首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Skylab EUV observations of an active region near the solar limb were analyzed. Both cool (T < 106 K) and hot (T > 106 K) loops were observed in this region. For the hot loops the observed intensity variations were small, typically a few percent over a period of 30 min. The cool loops exhibited stronger variations, sometimes appearing and disappearing in 5 to 10 min. Most of the cool material observed in the loops appeared to be caused by the downward flow of coronal rain and by the upward ejection of chromospheric material in surges. The frequent EUV brightenings observed near the loop footpoints appear to have been produced by both in situ transient energy releases (e.g. subflares) and the infall/impact of coronal rain. The physical conditions in the loops (temperatures, densities, radiative and conducting cooling rates, cooling times) were determined. The mean energy required to balance the radiative and conductive cooling of the hot loops is approximately 3 × 10–3 erg cm–3 s–1. One coronal heating mechanism that can account for the observed behavior of the EUV emission from McMath region 12634 is heating by the dissipation of fast mode MHD waves.  相似文献   

2.
A recurrent H surge was observed on 7 October, 1991 on the western solar limb with the Meudon MSDP spectrograph. The GOES satellite recorded X-ray subflares coincident with all three events. During two of the surges high-resolutionYohkoh Soft X-ray Telescope (SXT) images have been taken. Low X-ray loops overlying the active region where the surges occurred were continuously restructuring. A flare loop appeared at the onset of each surge event and somewhat separated from the footpoint of the surge. The loops are interpreted as causally related to the surges. It is suggested that surges are due to magnetic reconnection between a twisted cool loop and open field lines. Cold plasma bubbles or jets squeezed among untwisting magnetic field lines could correspond to the surge material. No detection was made of either X-ray emission along the path of the surges or X-ray jets, possibly because of the finite detection threshold of theYohkoh SXT.  相似文献   

3.
Using data from the Extreme Ultraviolet (EUV) Spectroheliometer onSkylab, we study the empirical characteristics of the variable emission in active regions. These simultaneous multi-wavelength observations clearly confirm that active regions consist of a complex of loops at different temperatures. The variable emission from this complex has very well-defined properties that can be quantitatively summarized as follows: (1) It is localized predominantly around the footpoints where it occurs at discrete locations. (2) The strongest variability does not necessarily coincide with the most intense emission. (3) The fraction of the area of the footpoints,δn/N, that exhibits variable emission, varies by ±15% as a function of time, at any of the wavelengths measured. It also varies very little from footpoint to footpoint. (4) This fractional variation is temperature dependent with a maximum around 105 K. (5) The ratio of the intensity of the variable to the average background emission, δI/Ī, also changes with temperature. In addition, we find that these distinctive characteristics persist even when flares occur within the active region.  相似文献   

4.
Using measurements of EUV and X-ray spectral lines we derive the differential emission measure vs electron temperature T from the transition region to the corona of an active region (105 T <5 × 106 K). The total emission measure and radiative losses are of order 3 × 1048 cm–3 and 4 × 1026 ergss–1 respectively. The emission measure at T > 106 K (i.e. that mainly responsible for the X-ray emission) is about 75% of the total. We also examine the use of Mg x 625 Å as an indicator of coronal electron density. A set of theoretical energy balance models of coronal loops in which the loop divergence is a variable parameter is presented and compared with the observations. Particular attention is given to the limitations inherent in any such comparison.  相似文献   

5.
From the intensity of 19 EUV lines whose formation temperature {ovT} ranges from 3 × 104 to 1.4 × 106, two different models of the transition region and corona for the cell-centre and the network are derived. It is shown that both these models give radio brightness temperatures systematically higher than the observed ones. An agreement with radio data can be found only with lines formed at low temperature ({ovT} < 8.5 × 105) by decreasing the coronal temperature and the emission measure. The possibility of resolving the discrepancy by using different ion abundances has been also investigated with negative results.  相似文献   

6.
Solar-flare observations in the extreme ultraviolet (300–1350 Å) are reported. Some 269 flares observed by the Harvard College Observatory (HCO) experiment on OSO 4 and 211 flares observed by the HCO experiment on OSO 6 have been analyzed. The flares were observed in spectral lines and continua emitted by many ionic species over a temperature range from 104 to 3.5 × 106 K. The EUV data have been correlated with X-ray, H, and radio observations, and a significant number of EUV bursts not associated with reported H, X-ray, or radio bursts have been iden tified and investigated. The results indicate that these latter EUV events are less energetic by about a factor of 2 than EUV bursts associated with — F subflares.  相似文献   

7.
White-light flares are defined as those flares that produce significant enhancement of emission in the visible light continuum. The source of energy for this emission has not yet been identified with several possibilities being suggested: heating of the lower chromosphere by some mechanical or magnetic means, or by soft X-ray or extreme ultraviolet radiation from coronal loops being absorbed in the lower chromosphere and re-emitted in the visible.Using non-LTE radiative transfer calculations for hydrogen and helium in a simple model atmosphere we show that EUV ( < 912 Å) radiation cannot be the main energy source for white-light flares. Estimates of the observed energy emitted in the visible and the EUV indicate that there may be enough energy in the EUV to account for the white light flare with this mechanism. Using enhancements in the wavelength region below 912 Å of up to 7 × 109 ergs cm–2 s–1 ster–1 (5 × 105 times the estimated q radiation field) to represent flare EUV emission from above we investigated the non-LTE level populations for hydrogen and helium and the lower atmospheric heating resulting from this radiation. The basic result is that the opacities in the Lyman continuum and the helium I and II continua are so much larger than even the enhanced opacity in the visible hydrogen continuum that the EUV radiation is absorbed before it can have a significant effect in the visible light continuum. However, the EUV radiation can cause a significant enhancement of H emission.Operated by the Association of Universities for Research in Astronomy Inc. for the National Aeronautics and Space Administration.  相似文献   

8.
New theoretical emission line ratios for the Be-sequence ions Mgix and Sixi are presented. A comparison with observational data for two solar flares and an active region loop obtained with the Harvard EUV spectrometer and NRL XUV spectroheliograph aboard Skylab reveals that these plasmas are in ionization equilibrium at coronal temperatures. Unfortunately most of the density diagnostics are not particularly useful under solar plasma conditions, as they vary only slightly over the electron density range 108–1013cm–3. However the Sixi ratioI(3 P e 2 -3 P o 2)/I(3 P o 11 S e 0) is density sensitive in the range 108 to 1010cm–3, which is representative of electron densities found in solar active regions or small flares.  相似文献   

9.
Oscillations in the emission in the ultraviolet lines of Cii, Oiv, and Mg x, detected by the Harvard College Observatory EUV spectroheliometer on Skylab are observed on August 7, 1973, during a loop brightening. The intensity of the EUV lines varies with a period of 141 s during the time of enhanced intensity of the coronal loop, lasting 10 min. The periodic oscillation is not only localized in the loop region but extends over a larger area of the active region, maintaining the same phase. We suggest that the intensity fluctuation of the EUV lines is caused by small-amplitude waves, propagating in the plasma confined in the magnetic loop and that size of the loop might be important in determining its perferential heating in the active region.On leave from the University of Torino, Italy.  相似文献   

10.
Combining the observations of STEREO satellites with the method of three-dimensional magnetohydrodynamic (MHD) numerical simulation, adopt- ing the magnetic ?eld data of the Wilcox Solar Observatory (WSO) and the model of potential ?eld source surface to build up the initial magnetic ?eld in solar corona, and adding a time-varying disturbance of pressure to the active re- gion on the solar surface, the study on the event of coronal mass ejection (CME) and extreme-ultraviolet (EUV) wave happened at 05:35 UT of 2009 February 13 has been performed. It is judged from the images of COR1/STEREO-A that the front speed of this CME is about 350 km·s−1, and the angular width is about 60°. By analyzing the running difference images of EUVI/STEREO-B at 195 ?A, it is found that the bright toroidal wavefront is spreading toward all directions around the active region, and behind the bright toroidal wavefront is a coronal dimming area. The positions of the wavefront in four directions are taken to perform linear ?ttings, it is known that the EUV wave speed is 247 km·s−1, and the EUV wave speed obtained from the numerical simulation is 245 km·s−1. After the IDL visualization program has been carried out for the calculated result, the structures of the bright loop and dimming area can be seen clearly. The numerical simulation is consistent with the satellite observation, which shows that the observed EUV wave may belong to the fast magnetosonic wave.  相似文献   

11.
What is Moss?     
Berger  T.E.  De Pontieu  B.  Fletcher  L.  Schrijver  C.J.  Tarbell  T.D.  Title  A.M. 《Solar physics》1999,190(1-2):409-418
TRACE observations of active regions show a peculiar extreme ultraviolet (EUV) emission over certain plage areas. Termed `moss' for its spongy, low-lying, appearance, observations and modeling imply that the phenomenon is caused by thermal conduction from 3–5 MKcoronal loops overlying the plage: moss is the upper transition region emission of hot coronal loops. The spongy appearance is due to the presence of chromospheric jets or `spicules' interspersed with the EUV emission elements. High cadence TRACE observations show that the moss EUV elements interact with the chromospheric jets on 10 s time scales. The location of EUV emission in the moss does not correlate well to the locations of underlying magnetic elements in the chromosphere and photosphere, implying a complex magnetic topology for coronal loop footpoint regions. We summarize here the key observations leading to these conclusions and discuss new implications for understanding the structuring of the outer solar atmosphere. Supplementary material to this paper is available in electronic form at http://dx.doi.org/10.1023/A:1005286503963  相似文献   

12.
We investigate the morphology and temporal variability of a quiet-Sun network region in different solar layers. The emission in several extreme ultraviolet (EUV) spectral lines through both raster and slot time-series, recorded by the EUV Imaging Spectrometer (EIS) on board the Hinode spacecraft is studied along with \(\mbox{H}\upalpha\) observations and high-resolution spectropolarimetric observations of the photospheric magnetic field. The photospheric magnetic field is extrapolated up to the corona, showing a multitude of large- and small-scale structures. We show for the first time that the smallest magnetic structures at both the network and internetwork contribute significantly to the emission in EUV lines, with temperatures ranging from \(8\times 10^{4}~\mbox{K}\) to \(6\times 10^{5}~\mbox{K}\). Two components of transition region emission are present, one associated with small-scale loops that do not reach coronal temperatures, and another component that acts as an interface between coronal and chromospheric plasma. Both components are associated with persistent chromospheric structures. The temporal variability of the EUV intensity at the network region is also associated with chromospheric motions, pointing to a connection between transition region and chromospheric features. Intensity enhancements in the EUV transition region lines are preferentially produced by \(\mbox{H}\upalpha\) upflows. Examination of two individual chromospheric jets shows that their evolution is associated with intensity variations in transition region and coronal temperatures.  相似文献   

13.
Willson  Robert F. 《Solar physics》2000,197(2):399-419
Very Large Array (VLA) observations of the Sun at 91 and 400 cm wavelength have been used to investigate the radio signatures of EUV heating events and coronal mass ejections (CMEs) detected by SOHO and TRACE. Our 91 cm observations show the onset of Type I noise storm emission about an hour after an EUV ejection event was detected by EIT and TRACE. The EUV event also coincided with the estimated start time of a CME detected by the LASCO C2 coronagraph, suggesting an association between the production of nonthermal particles and evolving plasma-magnetic field structures at different heights in the corona. On another day, our VLA 400 cm observations reveal weak, impulsive microbursts that occurred sporadically throughout the middle corona. These low-brightness-temperature (T b=0.7–22×106 K) events may be weak Type III bursts produced by beams of nonthermal electrons which excite plasma emission at a height where the local plasma frequency or its first harmonic equals the observing frequency of 74 MHz. For one microburst, the emission was contained in two sources separated by 0.7 R 0, indicating that the electron beams had access to widely-divergent magnetic field lines originating at a common site of particle acceleration. Another 400 cm microburst occurred in an arc-like source lying at the edge of EUV loops that appeared to open outward into the corona, possibly signaling the start of a CME. In most instances the 400 cm microbursts were not accompanied by detectable EUV activity, suggesting that particles that produce the microbursts were independently accelerated in the middle corona, perhaps as the result of some quasi-continuous, large-scale process of energy release.  相似文献   

14.
Dwivedi  Bhola  Mohan  Anita  Thomas  Roger 《Solar physics》1998,180(1-2):157-178
The EUV spectrum of a solar active region observed by SERTS-89 is used to estimate physical parameters such as electron density, elemental abundance and inhomogeneity in the emitting source. A total of 13 ions, namely, Neiv-vi, Mgv-ix, Sivii-x and Sx, are studied in the SERTS spectral range 170-450 Ú, providing plasma diagnostics at temperatures between105 –106 K. Attention is called to results derived from ion pairs of different elements that are formed over similar temperature regimes, which allow special checks on the standard assumptions of spectral analyses. Some EUV lines, not originally reported in the SERTS-89 spectrum, are shown to have measureable intensities and are indicated for future observations.  相似文献   

15.
A direct method for determining electron densities from emission line intensities of ions in the beryllium isoelectronic sequence is described and then applied to the analysis of extreme ultraviolet Ciii and Ov spectra from both quiet and active areas in the solar transition region. The results are consistent with a value of N e T e = 6 × 1014 cm-3K for the quiet Sun at temperatures of 5 × 104 to 3 × 105K. Electron densities are approximately five times greater in active regions than in the quiet Sun.  相似文献   

16.
The spatial fine structure of the solar corona as observed in the EUV line Fexv is compared with the occurrence of major type I metric noise storms. In all cases, strong changes in the loop structure of the corona are observed. On the disk, these coronal changes are correlated to the emergence of new magnetic flux in the vicinity of existing large active regions. The reverse is demonstrated: during noise storm free periods no coronal changes can be observed. Noise storms at the limb seem to originate in open field configurations over active regions. In all cases, reconnection of coronal magnetic fields over large distances are the cause of noise storms rather than changes of magnetic fields within an active region. Noise storms disappear or are weak at the limb because of foreground absorption in chains of active regions. The observed intensities of active region loops at the limb show that a density of 1.3 × 109 cm?3 which corresponds to a plasma frequency of 100 MHz can occur over a wide variety of altitudes because active region loops are not in hydrostatic equilibrium.  相似文献   

17.
The observation of extreme ultraviolet (EUV) emission lines of Fe ix through Fe xvi made by Orbiting Solar Observatory-1 are discussed and applied to a study of the solar corona above active regions. Ultraviolet and radio emission are determined and compared for several levels of activity classified according to the type of sunspot group associated with the active region. Both radio emission and line radiation from Fe xvi, the highest stage of ionization of Fe observed, are observed to increase rapidly with the onset of activity and are most intense over an E-spot group early in the lifetime of the active region. As activity diminishes, radiation from Fe xv and Fe xvi becomes relatively more prominent. The observations imply that the coronal temperature reaches a maximum during the period of highest activity, as indicated by sunspot-group complexity and the occurrence of chromospheric flares. A maximum coronal electron temperature of 4.0 × 106 °K is estimated when taking into account the mechanism of dielectronic recombination. Concurrently, the average coronal electron density increases by a factor of 10–12. Both electron temperature and density decrease as activity subsides. The coronal temperature above the remaining Ca ii plage is estimated to be 2.5–3.0 × 106 °K after flare activity has ceased and sunspots have disappeared.  相似文献   

18.
Scanning spectrometer measurements in the range 1310–270 Å, observed from the satellite OSO 3, are reported for the solar flare of 2114 UT March 27, 1967. This flare was a long lasting sequence of bursts with EUV spectra consisting of enhanced lines and recombination continua normally emitted from the chromosphere and chromosphere-corona transition region, with unusually small increases in lines normally emited from the corona. An EUV flare spectrum is presented and suggested as one example for interpreting broadband observations of EUV bursts. Any broadband continuum other than known recombination continua contributed less than 6 % of the meassured line and hydrogen recombination continua in the range 270–1310 Å. The ratio of photon flux of Ciii 1176 Å to that of Ciii 977 Å was 0.86, which suggests an ambient density in the region of emission greater than 1012 cm-3 at temperatures near 60000 K.  相似文献   

19.
Ion emission line intensities between 1170 and 1700 Å allow one to determine the differential emission measure (DEM) and electron pressure of the plasma in the solar transition region (TR). These line intensities together with their Doppler shifts and line widths are measured simultaneously for the first time above a sunsport from data obtained with the NRL High Resolution Telescope and Spectrograph with 0.06 Å spectral and 1 spatial resolution.The Doppler shifts show both subsonic and supersonic flow in the same line of sight over the umbra. The temperature structure for 40 resolution elements in the sunspot umbra and penumbra is derived from the DEM and the observed electron pressures.Extrapolation of the emission measure curves supports the previous EUV and X-ray observations that coronal plasma above sunspots with T e>106 K is reduced while emission from TR plasma between 2×105 and 106 K is greatly enhanced relative to quiet or active regions. This enhancement shifts the minimum of the DEM to lower temperatures and increases the slope at 2×105 K by a factor of two.New pressure diagnostics using the emission line intensity ratios of C iv to N iv are presented, and applied to the data.The energy balance in the TR for the sunspot umbra is dominated by radiative losses from the large amount of TR plasma.An estimate of the energy budget shows that an energy input is required to balance the radiative energy losses above the umbra. The observed divergence of the enthalpy flux for the umbral downflows can balance these radiative losses for T e between 30000 and 200 000 K.A typical umbral model of T e versus reduced mass column density is compared with one for chromospheric temperatures determined from the Ca H and K lines.Institute of Theoretical Astrophysics, University of Oslo, Norway.  相似文献   

20.
Yurchyshyn  Vasyl B.  Wang  Haimin 《Solar physics》2001,202(2):309-318
In this paper we study the evolution of magnetic fields of a 1F/2.4C solar flare and following magnetic flux cancellation. The data are Big Bear Solar Observatory and SOHO/MDI observations of active region NOAA 8375. The active region produced a multitude of subflares, many of them being clustered along the moat boundary in the area with mixed polarity magnetic fields. The study indicates a possible connection between the flare and the flux cancellation. The cancellation rate, defined from the data, was found to be 3×1019 Mx h–1. We observed strong upward directed plasma flows at the cancellation site. Suggesting that the cancellation is a result of reconnection process, we also found a reconnection rate of 0.5 km s–1, which is a significant fraction of Alfvén speed. The reconnection rate indicates a regime of fast photospheric reconnection happening during the cancellation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号