首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 967 毫秒
1.
The resonances that appear in the linear compressible MHD formulation of waves are studied for equilibrium states with flow. The conservation laws and the jump conditions across the resonance point are determined for 1D cylindrical plasmas. For equilibrium states with straight magnetic field lines and flow along the field lines the conserved quantity is the Eulerian perturbation of total pressure. Curvature of the magnetic field lines and/or velocity field lines leads to more complicated conservation laws. Rewritten in terms of the displacement components in the magnetic surfaces parallel and perpendicular to the magnetic field lines, the conservation laws simply state that the waves are dominated by the parallel motions for the modified slow resonance and by the perpendicular motions for the modified Alfvén resonance.The conservation laws and the jump conditions are then used for studying surface waves in cylindrical plasmas. These waves are characterized by resonances and have complex eigenfrequencies when the classic true discontinuity is replaced by a nonuniform layer. A thin non-uniform layer is considered here in an attempt to obtain analytical results. An important result related to earlier work by Hollweg et al. (1990) for incompressible planar plasmas is found for equilibrium states with straight magnetic field lines and straight velocity field lines. For these equilibrium states the incompressible and compressible surface waves have the same frequencies at least in the long wavelength limit and there is an exact correspondence with the planar case. As a consequence, the conclusions formulated by Hollweg et al. still hold for the straight cylindrical case. The effects of curvature are subsequently considered.  相似文献   

2.
The features of the non-plane-polarized interaction of two plane MHD shock waves colliding at an arbitrary nonzero angle in the presence of an arbitrary magnetic field are considered. The problem is solved over a wide range of key parameters. When the key parameters of the problem vary continuously, there are no sudden restructurings (catastropies) of the flow pattern characteristic of the plane-polarized case. As distinct from the plane-polarized case, in the flow developed always there are two Alfvén discontinuities of different intensities with circular polarization. The presence of a magnetic field along the line of intersection of the shock fronts smoothers variation of pressure on the contact discontinuity C as a function of the angles of inclination of the magnetic field, the pressure on C being less than that in the plane-polarized case by several times. The velocity acquired by the medium as a result of the interaction depends significantly on the inclination of the magnetic field. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

3.
In order to understand the reason of the existence of the electric field in the magnetosphere, and for the theoretical evaluation of its value, it is necessary to find the solution of the problem of determination of the magnetosphere boundary form in the frameworks of the continuum medium model which takes into account part of the magnetospheric plasma movement in supporting the magnetospheric boundary equilibrium. A number of problems for finding the distribution of the pressure, the density, the magnetic field and the electric field on the particular tangential discontinuity is considered in the case when the form of discontinuity is set (the direct problem) and a number of problems for finding the form of the discontinuity and the distribution of the above-mentioned physical quantities on the discontinuity is considered when the law of the change of the external pressure along the boundary is set (for example, with the help of the approximate Newton equation). The problem which is considered here, which deals with the calculation of the boundary form and with the calculation of the distribution of the corresponding physical quantities on the discontinuity of the 1st kind for the compressible fluid with the magnetic field with field lines which are perpendicular to the plane of the flow in question, concerns the last sort of problems. The comparison of the results of the calculation with the data in the equatorial cross-section of the magnetosphere demonstrates that the calculated form of the boundary, the value of the velocity of the return flow and the value of the electric field on the magnetopause, agree satisfactorily with the observational data.  相似文献   

4.
The stability properties of magnetized discs rotating with angular velocity Ω = Ω( s ,  z ), dependent on both the radial and the vertical coordinates s and z , are considered. Such a rotation law is adequate for many astrophysical discs (e.g., galactic and protoplanetary discs, as well as accretion discs in binaries). In general, the angular velocity depends on height, even in thin accretion discs. A linear stability analysis is performed in the Boussinesq approximation, and the dispersion relation is obtained for short-wavelength perturbations. Any dependence of Ω on z can destabilize the flow. This concerns primarily small-scale perturbations for which the stabilizing effect of buoyancy is strongly suppressed due to the energy exchange with the surrounding plasma. For a weak magnetic field, instability of discs is mainly associated with vertical shear, whilst for an intermediate magnetic field the magnetic shear instability, first considered by Chandrasekhar and Velikhov, is more efficient. This instability is caused by the radial shear which is typically much stronger than the vertical shear. Therefore the growth time for the magnetic shear instability is much shorter than for the vertical shear instability. A relatively strong magnetic field can suppress both these instabilities. The vertical shear instability could be the source of turbulence in protoplanetary discs, where the conductivity is low.  相似文献   

5.
This paper is concerned with the Kelvin-Helmholtz instability in the indissipative plasma with an external magnetic field. A detailed analysis is made of the results known from the approximation of a tangential discontinuity. The finiteness of the interface thickness effect is considered numerically at the arbitrary distribution of the density, velocity and magnetic field vectors inside this shear layer. The influence of plasma compressibility with an arbitrarily varying magnetic field is investigated. The main role of oblique disturbances with respect to the flow rate direction is shown under conditions of a large plasma compressibility. As such perturbations move away from the interface, their amplitude is damped much more slowly than in the case of weak compressibility. However, their wavelength remains, approximately, the same as that of longitudinal waves in the case of incompressibility. The linear approximation suggests the importance of oblique waves in the energetics of the interaction between the shear layer and the outward medium. A comparison is made of the instability period on discontinuities in the solar wind, and at magnetospheric and plasmaspheric boundaries, with the range of geomagnetic pulsations.  相似文献   

6.
The question about the interpretation of numerical experiments on magnetic reconnection in solar flares is considered. A correspondence between the standard classification of magnetohydrodynamic discontinuities and the parameters characterizing the mass flux through a discontinuity and the magnetic field configuration has been established within a classical formulation of the problem on discontinuous magnetohydrodynamic flows. A pictorial graphical representation of the relationship between the angles of the magnetic field vector relative to the normal to the discontinuity plane on both its sides has also been found. The relations between the parameters of a two-dimensional discontinuous flow have the simplest form in a frame of reference where the magnetic field lines (B) are parallel to the matter velocity (u)—the deHoffmann-Teller frame. The question about the transformation of the magnetic field configuration when passing to a “laboratory” frame of reference where (v · B) ≠ 0, i.e., an electric field is present, is considered in this connection. The result is applied to the analytical solution of the problem on the magnetic field structure in the vicinity of a reconnecting current sheet obtained previously by Bezrodnykh et al. The regions of nonevolutionary shocks are shown to appear near the endpoints of a current sheet with reverse currents.  相似文献   

7.
The stability of an inhomogeneous anisotropic plasma flowing along a straight magnetic field has been investigated. Both the flow velocity and the plasma density are spatially varying in a direction perpendicular to the magnetic field. The stability of an interface between an inhomogeneous anisotropic plasma flowing along the magnetic field and the non-conducting compressible gas of uniform density flowing parallel to the interface has also been discussed. The effect of gyroviscosity and inhomogeneity on the Kelvin-Helmholtz shear instability has been discussed in certain limiting situations.  相似文献   

8.
Numerical simulations of the magnetic reconnection process in a current sheet show that, in some cases, MHD shocks appear to be attached to edges of the sheet. The appearance of the shocks may be considered to be a result of splitting of the sheet. In the present paper we suppose that this splitting takes place in consequence of non-evolutionarity of the reconnecting current sheet as a discontinuity. The problem of time evolution of small perturbations does not have a unique solution for a non-evolutionary discontinuity, and it splits into other (evolutionary) discontinuities. Such an approach allows us to determine conditions under which the splitting of the-sheet occurs. The main difficulty of this approach is that a current sheet is not reduced to a classified 1D discontinuity, because inhomogeneity of flow velocity inside the sheet is two-dimensional. To formulate the non-evolutionarity problem, we solve the linear MHD equations inside and outside the sheet and deduce linearized 1D boundary conditions at its surface. We show that for large enough conductivity, small perturbations exist which interact with the sheet as with a discontinuity. Then we obtain a non-evolutionarity criterion, with respect to these perturbations, in the form of a restriction on the flow velocity across the surface of the sheet.  相似文献   

9.
《Planetary and Space Science》2007,55(14):2113-2120
The shear-driven electrostatic ion-cyclotron instability (EICI) is studied using the loss-cone distribution function by particle aspect analysis. The effect of the loss-cone distribution on the dispersion relation and growth rate of weak shear-driven EICI is studied. The whole plasma is considered to consist of resonant and non-resonant particles. The wave is assumed to propagate obliquely to the static magnetic field. It is found that the frequency of the EICI is Doppler shifted due to the transverse inhomogeneous flow in the direction of the magnetic field. It is also found that for anisotropic plasma the critical velocity shear needed to excite EICI depends upon the loss-cone distribution index (J). With the increasing values the loss-cone distribution indices (J), the critical value of normalized velocity shear needed to generate EICI in anisotropic plasma, decreases and is of the order of the weak shear. The loss-cone distribution acts as a source of free energy and generates the weak shear-driven EICI at longer perpendicular perturbations. It also lowers the transverse and parallel energy of the resonant ions. The study may explain the frequently observed EICI in the auroral acceleration region.  相似文献   

10.
Y. C. Whang 《Solar physics》1994,149(2):347-362
We study a nonplanar model of magnetic reconnection associated with conical slow shocks, assuming that the shock surfaces are two identical cones with circular cross sections symmetrical about the ±x-axis. In the inflow region upstream of the shocks, two oppositely directed magnetic fields are separated by a current sheet. The model treats the current sheet as a tangential discontinuity and treats shocks and tangential discontinuity as surfaces of zero thickness. The dynamical structure of the global magnetic field in the continuous regions is studied using compressible, non-resistive MHD equations. In the inflow region, nonplanar magnetic field lines first move toward the current sheet. Near the sheet, the middle sections of the field lines become highly flattened, almost parallel to the sheet. Eventually, then oppositely directed field lines merge across the tangential discontinuity between the two shocks, and the magnetic lines are reconnected at the intersection of the shock and the tangential discontinuity. Reconnected magnetic lines are carried away at high speeds by the MHD flow in the outflow region, downstream of the shocks.  相似文献   

11.
Alfvénic waves are thought to play an important role in coronal heating and solar wind acceleration. Here we investigate the dissipation of such waves due to phase mixing at the presence of shear flow and field in the stratified atmosphere of solar spicules. The initial flow is assumed to be directed along spicule axis and to vary linearly in the x direction and the equilibrium magnetic field is taken 2-dimensional and divergence-free. It is determined that the shear flow and field can fasten the damping of standing Alfvén waves. In spite of propagating Alfvén waves, standing Alfvén waves in Solar spicules dissipate in a few periods. As height increases, the perturbed velocity amplitude does increase in contrast to the behavior of perturbed magnetic field. Moreover, it should be emphasized that the stratification due to gravity, shear flow and field are the facts that should be considered in MHD models in spicules.  相似文献   

12.
A two fluid stability analysis of an inhomogeneous solar wind plasma leads to prediction of possible instabilities of both Alfvénic and magnetoacoustic waves driven by local velocity gradients. The waves predicted to be possibly unstable have short wavelengths in comparison with the length scale of the gradients and, with different thresholds for the value of velocity shear, may have different directions of propagation with respect to the background magnetic field.We have performed a detailed study, based on Pioneer 6 magnetic and plasma data relative to several high speed streams in the solar wind, on the direction of propagation of the transverse waves which are found within the streams and on their association with velocity gradients within the stream structure. The analysis leads to the conclusion that the observed Alfvén waves may be consistent with the hypothesis of local generation through one of the above mentioned instabilities where velocity shear leads in fact to excitation of incompressible waves in directions almost parallel to the magnetic field.  相似文献   

13.
Although the Harang discontinuity has so far been identified in terms of various phenomena (such as ground magnetic fields, ionospheric currents, auroral features, and electric fields), the loci defined by those different phenomena do not always coincide. It is suggested that the Harang discontinuity may not be a line boundary across which the electric field changes its direction simply from poleward to equatorward, but that the field gradually rotates counterclockwise in a narrow region; thus the westward electric field dominates there. In such a case, no field-aligned current is necessarily required to flow from or into the discontinuity region. This view may be contrasted with the conventional view that an intense upward field-aligned current should flow from the Harang discontinuity. A model is presented in which the poleward ionospheric current (the Hall current resulting from the westward electric field) in the Harang discontinuity region connects the eastward electrojet and the westward electrojet.  相似文献   

14.
Tikhomolov  Evgeniy 《Solar physics》2001,199(1):165-186
In the traditional axisymmetric models of the 11-year solar cycle, oscillations of the magnetic fields appear in the background of nonoscillating (over time scale considered) turbulent velocity fields and differential rotation. In this paper, an alternative approach is developed: The excitation of magnetic oscillations with the 22-year period is the consequence of hydrodynamic oscillations with the 11-year period. In the excitation of hydrodynamic oscillations, two processes taking place in high latitudes near the interface between the convective and radiative zones play a key role. One is forcing of the westerly zonal flow, the conditions for which are due to deformation of the interfacial surface. The other process is the excitation of a shear instability of zonal flow as a consequence of a strong radial gradient of angular velocity. The development of a shear instability at some stage brings about the disruption of the forcing of differential rotation. In the first (hydrodynamic) part of the paper, the dynamics of axisymmetric flows near the bottom of the convection zone is numerically simulated. Forcing of differential rotation having velocity shear in latitude and the existence of solutions in the form of torsional waves with the 11-year oscillation period are shown. In the second part the dynamics of the magnetic field is studied. The most pronounced peculiarities of the solutions are the existence of forced oscillations with the 22-year period and the drift of the toroidal magnetic field component from the mid latitudes to the equator. In high and low latitudes after cycle maximum, the toroidal component is of opposite sign in accordance with observations. In the third part, the transport of momentum from the bottom of the convection zone to the outer surface by virtue of diffusivity is considered. The existence of some sources of differential rotation in the convection zone is not implied. A qualitative correspondence of the differential rotation profile in the bulk of the convection zone and on its outer surface to experimental data is shown. The time correspondence between torsional and magnetic oscillations is also in accordance with observations.  相似文献   

15.
Long-period hydromagnetic waves can be excited by the velocity shear instability in the magnetospheric boundary layers, where the penetrated bulk flow of the solar wind comprises a fairly strong velocity shear. Model spaces of the boundary layers are considered to estimate amplification rates on the HM waves in the low-latitude flank-side and in the dayside high-latitude and mantle-side boundary layers, where the ambient magnetic field is assumed to be perpendicular and parallel to the bulk flow of the solar wind, respectively. Wave characteristics of the HM waves are also investigated for the k-vector almost normal to the magnetopause.The localized HM waves in the Pc 3–4, Pc 4–5 and Pc 6 frequency ranges, of which group velocities are mostly parallel to the plane in the ambient magnetic field and the bulk flow directions, i.e., parallel to the magnetopause, are sufficiently amplified in the dayside low- and high-latitude, in the low-latitude flank-side, and in the mantle-side boundary layers, respectively. A left-handed toroidal (transverse) and a right-handed poloidal (compressional) mode of long-period (T ? 120 sA-wave are generated in the dawn- and the duskflank boundary layers, respectively, where the k-vector of Alfvénic signals was assumed to be almost in the Archemedean spiral direction. The localized compressional HM waves in the Pc 3–4 range indicate both lefthanded and right-handed polarizations in the dayside boundary layer, which are functions of the k-vector of the waves and the sense of the velocity shear. The variance directions of perturbation fields of the HM waves in the magnetospheric boundary layers tend to be nearly parallel to the magnetopause. These localized HM waves can propagate into the high-latitude ionosphere. We conclude that the localized HM waves driven by the velocity shear instability in the magnetospheric boundary layers are the most probable source of the daytime Pc 3–5 magnetic pulsations in the outer magnetosphere.  相似文献   

16.
In this paper an excitation of waves is considered during the time interval in which the undisturbed magnetic field changes its direction. If this interval is taken to be 2 years, which is shorter than the 11-year cycle, then the undisturbed components of the magnetic field may be linearly dependent on time and independent of the coordinates. The excitation of waves is due to the undisturbed stationaryV 0 flow with divV 0 = 0 and with (V 0 rot0) = constant.We use the local Cartesian coordinate system, which is immovable towards the solar centre, and consider the case when the toroidal component of the undisturbed magnetic field changes its sign simultaneously with one of the axial components. The third component does not change its direction.The efficiency of the enhancement of the magnetic field and velocity disturbances depends on the Alfvén wave frequency, A. When A = 0, the component of the disturbed velocity, which is directed along the constant component of the undisturbed magnetic field, increases. In this case the shear waves excite the carrier (high) frequency (KV 0), whereK is the wave vector. Due to the shear instability the amplitude of the velocity increases during 1 year before the moment of reversal of the global magnetic field polarity (RGMFP) for an arbitrary latitude. It reaches a maximum at RGMFP and decreases in the next year. When A > 0, then the amplitudes of the disturbed values reach maxima before the moment of RGMFP, and when A < 0, they reach maxima after it.We argue that the shear waves propagate from middle latitudes to the pole and equator. Using the results of the analytical solutions and leaning on the evidence of the observational data (Gigolashvili and Japaridze, 1992), we derive the result that the component of the undisturbed magnetic field, which is perpendicular to the solar surface, changes its sign simultaneously with the toroidal component.  相似文献   

17.
Lapenta  Giovanni  Knoll  D.A. 《Solar physics》2003,214(1):107-129
We consider the stability of current sheets where a normal component of the field is present. It is well known that reconnection in such systems progresses orders of magnitude too slow to explain observations, even when full kinetic models are used. We consider here a new possible mechanism for fast reconnection in such systems. We consider the effect of the possible presence of velocity shear that can drive the Kelvin–Helmholtz instability (KHI). The effect of the KHI is shown to convert shear flow into compression flow that drives reconnection. Three scaling effects can be discerned in the simulations. First, the reconnection rate is directly controlled by the driving mechanism which is provided by the KHI. The result of this new mechanism is that fast reconnection can be achieved even in absence of anomalous resistivity. Second, the effect of varying the initial sheared flow along the main magnetic field direction enhances the reconnection process. Finally, the reconnection rate is insensitive to the value of resistivity.  相似文献   

18.
We study the linear stability of nondissipative flow of an electrically conducting fluid subject to non-axisymmetric disturbances in the following cases: (i) the radial flow of an incompressible fluid between two concentric porous circular cylinders in the presence of a radial magnetic field and (ii) axial flow of a compressible fluid between two concentric circular cylinders permeated by a helical magnetic field (0,B 0(r),B 0z) in a cylindrical coordinate system. It is shown that in case (i), the flow is stable if the Alfvén velocity based on the undisturbed radial magnetic field exceeds the radial velocity due to suction or injection at the cylinder surfaces. In case (ii), it is found that under certain conditions the complex wave speed for an unstable mode lies within a circle of diameterW max-W min, whereW max andW min are the maximum and minimum values of the axial velocity in the flow region. In the presence of a purely axial magnetic field, however, the complex wave speed for an unstable mode always lies within the above circle.  相似文献   

19.
The interaction between a shock-wave and the magnetopause is formulated on the basis of one-dimensional magnetohydrodynamics. The magnetopause is assumed to be a tangential discontinuity, and the magnetic field is limited to the case of perpendicularity. Both the forward and reverse shocks' impact on the magnetopause are considered and analyzed separately. The forward shock-magnetopause interaction results in a transmitted shock, a tangential discontinuity, and a simple rarefaction wave. The reverse shock-magnetopause interaction creates a transmitted shock, a tangential discontinuity, and a reflected wave. The propagation of an SSC signal which is related to an interplanetary shock-induced geomagnetic storm's onset-time on Earth is discussed in general terms. It was found in earlier work (Shen and Dryer, 1972) that the propagation velocity of an inter-planetary shock is decreased by about 1015% following its impact with the earth's bow shock; the present study shows that its velocity is then suddenly increased by a factor of two to three after impact with the magnetopause. The fast propagating shock-wave inside the magnetosphere degenerates into a hydromagnetic wave as it advances into an increasing intensity of the distorted dipole geomagnetic field.  相似文献   

20.
Shear mixing is believed to be the main mechanism to provide extra mixing in stellar interiors. We present results of three-dimensional (3D) simulations of the magnetohydrodynamic Kelvin–Helmholtz instability in a stratified shear layer. The magnetic field is taken to be uniform and parallel to the shear flow. We describe the evolution of the fluid flow and the magnetic field for a range of initial conditions. In particular, we investigate how the mixing rate of the fluid depends on the Richardson number and the magnetic field strength. It is found that the magnetic field can enhance as well as suppress mixing. Moreover, we have performed two-dimensional (2D) simulations and discuss some interesting differences between the 2D and 3D results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号