, two major problem areas remained: facility-wide false positive rate (FWFPR) control and spatial variability. Progress has been made in the 1991 Subtitle D Final Rule and in guidance: the 1992 Addendum to Interim Final Guidance in particular includes a substantial conceptual advance toward resolving the FWFPR problem. Other areas of improvement include normality testing and distribution assumptions, dropping the four independent samples per monitoring period requirement, allowing a preliminary evaluation short of a 40 CFR Part 258 Appendix II assessment upon finding a statistically significant increase, and suggesting superior alternatives to analyses of variance (ANOVAs) and tests of proportions.
The problem of dealing with natural spatial variability remains. Although certain techniques listed in the regulations can control for inherent spatial variability and the performance standards require doing so "when necessary," little attention has been paid to the ubiquity of such spatial variation. Moreover, regulatory traditions favoring upgradient-downgradient comparisons often make control of natural spatial variation difficult and ineffective. With new. lined facilities easily implemented statistical solutions are available; however, dealing with the several existing solid waste facilities which will now be regulated under Subtitle D will present major challenges.
In short, the 1988 revision of the Subtitle C rules made it more possible to provide statistically sound monitoring programs, and there has been steady progress since then. Challenges remain, however. These vary from slate to slate, particularly with regard to controlling false positives and false negatives in the presence of natural spatial variability.  相似文献   

16.
We present a new ray bending approach, referred to as the Eigenray method, for solving two‐point boundary‐value kinematic and dynamic ray tracing problems in 3D smooth heterogeneous general anisotropic elastic media. The proposed Eigenray method is aimed to provide reliable stationary ray path solutions and their dynamic characteristics, in cases where conventional initial‐value ray shooting methods, followed by numerical convergence techniques, become challenging. The kinematic ray bending solution corresponds to the vanishing first traveltime variation, leading to a stationary path between two fixed endpoints (Fermat's principle), and is governed by the nonlinear second‐order Euler–Lagrange equation. The solution is based on a finite‐element approach, applying the weak formulation that reduces the Euler–Lagrange second‐order ordinary differential equation to the first‐order weighted‐residual nonlinear algebraic equation set. For the kinematic finite‐element problem, the degrees of freedom are discretized nodal locations and directions along the ray trajectory, where the values between the nodes are accurately and naturally defined with the Hermite polynomial interpolation. The target function to be minimized includes two essential penalty (constraint) terms, related to the distribution of the nodes along the path and to the normalization of the ray direction. We distinguish between two target functions triggered by the two possible types of stationary rays: a minimum traveltime and a saddle‐point solution (due to caustics). The minimization process involves the computation of the global (all‐node) traveltime gradient vector and the traveltime Hessian matrix. The traveltime Hessian is used for the minimization process, analysing the type of the stationary ray, and for computing the geometric spreading of the entire resolved stationary ray path. The latter, however, is not a replacement for the dynamic ray tracing solution, since it does not deliver the geometric spreading for intermediate points along the ray, nor the analysis of caustics. Finally, we demonstrate the efficiency and accuracy of the proposed method along three canonical examples.  相似文献   

17.
In this paper, we describe carefully conducted numerical experiments, in which a dense salt solution vertically displaces fresh water in a stable manner. The two-dimensional porous media are weakly heterogeneous at a small scale. The purpose of these simulations, conducted for a range of density differences, is to obtain accurate concentration profiles that can be used to validate nonlinear models for high-concentration-gradient dispersion. In this part we focus on convergence of the computations, in numerical and statistical sense, to ensure that the uncertainty in the results is small enough.Concentration variances are computed, which give estimates of the uncertainty in local concentration values. These local variations decrease with increasing density contrast. For tracer transport, obtained longitudinal dispersivities are in accordance with analytical findings. In the case of high-density contrasts, stabilizing gravity forces counteract the growth of dispersive fingers, decreasing the effective width of the transition zone. For small log-permeability variances, the decrease of the apparent dispersivity that is found is in agreement with laboratory results for homogeneous columns.  相似文献   

18.
We have developed new basic theories for calculating the conversion point and the travel time of the P-SV converted wave (C-wave) in anisotropic, inhomogeneous media. This enables the use of conventional procedures such as semblance analysis, Dix-type model building and Kirchhoff summation, to implement anisotropic processing, and makes anisotropic processing affordable. Here we present these new developments in two parts: basic theory and application to velocity analysis and parameter estimation. This part deals with the basic theory, including both conversion-point calculation and moveout analysis. Existing equations for calculating the PS-wave (C-wave) conversion point in layered media with vertical transverse isotropy (VTI) are strictly limited to offsets about half the reflector depth (an offset-depth ratio, xlz, of 0.5), and those for calculating the C-wave traveltimes are limited to offsets equal to the reflector depth (x/z=l.0). In contrast, the new equations for calculating the conversion-point extend into offsets about three-times the reflector depth (x/z=3.0), those for calculating the C-wave traveltimes extend into offsets twice the reflector depth (x/z=2.0). With the improved accuracy, the equations can help in C-wave data processing and parameter estimation in anisotropic, inhomogeneous media. This work is funded by the Edinburgh Anisotropy Project (EAP) of the British Geological Survey. First author: Xiangyang Li, Mr. Li is currently a professorial research seismologist (Grade 6) and technical director of the Edinburgh Anisotropy Project in the British Geological Survey. He also holds a honorary professorship in multicomponent seismology at the School of Geosciences, University of Edinburgh. He received his BSc(1982) in Geophysics from Changchun Geological Institute, China, an MSc (1984) in applied geophysics from East China Petroleum Institute (now known as the China University of Petroleum), and a PhD (1992) in seismology from the University of Edinburgh. During 1984–1987, he worked as a lecturer with the East China Petroleum Institute. Since 1991, he has been employed by the British Geological Survey. His research interests include seismic anisotropy and multicomponent seismology.  相似文献   

19.
Summary Regional variations have been indicated in the slope of theP travel-time curve in the shadow zone of the earth's core. Further study is needed since the uncertainties of the slope are large, especially for the observations from North American stations. There is no significant difference between themean slope of theP travel-time curve in the 95°102.9 range and those obtained byJeffreys, andJeffreys andBullen. However, there is a significant difference between themean slope in the 103° to 135° range as obtained in this study, and those obtained byJeffreys andBullen, and in a later revision byJeffreys. Themean travel-time curve ofP in the shadow zone of the earth's core should be lowered. A trial travel-time table is given with amean slope of 4.41 sec/deg. This table is in close agreement with the times obtained byGutenberg andRichter, and with the trial travel-times ofLehmann. Under the assumption of diffraction the longitudinal wave velocity has been determined to be 13.7 km/sec at the core-mantle boundary.This paper was presented at the Annual Meeting of the Seismological Society of America Reno, Nevada, 1966.  相似文献   

20.
Twenty polymeric tubings were filled with a test solution containing eight organic solutes. The test solutions were monitored for losses, indicating that sorption had occurred, and for signs that leaching of organic constituents had occurred. The tubings tested included seven flexible products and eight fluoropolymers. Among the rigid tubings tested, three fluoropolymers (fluorinated ethylene propylene [FEP], FEP-lined polyethylene, polyvinylidene fluoride) were the least sorptive tubings. However, even these tubings readily sorbed some of the analytes. Among the flexible tubings tested, a fluoroelastomer tubing and a tubing made of a copolymer of vinylidene fluoride and hexafluoropropylene were the least sorptive.
Several of the tubings tested leached constituents into the test solution. The polyurethane, polyamide, flexible polyvinyl chloride (PVC), polyester-lined PVC, and silicone-modified thermoplastic elastomer tubings were found to leach the most constituents. We were unable to detect any constituents leaching from the polyethylene tubings, the rigid fluoropolymer tubings, and one of the plasticized polypropylene tubings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号