首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The variation with heliocentric distance of the production rates of various species in Comet West (1975n=1976 VI) is explained with a cometary model consisting of a CO2-dominated nucleus plus a halo of icy grains of H2O or clathrate hydrate. We conclude that the parents of CN and C3 are released primarily from the nucleus but that the parent of C2 is released primarily from the halo of icy grains.  相似文献   

2.
The new model of the cometary head proposed in papers I and II is developed and applied to comet Burnham. It takes into account the likely existence of a halo of large icy particles surrounding the nucleus. These particles are steadily stripped from the nucleus by evaporating gases. Their terminal velocity and their rate of evaporation set the size of the halo. The existence of the icy halo influences in two ways the photometric characteristics of the coma. This paper establishes the photometric shape of the continuum as reflected by the icy grains, and compares it to the observed continuum of comet Burnham. Paper IV will compare the predictions of the model with the photometric profile of the molecular emission bands of C2, in the same comet.  相似文献   

3.
Martha S. Hanner 《Icarus》1981,47(3):342-350
Evaporation of icy grains over the distance scale of the visible cometary coma sets very specific limits on their temperature. Unless the grains are very pure water ice, the maximum size of an icy grain halo will be limited to a few hundred kilometers at heliocentric distances ?2.5 AU. It is unlikely that the 1.5- or 2-μm ice band could be detected in the scattering by icy grains. Detection of the 3?μm ice band might be possible in comets which display a coma at large heliocentric distances.  相似文献   

4.
《Icarus》1987,70(2):264-268
We used the VLA2 to search for continuum emission from icy grains in a halo around Comet Halley in mid November 1985. We found the 3σ upper limit to the 2-cm flux density from the comet to be 1 × 10−4 Jy, which is consistent with the detections at 1.3 and 3.5 mm by W.J. Altenhoff et al. (1986, Astron. Astrophys., in press) only if the emission comes from particles which do not radiate efficiently at centimeter wavelengths. These particles could be slightly dirty submillimeter-sized icy grains or small refractory grains.  相似文献   

5.
New investigations of the photoluminescence of frozen hydrocarbon particles of icy cometary halo have been made. The process of photoluminescence of icy particles in the ultraviolet solar radiation field is considered. The comparative analysis of laboratory and observed data leads to the preliminary identification of some sixty eight photoluminescent emission features in the spectra of 109P/Swift–Tutle and 23P/Brorsen–Metcalf comets. Formulae are given for the calculation of the efficiency of the photoluminescence of icy organic particles in the cometary halo.  相似文献   

6.
Photogravitational Restricted Three-Body Problem (PGRTBP) is considered and halo orbits are generated in the vicinity of the Sun–Mars L1 Lagrangian point. Deviation of properties such as time period, size and velocity variation in the halo orbits with Sun as a source of radiation are discussed. With increase in solar radiation pressure, the halo orbits are found to elongate and move towards the Sun and the time period of the halo orbits is found to increase. The variation in the behaviour of invariant manifolds with change in radiation pressure is also computed and it is found that as the radiation pressure increases, the transition from Mars-centric path to heliocentric path is delayed. Certain implications of the velocity profile of the invariant manifolds are also discussed.  相似文献   

7.
The 3.1-μm absorption feature of water-ice has been observed spectroscopically in many molecular clouds and, when it has been observed spectropolarimetrically, usually a corresponding polarization feature is seen. Typically, on these occasions, and particularly for the Becklin–Neugebauer (BN) object, a distinct position angle shift between the feature and continuum is seen, which indicates both a fractionation of the icy material and a changing alignment direction along the line of sight.
Here, the dependence of circular polarimetry on fractionation along the line of sight is investigated and it is shown that the form of its spectrum, together with the sign of the position angle shift, indicates where along the line of sight the icy material lies. More specifically, a coincidence between the sign of the position angle displacement in the ice feature, measured north through east, and that of the circular polarization ice feature means that the icy grains are overlaid by bare grains. Some preliminary circular polarimetry of BN has this characteristic, and a similar situation is found in the only two other cases for which relevant observations so far exist.  相似文献   

8.
Investigations of the luminescence of frozen hydrocarbon particles of icy cometary halo have been made. The process of luminescence of icy particles in shortwavelength solar radiation field is considered. The comparative analysis of observed and laboratory data leads of 72 luminescent emission lines in the spectrum of 153P/Ikeya-Zhang comet. Several aspects of the problem are discussed.  相似文献   

9.
Published low-resolution measurements of colour and polarisation over the face of M82 are discussed to separate the contribution of starlight and scattered light. We show that in all places of the middle and outer halo the scattered light comes predominantly from a central source of very high ultraviolett excess, the contribution of the disc is negligble there. The projected distributions of Hα-light and scattered continuum are of considerable similarity. Major extinction occurs in the southern half of the main body and of the inner halo; the northern half of the bright body, and the northern halo, are free of extinction, excluding some regions near the minor axis. The light of the central source is reddened only before it is scattered in the halo. The variation of the true degree of polarisation (after correction for starlight) is interpreted in terms of the variation of the mean scattering angle. From this, conclusions can be drawn concerning the location of the dust and the geometry of the illumination. The high brightness of the scattered light near the minor axis is caused axis is caused by a bright illuminating beam there, strengthened in some places by comparatively low scattering angles (45°) and a higher (projected) density of the scattering material. The stellar populations seen in M82 are different in the northern and in the southern halfs of the galaxy. The main body and the region of the northern “halo” consist of an old population of normal metal content (pop. I); the colours of the southern parts – which are partly considerably influenced by extinction – can be due to either metal poor F-stars (pop. II) or to young B-stars. To solve the latter ambiguity and at the same time the question in what direction the plane of the galaxy is tilted, good spectra of the faint southern parts of M82 outside the minor axis are needed.  相似文献   

10.
Claims continue to be made that detector selection effects can explain the deviation of the gamma-ray burst brightness distributions from the -3/2 power law expected for homogeneous burst sources. However, these effects are insufficient to explain the BATSE observations. The BATSE sensitivity threshold does vary with time, independent of the burst brightness; however, a homogeneous distribution of standard candle sources would still produce a -3/2 power law. The variation in the threshold does affect inhomogeneous source models. As an example, the effect of a time-varyingC min on theC max/C min distribution of an extended Galactic halo model is shown here. To fit the BATSEC max/C min distribution including a varyingC min requires a larger observing distance (relative to the scale-height of the halo) than for a constantC min; however, the observations can still be fit using the halo models.  相似文献   

11.
The particles making up the Jovian ring may be debris which has been excavated by micrometeoroids from the surfaces of many unseen (R ? 1 km) parent bodies (or “mooms” as we will occasionally call them) residing in the ring. A distribution of particle sizes exists: large objects are sources for the small visible ring particles and also account for the absorption of charged particles noted by Pioneer; the small grains are generated by micrometeoroid impacts, by jostling collisions among different-sized particles, and by self-fracturing due to electrostatic stresses. The latter are most effective in removing surface asperities to thereby produce smooth and crudely equidimensional grains. The presence of intermediate-sized (radius of several to several hundred microns) objects is also expected; these particles will have a total area comparable to the area of the visible ring particles. The nominal size (?2 μm) of the visible particles derived from their forward-scattering characteristics is caused, at least in part, by a selection effect but may also reflect a fundamental grain size or the preferential generation of certain sizes along with the destruction of others. The tiny ring particles have short lifetimes (?102?103 years) limited by erosion due to sputtering and meteoroid impacts. Plasma drag significantly modifies orbits in ~102 years but Poynting-Robertson drag is not effective (TPR ~ 105 years) in removing debris. The ring width is influenced by the distribution of source satellites, by the initial ejection velocity off them, by electromagnetic scattering, and by solar radiation forces. In the absence of electromagnetic forces, debris will reimpact a mother satellite or collide with another particle in about 10 years. A relative drift between different-sized particles, caused by a lessened effective gravity due to the Lorentz force, will substantially shorten these times to less than a month. The ring thickness is determined by a balance between initial conditions (abetted perhaps by electromagnetic scattering) and collisional damping; existence of the “halo” over the diffuse disk compared to its relative absence over the bright ring indicates the presence of mooms in the bright ring but not in the faint disk. Small satellites (R ? 1 km) will not reaccumulate colliding dust grains whereas satellites having the size of J14 or J16 may be able to do so, depending upon their precise shape, size, density, and location. Visible ring structure could indicate separate source satellites. The particles in the faint inner disk are delivered from the bright ring by orbital evolution principally under plasma drag. The halo is comprised of small particles (~0.1 μm) partially drawn out of the faint disk by interactions with the tilted Jovian magnetic field.  相似文献   

12.
Pores present in ices in the solar system do not remain unchanged. In isothermal conditions they shrink while in a thermal gradient they migrate towards the higher temperature and escape so that the ice densifies. This motion has been investigated for pure H2O- and CO2-ices in a very simple one-dimensional model assuming uniform thermal conductivity and temperature gradient. The results indicate that the densification of H2O-ice is so slow that it could be significant only for icy satellites having an internal heat source. On the other hand, CO2-ice densifies orders of magnitude faster and the effect should be important for the CO2 component of cometary nuclei. No effect is expected for icy planetary rings.  相似文献   

13.
A 1-D collisional Monte Carlo model of Europa's atmosphere is described in which the sublimation and sputtering sources of H2O molecules and their molecular fragments are accounted for as well as the radiolytically produced O2. Dissociation and ionization of H2O and O2 by magnetospheric electron, solar UV-photon and photo-electron impact, and collisional ejection from the atmosphere by the low-energy plasma are taken into account. Reactions with the surface are discussed, but only adsorption and atomic oxygen recombination are included in this model. The size of the surface-bounded oxygen atmosphere of Europa is primarily determined by a balance between atmospheric sources from irradiation of the satellite's icy surface by the high-energy magnetospheric charged particles and atmospheric losses from collisional ejection by the low-energy plasma, photo- and electron-impact dissociation, and ionization and pick-up from the surface-bounded atmosphere. A range of sources rates for O2 to H2O are used with a larger oxygen-to-water ratio than suggested by laboratory measurements in order to account for differences in adsorption onto grains in the regolith. These calculations show that the atmospheric composition is determined by both the water and oxygen photochemistry in the near-surface region, escape of suprathermal oxygen and water into the jovian system, and the exchange of radiolytic water products with the porous regolith. For the electron impact ionization rates used, pick-up ionization is the dominant oxygen loss process, whereas photo-dissociation and atmospheric sputtering are the dominant sources of neutral oxygen for Europa's neutral torus. Including desorption and loss of water enhances the supply of oxygen species to the neutral torus, but hydrogen produced by radiolysis is the dominant source of neutrals for Europa's torus in these models.  相似文献   

14.
With the increase in complexities of interplanetary missions, the main focus has shifted to reducing the total delta-V for the entire mission and hence increasing the payload capacity of the spacecraft. This paper develops a trajectory to Mars using the Lagrangian points of the Sun-Earth system and the Sun-Mars system. The whole trajectory can be broadly divided into three stages: (1) Trajectory from a near-Earth circular parking orbit to a halo orbit around Sun-Earth Lagrangian point L2. (2) Trajectory from Sun-Earth L2 halo orbit to Sun-Mars L1 halo orbit. (3) Sun-Mars L1 halo orbit to a circular orbit around Mars. The stable and unstable manifolds of the halo orbits are used for halo orbit insertion. The intermediate transfer arcs are designed using two-body Lambert’s problem. The total delta-V for the whole trajectory is computed and found to be lesser than that for the conventional trajectories. For a 480 km Earth parking orbit, the total delta-V is found to be 4.6203 km/s. Another advantage in the present approach is that delta-V does not depend upon the synodic period of Earth with respect to Mars.  相似文献   

15.
《Icarus》1987,71(1):178-191
The recent discovery of CN and C2 gas jets in comet Halley has led to basic speculation as to their physical source mechanism. A basic quantitative study of the photosputtering of CHON grains and the spatial evolution of trace gas jets is presented here. Two possible single sources, a parent gas and CHON grains, for both the jet and the background gas, are also investigated. It is shown that a parent trace gas jet will remain focused out to distances as large as 105 km from the nucleus and could provide a source for the observed radical jets. Conversely, photosputtering of small CHON grains by solar UV radiation can provide the source not only for cometary CN and C2 but also possibly for inner coma C atoms and C+ ions. However, constraints on the size and/or morphology of the contributing grains themselves are found. Isotropic speed components comparable to the outflow speed are likely to be added to radicals upon production from either the CHON grain or the parent gas source and will yield a radical jet which becomes more diffuse with increasing distance from the nucleus. However, in neither case will the radical jet completely isotropicize; it will be confined generally to a quadrant as projected on the sky plane. Observational tests which can be made once the large set of in situ and remote observations have been analyzed are suggested to distinguish between the two scenarios.  相似文献   

16.
《Icarus》1986,67(1):51-62
We present 2.2-, 10-, and 20-μm photometry of Comet Bowell (1982 I) taken on 24 June 1982 when the comet was at 3.5 AU postperihelion. From these and earlier thermal emission measurements we conclude that the OH production in 1981 was probably supplied by large dirty-ice grains in the coma, as proposed by A'Hearn et al. (1984). The temperature of the grains must have been 140–155°K. Amorphous ice and the phase change from amorphous to cubic ice may have supplied much of the energy for sublimation. The much lower OH production in 1982 could have arisen from icy grains or from the nucleus. There is no evidence for an extremely low geometric albedo of the grains (<1%); in fact, much of the scattered light may have come froman additional component of cold icy grains.  相似文献   

17.
In the interstellar medium, the most probable source of organic molecules could be non-equilibrium processes driven by photons, cosmic rays, shock waves and solid bodies’ collisions. The dense cold phase of ISM host icy dust grains—important chemical catalyst during its life cycle. Such particles consist of mineral core composed by silicate or olivine admixed with metal sulfides and oxides, with the water-icy envelope containing organic molecules. Organic molecules in the ISM evolve and become later incorporated in solar system material (comets and meteorites).The formation of polypeptides from single amino acids was traced in simulation experiments representing the inner structure of icy dust grains. Experimental chamber was irradiated at subzero temperatures at the dosage of 2.54 kRad/min. Solid frozen solutions of Gly and Phe were taken as the experimental samples inserted into the metal tube kept at subzero temperatures in the presence of liquid nitrogen. Formation of di- and tri-peptides was demonstrated after applying mass-spectrometry and high performance liquid chromatography (HPLC) techniques.Having polypeptides within the icy matrix, dust grains with ice mantles are transported to warm, dense and active protostellar regions, where ultraviolet irradiation may become important and alter the grain composition. Furthermore UVC radiation may contribute to the formation of additional amounts of polypeptides, since short-wave photons are totally adsorbed by a thin outer layer. This presumption coincides with our previous investigations concerning UV impact on prebiotic formation of the main biological molecules. Combination of two irradiation types in different stages of interstellar flight could compensate the effects of low reagents concentration and temperature. Since the primordial Earth had no atmosphere, the natural carriers could get freely onto its surface and thus raise the concentration of organic molecules.  相似文献   

18.
本文分析研究了22GHz频率上高分辨率(~4′)的太阳射电观测资料.发现源区域由两部分组成,即对应于黑子群中前导黑子的角径较小、温度较高的核,和对应于色球钙谱斑、环绕核的角径较大、温度较低的晕.此外,还分析了源区域的SVC的某些特征.  相似文献   

19.
We consider periodic halo orbits about artificial equilibrium points (AEP) near to the Lagrange points L 1 and L 2 in the circular restricted three body problem, where the third body is a low-thrust propulsion spacecraft in the Sun–Earth system. Although such halo orbits about artificial equilibrium points can be generated using a solar sail, there are points inside L 1 and beyond L 2 where a solar sail cannot be placed, so low-thrust, such as solar electric propulsion, is the only option to generate artificial halo orbits around points inaccessible to a solar sail. Analytical and numerical halo orbits for such low-thrust propulsion systems are obtained by using the Lindstedt Poincaré and differential corrector method respectively. Both the period and minimum amplitude of halo orbits about artificial equilibrium points inside L 1 decreases with an increase in low-thrust acceleration. The halo orbits about artificial equilibrium points beyond L 2 in contrast show an increase in period with an increase in low-thrust acceleration. However, the minimum amplitude first increases and then decreases after the thrust acceleration exceeds 0.415 mm/s2. Using a continuation method, we also find stable artificial halo orbits which can be sustained for long integration times and require a reasonably small low-thrust acceleration 0.0593 mm/s2.  相似文献   

20.
David Andrew Fisher 《Icarus》2005,179(2):387-397
This paper describes a “simple standard” model of water transport through regolith that includes diffusive migration and phase changes driven by damped seasonal temperature waves. A hitherto unused first-order process is then added, that can produce ice densities much greater than those allowed by the initial dry porosity. Voids are produced in cooling icy regolith when tensile stresses exceed the cracking threshold . These stresses build up through an interaction of thermal contraction and elastic-plastic response. When the cracks open up after tensile failure there is purely thermal void enhancement and subsequent reduction as the regolith warms again. When the cracks are open the porosity is increased and they partially fill with ice crystals. Thus the void reduction on warming cannot go back to the original zero point and the bulk density of ice is increased with each temperature cycle. The cracking and thermal adjustment happen at scales of meters to millimeters. The large cracks can occur in pure ice and/or homogeneous icy material and the smaller cracks are produced by rock cobbles, pebbles, and grains having a much smaller coefficient of thermal expansion than ice. Thus a hierarchy of cracks and voids forms each temperature cycle and augments the ice content. The process can take the upper few meters of a pore-saturated icy soil from 28% by mass ice content to 70% in 10 Ma. This mechanism and the seasonal temperature cycle can plausibly produce massive ice deposits in the upper few meters of Mars' high-latitude regolith by diffusion and also keep the massive-ice regolith effectively porous to water vapor transport. The obliquity cycle can produce tensile stresses nearing 2 MPa down to depth so even deeper cracking could be happening.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号