首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A gas-dynamical model of gas streams around close binary systems is given. The velocity feld and the density distribution are determined for different parameter ranges. The results succeed in explaining the formation of a ring and a disk around the accreting component. The models furthermore reveal the existence of a tongue of matter extending from the inner Lagrangian point and a jet perpendicular to the system axis.  相似文献   

2.
A model for contact binary systems is presented, which incorporates the following special features: a) The energy exchange between the components is based on the understand-ing that the energy exchange is due to the release of potential, kinetic and thermal energies of the exchanged mass. b) A special form of mass and angular momentum loss occurring in contact binaries is losses via the outer Lagrangian point. c) The effects of spin, orbital rota-tion and tidal action on the stellar structure as well as the effect of meridian circulation on the mixing of the chemical elements are considered. d) The model is valid not only for low-mass contact binaries but also for high-mass contact binaries. For illustration, we used the model to trace the evolution of a massive binary system consisting of one 12M and one 5M star. The result shows that the start and end of the contact stage fall within the semi-detached phase during which the primary continually transfers mass to the secondary. The time span of the contact stage is short and the mass transfer rate is very large. Therefore, the contact stage can be regarded as a special part of the semi-detached phase with a large mass transfer rate. Both mass loss through the outer Lagrangian point and oscillation between contact and semi-contact states can occur during the contact phase, and the effective temperatures of the primary and the secondary are almost equal.  相似文献   

3.
Three importantphysical processes occurringin contact binarysystems are studied. The first one is the effect of spin, orbital rotation and tide on the structure of the components, which includes also the effect of meridian circulation on the mixing of the chemical elements in the components. The second one is the mass and energy exchange between the components. To describe the energy exchange, a new approach is introduced based on the understanding that the exchange is due to the release of the potential, kinetic and thermal energy of the exchanged mass. The third is the loss of mass and angular momentum through the outer Lagrangian point. The rate of mass loss and the angular momentum carried away by the lost mass are discussed. To show the effects of these processes, we follow the evolution of a binary system consisting of a 12M and a 5M star with mass exchange between the components and mass loss via the outer Lagrangian point, both with and without considering the effects of rotation and tide. The result shows that the effect of rotation and tide advances the start of the semi-detached and the contact phases, and delays the end of the hydrogen-burning phase of the primary. Furthermore, it can change not only the occurrence of mass and angular momentum loss via the outer Lagrangian point, but also the contact or semi-contact status of the system. Thus, this effect can result in the special phenomenon of short-term variations occurring over a slow increase of the orbital period. The occurrence of mass and angular momentum loss via the outer Lagrangian point can affect the orbital period of the system significantly, but this process can be influenced, even suppressed out by the effect of rotation and tide. The mass and energy exchange occurs in the common envelope. The net result of the mass exchange process is a mass transfer from the primary to the secondary during the whole contact phase.  相似文献   

4.
We consider the effect of a supernova (SN) explosion in a very massive binary that is expected to form in a portion of Population III stars with the mass higher than  100 M  . In a Population III binary system, a more massive star can result in the formation of a black hole (BH) and a surrounding accretion disc. Such BH accretion could be a significant source of the cosmic reionization in the early Universe. However, a less massive companion star evolves belatedly and eventually undergoes a SN explosion, so that the accretion disc around a BH might be blown off in a lifetime of companion star. In this paper, we explore the dynamical impact of a SN explosion on an accretion disc around a massive BH, and elucidate whether the BH accretion disc is totally demolished or not. For the purpose, we perform three-dimensional hydrodynamic simulations of a very massive binary system, where we assume a BH of  103 M  that results from a direct collapse of a very massive star and a companion star of  100 M  that undergoes a SN explosion. We calculate the remaining mass of a BH accretion disc as a function of time. As a result, it is found that a significant portion of gas disc can survive through three-dimensional geometrical effects even after the SN explosion of a companion star. Even if the SN explosion energy is higher by two orders of magnitude than the binding energy of gas disc, about a half of disc can be left over. The results imply that the Population III BH accretion disc can be a long-lived luminous source, and therefore could be an important ionizing source in the early Universe.  相似文献   

5.
Spectroscopic observations through most of the eclipse cycle of BT Mon reveal the presence of both low and high velocity gas streams. Acceleration through a Laval-nozzle-effect at the inner Lagrangian point of the system and powering of the emission lines through kinetic energy losses of Coriolis deflected and subsequently colliding gas strems are considered as possible mechanisms at work in the system.Paper presented at the Lembang-Bamberg IAU Colloquium No. 80 on Double Stars: Physical Properties and Generic Relations, held at Bandung, Indonesia, 3–7 June, 1983.Based on observations obtained at the European Southern Observatory, La Silla, Chile.  相似文献   

6.
A model of planetary formation in a binary system with a small relative mass of primary is computed on the assumption of a mass transfer from the less massive component to the more massive one with no mass and angular momentum carried away from the system under consideration. At the last stage of mass transfer the condensed Moon-like objects (planetoids) are ejected through the inner Lagrange point of the primary Roche lobe with the outflow of gaseous matter.The whole system is considered in the plane of binary star rotation. Newtonian equations of motion are integrated with the initial conditions for the planetoids referred to as the coordinates and velocity of the inner Lagrangian point at the moments of planetoid ejections, all the pairwise gravitational interactions being included in computations but without a gas-drag. The mass transfer ceases at the primary relative mass 10–3 which corresponds to the present Sun-Jupiter system. The total mass of planetoids approximates that of the terrestrial planets. Those are formed through coagulation of the planetoids with the effective radius of capture cross-section as an input parameter in the computer simulation. When the minimum separation between the pair of bodies becomes less than this radius they coalesce into a single body with their masses and momenta summed. If the effective radius value is under a certain limit the computer simulation yields the planetary system like that of terrestrial planets of the present Sun system.Numerical computations reveal the division of the planetoids into 4 groups along their distances from the Sun. Further, each group forms a single planet or a planet and a less massive body at the nearest orbits. The parameters of simulated planet orbits are close to the present ones and the interplanetary spacings are in accord with the Titius-Bode law.  相似文献   

7.
8.
Stability of Binary Asteroids   总被引:1,自引:0,他引:1  
D.J. Scheeres 《Icarus》2002,159(2):271-283
The stability and final outcome of a strongly interacting binary asteroid system is considered. We discuss the implications of the system transferring energy and angular momentum between rotational and translational motion while conserving the total system energy and angular momentum. Using these results we can develop a set of sufficient conditions for stability against escape and impact. These allow us to delineate several classes of final outcomes for a binary asteroid system, each of which may have implications for asteroid observations. The effects of energy dissipation on an asteroid binary system are also considered and are shown to be able to change the stability of the system against escape and impact. An example computation for the near-Earth asteroid binary 1996 FG3 is given along with a series of numerical explorations of an evolving binary system consisting of an ellipsoid and a sphere of equal mass.  相似文献   

9.
In binary stellar systems, exoplanet searches have revealed planetary mass companions orbiting both in circumstellar and in circumbinary orbits. Modelling studies suggest increased dynamical complexity around the young stars that form such systems. Circumstellar and circumbinary disks likely exhibit different physical conditions for planet formation, which also depends on the stellar separation. Although binaries and higher order multiple stars are relatively common in nearby star-forming regions, surprisingly few systems with circumbinary distributions of proto-planetary material have been found. With its spectacular ring of dust and gas encircling the central triple star, one such system, GG Tau A, has become a unique laboratory for investigating the physics of circumsystem gas and dust evolution. We review here its physical properties.  相似文献   

10.
The well-known problem of reckoning the critical surfaces (equipotential zero-velocity surfaces) in the close binary systems is approached by an independent method. The formulation of the problem is based on the assumptions of the binary's matter consisting of ionized hydrogen, the system possessing black-body radiation, a potential magnetic field, being in adiabatic equilibrium. Total pressure and total internal energy are examined. The model, implying synchronous rotation of the components, is described by hydromagnetic equations. For a statical case, however, it is representable by the equation of motion alone. Next, the temperature field is reproduced whereby the ratioP r/Pg= is playing part of a free parameter. The resulting potential functions, applied to particular binaries, furnish the Lagrangian collinear points, critical surfaces and potentials over them in terms of . The families of surfaces thus obtained, compared with those springing from the Roche model, differ qualitatively in their geometry, position of the collinear equilibrium points, number of possible equilibrium states and the values of critical potentials. At identifying the allowed and forbidden regions of the gas motion new areas have been disclosed across which the gas outflow can take place and more possibilities of shell forming both around the individual components and the system as a whole. As the gas enthalpy and radiation are increased, the surfaces' geometry is undergoing changes. The method enables the intensity of gas velocity to be ascertained at any point in the system.The results of the method outlined here complement the picture of possible equilibrium states in the close binary systems in the presence of radiation and magnetic field.  相似文献   

11.
The impact of a supernova explosion on the magnetosphere of a neutron star in a massive binary system is considered. The supernova shock impact on a plasma-filled neutron star magnetosphere can give rise to a long magnetospheric tail with a considerable store of magnetic energy. Magnetic reconnection in the formed current sheet can transform the magnetic energy stored in the tail into the kinetic energy of charged particles. The plasma instabilities excited by beams of accelerated relativistic particles can lead to the formation of a short pulse of coherent radio emission with parameters similar to those measured for the bright extragalactic millisecond radio burst detected in 2007.  相似文献   

12.
Early theories of stellar winds from an association of OB stars predicted the formation of a common superbubble enclosed by athin, dense supershell, through the combined effort of the winds from the stars at the center. These early theories were adequate for explaining the primary observational features (defined as: shell age, outer radius, shell speed, shell mass, shell energy), but they were not adequate to explain the secondary features (defined as: shell thickness, shell magnetic field, shell gas density). A recently published theory for a stellar-wind-bubble and supershell, predicting a range ofthick supershells, can now be compared with the secondary observational features.Using the observed parameters from all large (> 100 pc) interstellar magnetized supershells near the sun (< 1 kpc away), I assemble for comparison with stellar-wind theories: (a) the primary observational features of these shells — I find: large shell age, large outer radius, low shell speed, large shell mass, large shell energy; and (b) some of their secondary observational features — I find: thick shell, low shell magnetic field strengh, low shell gas density.  相似文献   

13.
We consider the self-similar problem of a supernova explosion in a radially inhomogeneous medium by taking into account the generation of accelerated relativistic particles. The initial density of the medium is assumed to decrease with distance from the explosion center as a power law, ρ 0 = A/r θ. We use a two-fluid approach in which the total pressure in the medium is the sum of the circumstellar gas pressure and the relativistic particle pressure. The relativistic particle pressure at the shock front is specified as an external parameter. This approach is applicable in the case where the diffusion coefficient of accelerated particles is small and the thickness of the shock front is much smaller than its radius. We have numerically solved a system of ordinary differential equations for the dimensionless quantities that describe the velocity and density behind the shock front as well as the nonrelativistic gas and relativistic particle pressures for various parameters of the inhomogeneity of the medium and various compression ratios of the medium at the shock front. We have established that the shock acceleration of cosmic rays affects most strongly the formation of a supernova shell (making it thinner) in a homogeneous circumstellar medium. A decrease in the circumstellar matter density with distance from the explosion center causes the effect of shock-accelerated relativistic particles on the supernova shell formation to weaken considerably. Inhomogeneity of the medium makes the shell thicker and less dense, while an increase in the compression ratio of the medium at the shock front causes the shell to become thinner and denser. As the relativistic particle density increases, the effect of circumstellar matter inhomogeneity on the shell formation becomes weaker.  相似文献   

14.
This paper is devoted to the dynamical stability of possible Trojan planets in binaries and in binary systems where one of the substellar companions is not larger than a brown dwarf. Using numerical integrations, we investigated how the size of the stable region around the Lagrangian point L4 depends on the mass parameter and the eccentricity of the secondary star. An additional goal of this work was to create a catalogue of all possible candidates, which could be useful for future observations to detect such objects.  相似文献   

15.
We compute the effect of an orbiting gas disc in promoting the coalescence of a central supermassive black hole binary. Unlike earlier studies, we consider a finite mass of gas with explicit time dependence: we do not assume that the gas necessarily adopts a steady state or a spatially constant accretion rate, i.e. that the merging black hole was somehow inserted into a pre-existing accretion disc. We consider the tidal torque of the binary on the disc, and the binary's gravitational radiation. We study the effects of star formation in the gas disc in a simple energy feedback framework.
The disc spectrum differs in detail from that found before. In particular, tidal torques from the secondary black hole heat the edges of the gap, creating bright rims around the secondary. These rims do not in practice have uniform brightness either in azimuth or time, but can on average account for as much as 50 per cent of the integrated light from the disc. This may lead to detectable high-photon-energy variability on the relatively long orbital time-scale of the secondary black hole, and thus offer a prospective signature of a coalescing black hole binary.
We also find that the disc can drive the binary to merger on a reasonable time-scale only if its mass is at least comparable with that of the secondary black hole, and if the initial binary separation is relatively small, i.e.   a 0≲ 0.05  pc. Star formation complicates the merger further by removing mass from the disc. In the feedback model we consider, this sets an effective limit to the disc mass. As a result, binary merging is unlikely unless the black hole mass ratio is ≲0.001. Gas discs thus appear not to be an effective solution to the 'last parsec' problem for a significant class of mergers.  相似文献   

16.
In this paper we prove the existence of ring-type bounded motion in an isolated system consisting of a massive point particle and a homogeneous cube. We study the case of planar motion where the particle moves in a symmetry plane of the cube and we use a rotating frame of reference with its center at the mass center of the cube and its axes coinciding with the symmetry axes of the cube. We prove that, for negative values of the total energy and properly chosen values of the total angular momentum, the relative distance of the bodies has an upper and a lower bound-i.e., the regions of possible motion lie inside an annulus around the cube (motion inside a ring or an island).  相似文献   

17.
If the solar system origin is considered within the framework of the author's hypothesis on the binary stars formation as a result of rotational-exchange break-up of the rotating protostar, then difficulties involved in the usual nebular hypotheses are automatically removed (unclear aspects of the possibility of formation of the gas disc proper, the problems of the angular momentum including slow rotation of the Sun and coplanarity of the planetary orbits, of differences in planetary masses and composition, the need, for the disc remnants to be swept out, the long time of planetary formation as compared with the possible lifetime of a turbulized disc etc.).The major stages of division and evolution of the Jupiter-Sun system are described. Similarities between the massive rotating proto-Jupiter (PJ) and the classical protoplanetary discs are pointed out. The process of planetoid condensation inside PJ is discussed. The most probable site of the condensation is the region of the first Lagrangian point. The planetoids condensed were lost by PJ as a result of its fast mass decrease. A gas dynamic consideration of the motion of planetoids in PJ yields 1000–3000 yr as a time scale for the PJ's mass loss. The number of the moonlike bodies lost (the remaining Galilean satellites fixing their lower mass limit) could reach 104.Evolution of such interacting bodies results in the formation beyond Neptune of a cloud (up to 103) of moonlike (and more massive) planets.The excess concentration of the long-period comets aphelia in this area implies their genetic relation to the planets. A concept of a joint planeto-cometary cloud is introduced. A concrete hydrodynamic mechanism of ice ejection from planets into space, viz. the formation of cumulative (Monroe) jets, is pointed out.A program of further investigations is outlined and recommendations given for an experimental check on the implications of the new cosmogonic concepts.  相似文献   

18.
We present the results of three-dimensional hydrodynamical simulations of the final stages of in-spiral in a black hole–neutron star binary, when the separation is comparable to the stellar radius. We use a Newtonian smooth particle hydrodynamics (SPH) code to model the evolution of the system, and take the neutron star to be a polytrope with a soft (adiabatic indices     and     equation of state and the black hole to be a Newtonian point mass. The only non-Newtonian effect we include is a gravitational radiation back reaction force, computed in the quadrupole approximation for point masses. We use irrotational binaries as initial conditions for our dynamical simulations, which are begun when the system is on the verge of initiating mass transfer and followed for approximately 23 ms. For all the cases studied we find that the star is disrupted on a dynamical time-scale, and forms a massive     accretion torus around the spinning (Kerr) black hole. The rotation axis is clear of baryons (less than 10−5 M within 10°) to an extent that would not preclude the formation of a relativistic fireball capable of powering a cosmological gamma-ray burst. Some mass (the specific amount is sensitive to the stiffness of the equation of state) may be dynamically ejected from the system during the coalescence and could undergo r-process nucleosynthesis. We calculate the waveforms, luminosities and energy spectra of the gravitational radiation signal, and show how they reflect the global outcome of the coalescence process.  相似文献   

19.
The formation of a planetary system from the protoplanetary disk leads to destruction of the latter; however, a debris disk can remain in the form of asteroids and cometary material. The motion of planets can cause the formation of coorbital structures from the debris disk matter. Previous calculations have shown that such a ring-like structure is more stable if there is a binary star in the center of the system, as opposed to a single star. To analyze the properties of the coorbital structure, we have calculated a grid of models of binary star systems with a circumbinary planet moving in a planetesimal disk. The calculations are performed considering circular orbits of the stars and the planet; the mass and position of the planet, as well as the mass ratio of the stars, are varied. The analysis of the models shows that the width of the coorbital ring and its stability significantly depend on the initial parameters of the problem. Additionally, the empirical dependences of the width of the coorbital structure on the parameters of the system have been obtained, and the parameters of the models with the most stable coorbital structures have been determined. The results of the present study can be used for the search of planets around binary stars with debris disks.  相似文献   

20.
We derive approximate analytic relations between the mass-transfer rate in a close binary system described in terms of the Roche potential and its basic parameters, such as the total mass of the binary, the radius of its circular orbit, the mass of the mass-losing component, and the degree of its Roche lobe overfilling. Using simplifying assumptions (conservative mass transfer, a short relaxation time of matter on the mass-gaining component compared to the mass-transfer time scale, adiabaticity and quasi-stationarity of the mass flow through the Lagrangian point L 1) allows the evolution of a binary system of neutron (degenerate) stars to be described in terms of two ordinary differential equations. This makes it possible to qualitatively analyze the evolution process, which is useful in those cases where the evolution of a close binary system must be investigated in general terms, for example, in terms of the scenario for the transformation of the collapse of a rotating presupernova core into a supernova explosion proposed by Imshennik and Nadyozhin (1992) and Imshennik (1992).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号