首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The formation and evolution of tidal platforms are controlled by the feedbacks between hydrodynamics, geomorphology, vegetation, and sediment transport. Previous work mainly addresses dynamics at the scale of individual marsh platforms. Here, we develop a process-based model to investigate salt marsh depositional/erosional dynamics and resilience to environmental change at the scale of tidal basins. We evaluate how inputs of water and sediment from river and ocean sources interact, how losses of sediment to the ocean depend on this interaction, and how erosional/depositional dynamics are coupled to these exchanges. Model experiments consider a wide range of watershed, basin, and oceanic characteristics, represented by river discharge and suspended sediment concentration, basin dimensions, tidal range, and ocean sediment concentration. In some scenarios, the vertical accretion of a tidal flat can be greater than the rate of sea level rise. Under these conditions, vertical depositional dynamics can lead to transitions between tidal flat and salt marsh equilibrium states. This type of transition occurs much more rapidly than transitions occurring through horizontal marsh expansion or retreat. In addition, our analyses reveal that river inputs can affect the existence and extent of marsh/tidal flat equilibria by both directly providing suspended sediment (favoring marshes) and by modulating water exchanges with the ocean, thereby indirectly affecting the ocean sediment input to the system (favoring either marshes or tidal flats depending on the ratio of the river and ocean water inputs and their sediment concentrations). The model proposed has the goal of clarifying the roles of the main dynamic processes at play, rather than of predicting the evolution of a particular tidal system. Our model results most directly reflect micro- and meso-tidal environments but also have implications for macro-tidal settings. The model-based analyses presented extend our theoretical understanding of marsh dynamics to a greater range of intertidal environments. © 2020 John Wiley & Sons, Ltd.  相似文献   

2.
Salt marshes are ubiquitous features of the tidal landscape governed by mutual feedbacks among processes of physical and biological nature. Improving our understanding of these feedbacks and of their effects on tidal geomorphological and ecological dynamics is a critical step to address issues related to salt-marsh conservation and response to changes in the environmental forcing. In particular, the spatial variation of organic and inorganic soil production processes at the marsh scale, a key piece of information to understand marsh responses to a changing climate, remains virtually unexplored. In order to characterize the relative importance of organic vs. inorganic deposition as a function of space, we collected 33 shallow soil sediment samples along three transects in the San Felice and Rigà salt marshes located in the Venice lagoon, Italy. The amount of organic matter in each sample was evaluated using Loss On Ignition (LOI), a hydrogen peroxide (H2O2) treatment, and a sodium hypochlorite (NaClO) treatment following the H2O2 treatment. The grain size distribution of the inorganic fraction was determined using laser diffraction techniques. Our study marshes exhibit a weakly concave-up profile, with maximum elevations and coarser inorganic grains along their edges. The amount of organic and inorganic matter content in the samples varies with the distance from the marsh edge and is very sensitive to the specific analysis method adopted. The use of a H2O2+NaClO treatment yields an organic matter density value which is more than double the value obtained from LOI. Overall, inorganic contributions to soil formation are greatest near the marsh edges, whereas organic soil production is the main contributor to soil accretion in the inner marsh. We interpret this pattern by considering that while plant biomass productivity is generally lower in the inner part of the marsh, organic soil decomposition rates are highest in the better aerated edge soils. Hence the higher inorganic soil content near the edge is due to the preferential deposition of inorganic sediment from the adjacent creek, and to the rapid decomposition of the relatively large biomass production. The higher organic matter content in the inner part of the marsh results from the small amounts of suspended sediment that makes it to the inner marsh, and to the low decomposition rate which more than compensates for the lower biomass productivity in the low-lying inner zones. Finally, the average soil organic carbon density from the LOI measurements is estimated to be 0.044 g C cm−3. The corresponding average carbon accumulation rate for the San Felice and Rigà salt marshes, 132 g C m−2 yr−1, highlights the considerable carbon stock and sequestration rate associated with coastal salt marshes.  相似文献   

3.
Salt marshes deliver vital ecosystem services by providing habitats, storing pollutants and atmospheric carbon, and reducing flood and erosion risk in the coastal hinterland. Net losses in salt marsh areas, both modelled globally and measured regionally, are therefore of concern. Amongst other controls, the persistence of salt marshes in any one location depends on the ability of their substrates to resist hydrodynamic forcing at the marsh front, along creek margins and on the vegetated surface. Where relative sea level is rising, marsh elevation must keep pace with sea-level rise and landward expansion may be required to compensate for areal loss at exposed margins. This paper reviews current understanding of marsh substrate resistance to the near-instantaneous (seconds to hours) forcing induced by hydrodynamic processes. It outlines how variability in substrate properties may affect marsh substrate stability, explores current understanding of the interactions between substrate properties and erosion processes, and how the cumulative impact of these interactions may affect marsh stability over annual to decadal timescales. Whilst important advances have been made in understanding how specific soil properties affect near-instantaneous marsh substrate stability, less is known about how these properties interact and alter bulk substrate resistance to hydrodynamic forcing. Future research requires a more systematic approach to quantifying biological and sedimentological marsh substrate properties. These properties must then be linked to specific observable erosion processes, particularly at the marsh front and along creek banks. A better understanding of the intrinsic dynamics and processes acting on, and within, salt marsh substrates will facilitate improved prediction of marsh evolution under future hydrodynamic forcing scenarios. Notwithstanding the additional complications that arise from morphodynamic feedbacks, this would allow us to more accurately model the future potential protection from flooding and erosion afforded by marshes, while also increasing the effectiveness of salt marsh restoration and recreation schemes. © 2020 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd  相似文献   

4.
Many tidal marsh surfaces feature water-filled depressions, known as salt pans (shallow) or ponds (deeper). In the Great Marshes at Barnstable, Cape Cod, pond formation is an active process. We hypothesize that degradation of organic matter by sulphate-reducing bacteria in these peat-rich marsh deposits is the primary cause of pan and pond formation. Sulphate reduction below an actively developing pond is probably enhanced by higher temperature and salinity of the pond water. Computer simulation suggests that ponds with similar characteristics to those in the Barnstable marshes may develop by sulphate reduction. Necessary conditions are sufficiently deep percolation and diffusion of sulphate into the underlying marsh deposits, and a high decomposition rate stimulated by high water temperatures in the ponds. In areas with a high density of ponds, drainage of the ponds by headward erosion of tidal creeks may cause rapid disintegration of the marsh surface. © 1998 John Wiley & Sons, Ltd.  相似文献   

5.
This paper provides a detailed study on the sedimentation patterns and the recent morphodynamic evolution affecting the macro-tidal salt marshes located west of the Mont-Saint-Michel (France). Twenty-two stations along three transects on the marshes were seasonally monitored for marsh surface level variations from 1999 to 2005, using a sediment erosion bar. The corresponding erosion/accretion rates were obtained together with data on topography, vegetation cover, and grain size of surface sediment. To examine the mechanisms contributing to the salt marsh sedimentation, the data and their evolution were treated with respect to tides, relative mean regional sea level, and wind speed/frequency variations.From 1999 to 2005, the marsh was globally accreting (from 3.45 to 38.11 mm yr−1 in the low marsh, up to 4.91 mm yr−1 in the middle marsh, and up to 1.35 mm yr−1 in the high marsh), while the study was conducted during a window of decreasing trend in mean regional sea level (−2.45 mm yr−1 according to regional-averaged time series). These sedimentation rates are one of the highest recorded worldwide; however, the sedimentation was not found to be continuous over the period in question. This pattern is illustrated by the strong extension of the marshes from 1999 to 2002, and the relative stability observed from 2003 to 2005. The imported and reworked sediments are trapped and fixed by the dense vegetation (Puccinellia maritima, Halimione portulacoides), inducing the general seaward extension of the marshes. The processes governing sediment budget (accretion/erosion) show annual, seasonal, and spatial variability on the marsh. Spatial variations display contrasted patterns of erosion/sedimentation between the low, middle, and high marsh, and between the different transects. These patterns are a result of distance from sediment sources, strong heterogeneity in vegetation cover (human induced or not), and contrasting topographic and micro-topographic characteristics. The higher accretion rates are observed in distal settings in the low marsh, and strongly decrease toward the middle and high marsh. This evolution results from a decrease in accommodation space/water column thickness, and frequency of inundation coupled with an increase in station elevation, but also from the cumulated effects of vegetation cover and micro-topography. The vegetation cover of the low and middle marsh enhance the settling and fixing of fine sediments imported through tides or dispersed by flood and ebb currents.The seasonal evolution of the marshes is marked by contrasting effects of water storage in the sediment. The overall seasonal sediment budget is controlled by the variation of the frequency of inundation relative to tidal range and marshes topography. Autumns are influenced by the tide (equinoxes), relative mean regional sea level, and variations in wind speed/frequency. Winter wind speed and frequency in relation with tidal variations appear to be the main parameters regulating winter marsh evolution. Summers are predominantly under the influence of local variations in water storage (desiccation) while external parameters generally display a low influence. Although it is not governed by any one parameter, springtime sediment budget seems to result from strong interaction between the above-cited parameters, despite the significant frequency of inundation (equinoxes).  相似文献   

6.
An experimental study of temperature cycles and the heat budget in the Duplin River, a tidal creek bordered by extensive intertidal salt marshes, was carried out in late summer of 2003 and spring of 2004 near Sapelo Island on the central Georgia coast in the southeastern US. Three water masses are identified with differing temperature and salinity regimes, the characteristics of which are dictated by channel morphology, tidal communication with the neighboring sound, ground water hydrology, the extent of local intertidal salt marshes and side channels and the spring–neap tidal cycle (which controls both energetic mixing and, presumably, ground water input). For the first experiment, heat budgets are constructed for the upper (warmer) and lower (cooler) areas of the Duplin River showing the diminishing importance of tidal advection away from the mouth of the creek along with the concomitant increase in the importance of both direct atmospheric fluxes and of interactions with the marsh and side creeks. The second experiment, in the spring of 2004, reexamines the heat budget on seasonal and daily averaged scales revealing the decreased importance of advective fluxes relative to direct atmospheric fluxes on this scale but the constant importance of marsh/creek interactions regardless of time scale or season. Short period temperature fluctuations which affect larval development are examined and analogies are drawn to use heat to understand the marsh as a source of sediment, carbon and other nutrients.  相似文献   

7.
The aim of this study is to quantify the long-term (54 years) rates of marsh extension and retreat at two sites in the Westerschelde Estuary, SW Netherlands. Nine sets of aerial photographs were obtained for each of the two salt marsh sites, Zuidgors and Waarde, taken at various times between 1944 and 1998. The seaward edges of the marshes were digitised from rectified images after the photographs had been scanned and georegistered to the Dutch National Grid. Comparison of the extents of the marshes at these nine time points revealed that the areas of both marshes had fluctuated during these 54 years with periods of both extension and retreat of the seaward marsh edges. These periods of extension and retreat appeared to be approximately synchronised until the 1990s, with mean changes in position of marsh front ranging from −7.92 to 6.04 m a−1.The rate of landward retreat and seaward extension of the marsh front is shown to be related to an increase in the tidal prism brought about by dredging operations to maintain or increase the depth of the main navigable channel of the estuary. The consequent greater frequency with which the high tides reach the edge of the fringing marshes increases the risk of erosion. Strong westerly winds may also be a factor in increasing erosion. No relationship between the volume of shipping traffic using the estuary and marsh erosion was found.  相似文献   

8.
Because of their profound influence on water movement and nutrient cycling in salt marshes, the two key physical properties of hydraulic conductivity and compressibility were studied in the Great Sippewissett Marsh and in the Ebben Creek Marsh in Massachusetts. Hydraulic conductivity was the most variable property: most frequently observed conductivities were of the order of 10?3 cm s?1 in both marshes, but extremes ranged from about 10?1 to 10?5 cm s?1. Compressibility was much less variable, and contributed of the order of 10?3 cm?1 to the specific storativity of marsh sediment, making compression a major mechanism for changes in water storage in the sediment. Surface sediments frequently exhibited below-average conductivity, in contrast to freshwater bog peats which are usually most conductive at the surface. These measured properties may be applied to estimate the importance of many critical processes, such as the extent of infiltration occurring on the marsh surface, the hydrologic influence of the tidally varying creeks, and the hydrologic response to spring-neap tidal cycles.  相似文献   

9.
Dissolved organic matter (DOM) is outwelled from highly productive salt marshes, but its sources and fates are unclear. To examine common salt marsh plants as sources of coastal DOM, two dominant salt marsh vascular plants Spartina alterniflora and Juncus roemarianus, and two major coastal seagrasses Syringodium filiforme and Halodule wrightii, were collected from a Florida salt marsh and studied using laboratory incubation experiments. We investigated the leaching dynamics of dissolved organic carbon (DOC), total dissolved nitrogen (TDN), and chromophoric dissolved organic matter (CDOM) from these plants, in conjunction with our field investigations of the sources and outwelling of DOM from Florida salt marshes. The leaching of DOM and CDOM from the plants was a rapid process, and leaching rates were 65–288 µM/g dry weight/day for DOC and 3.8–16 µM/g dry weight/day for TDN from different plants in the bacteria-inhibited incubations. DOC was proportional to TDN in the leachates, but the quantity of C and N leached was dependent on the species and growth stage of the plants. At the end of the 25-day experiments, 5.4–23 % and 10–45 % of solid phase C and N were released into DOC and TDN pools, respectively. Bacteria played an important role during the leaching process. The majority of DOC and TDN leached from marsh plants and seagrasses was labile and highly biodegradable with 56–90 % of the leached DOC and 44–72 % of the leached TDN being decomposed at the end of the experiments. The fluorescence measurements of CDOM indicate that organic matter leached from marsh plants and seagrasses contained mainly protein-like DOM which was degraded rapidly by bacteria. Our study suggests that leaching of DOM from salt marsh plants and seagrasses provide not only major sources of DOC, TDN, and CDOM that affect many biogeochemical processes, but also as important food sources to microbial communities in the marsh and adjacent coastal waters.  相似文献   

10.
Modeling efforts have considerably improved our understanding on the chief processes that govern the evolution of salt marshes under climate change. Yet the spatial dynamic response of salt marshes to sea-level rise that results from the interactions between the tidal landforms of interest and the presence of bio-geomorphic features has not been addressed explicitly. Accordingly, we use a modeling framework that integrates the co-evolution of the marsh platform and the embedded tidal networks to study sea-level rise effects on spatial sediment and vegetation dynamics in microtidal salt marshes considering different ecological scenarios. The analysis unveils mechanisms that drive spatial variations in sedimentation rates in ways that increase marsh resilience to rising sea-levels. In particular, marsh survival is related to the effectiveness of transport of sediments toward the interior marshland. This study hints at additional dynamics related to the modulation of channel cross-sections affecting sediment advection in the channels and subsequent delivery in the inner marsh, which should be definitely considered in the study of marsh adaptability to sea-level rise and posterior management.  相似文献   

11.
Recreation or restoration of salt marsh through the deliberate removal of flood defences (managed realignment or de‐embankment) is a common practice across Europe and the USA, with potential to enhance delivery of ecosystem services. However, recent research suggests that physical, chemical and ecological processes may be impaired in recreated sites as a result of the modified morphology, sediment structure and hydrology associated with both the restoration process and historic land use. This paper compares physical sediment properties and subsurface water levels recorded in paired natural and de‐embanked (recreated) salt marshes in SE England. Using a combination of statistical and time‐series modelling, significant differences between the natural and recreated marshes are identified. Sediment properties (bulk density, moisture content and organic content) within each marsh were statistically different and imply that de‐embanked sediments are compacted, which may affect subsurface water movement. Analysis of hydrological time series reveals that the de‐embanked salt marsh is characterized by a damped response to tidal flooding with elevated and less variable water levels. This, combined with analysis of hydrographs and hysteresis patterns over individual tidal cycles, suggests that fast, horizontal near‐surface flows enhanced by the relict land surface may play a greater role in drainage of the de‐embanked salt marsh. The importance of hydrological functioning in governing many important physical and biogeochemical processes in salt marshes suggests any modifications would have significant implications for the delivery of ecosystem services. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
Integrated ebb-aligned drainage systems are a feature of tide-dominated marshes, and are generally regarded as major conduits for material exchange. In north Norfolk, highly unsteady creek flows exhibit well-developed velocity and stress transients which result from the discontinuous nature of the tidal prism and the interaction of shallow water tidal inputs with hydraulically rough vegetated surfaces. Marsh morphological development is governed by a form-process feedback, in the sense that the marsh surface acts as a topographic threshold separating the depositional regime of below-marsh tides from the erosional (ebb-dominated) regime of over-marsh tides. Vertical marsh growth results in increasing intermittency of creek sediment transport. Furthermore, velocity transients are associated with large discharges which must be allowed for in material flux computations. Creek flux measurements are not in themselves sufficient to estimate total material budgets, since a large proportion of tidal exchange may take place via the marsh edge. Such studies should focus instead on direct measurement of marsh surface processes. These findings have relevance beyond this back-barrier setting to marshes of different geometry, occupying a broad range of the tidal energy spectrum.  相似文献   

13.
We sampled nekton, benthic infauna, and sediments in salt marshes of upper Galveston Bay, Texas to examine relationships between habitat use and sediment hydrocarbon concentration. Most marsh sediment samples were contaminated with relatively low concentrations of weathered petroleum hydrocarbons. We found few statistically significant negative relationships between animal density and hydrocarbon concentration (6 of 63 taxa examined using simple linear regression). Hydrocarbon concentration did not contribute significantly to Stepwise Multiple Regression models we used to explore potential relationships between animal densities and environmental parameters; in most cases where hydrocarbon concentration was an important variable in the models, the relationship was positive (i.e., animal densities increased with hydrocarbon concentration). Low hydrocarbon concentrations in sediments of upper Galveston Bay marshes could have contributed to our results either because levels were too low to be toxic or levels were toxic but too low to be detected by most organisms.  相似文献   

14.
Ice rafting is an important secondary sedimentation process that redistributes sediment form tidal flats, channel beds, and ponds to the vegetated marsh surface in northern temperate climates. Source location of ice-rafted sediment is identifiable based on distinct sediment properties. In New England salt marsh systems, ice raft thickness and entrained sediment load vary both during the season and interannually as a function of severity and duration of winter conditions; however, 97% of ice rafts carry measurable sediment loads. Thick rafts move sand or peat up to 100 m from source areas, whereas thinner rafts tend to transport mud still further onto the marsh platform, sometimes reaching the upland border. Based on these observations, we present relationships defining the theoretical sediment-carrying potential of ice rafts as well as empirical parameterizations for ice-rafted sediment with respect to ice volume. Our results suggest that ice-rafting deposits a volume of sediment contributing up to 5% of annual vertical accretion, an important input in a region where rates of vertical accretion barely compensate for sea-level rise. We provide conceptual models of ice-raft formation and sediment entrainment linking these processes to the general geomorphic evolution of northern temperate marshes, which must be understood in light of the modern acceleration in rates of sea-level rise.  相似文献   

15.
内陆盐沼湿地土壤碳氮磷剖面分布的季节动态特征   总被引:9,自引:0,他引:9  
本文以向海湿地为例探讨了内陆盐沼湿地土壤剖面中碳氮磷等生源要素的季节动态变化特征及其影响因素.结果表明,内陆盐沼湿地土壤中有机碳、全氮和全磷含量与土壤深度之间存在显著负相关,在剖面中均表现为由表层向下层其含量不断减少的趋势,且具有明显的季节波动特征,除表层土壤碳氮含量随季节变化呈持续增加外,生源要素剖面分布的季节变化基本表现为先减少后增加的趋势.有机碳、全氮和全磷含量之间关系密切,且三者受土壤粒度的影响都非常显著.土壤pH值仅与土壤有机碳之间存在显著的相关关系,而对全氮和全磷含量的影响则不显著.  相似文献   

16.
Preliminary results of a seasonal study of the pelagic community at a station on the outer edge of the Cornwallis Estuary suggest that the seasonal variation in plankton community respiration (PCR) is related to organic inputs from nearby salt marshes. Annual phytoplankton production is low (<30 g C m−2 y−1) and exhibits a seasonal cycle very different from PCR. There is no indication that resuspension of benthic diatoms is an important energy input to the pelagic system. PCR, however, is quite high and exhibits a seasonal trend similar to the export of salt marsh detritus. Zooplankton densities (5–200 l−1) and biomass (<0.4 g m−3) appear to be much greater than could be supported by phytoplankton alone. The Cornwallis Estuary may be an estuarine system exhibiting a net export of organic matter to nearby offshore waters.  相似文献   

17.
Coastal marsh loss in Louisiana is attributed to plane dieback caused by processes that stress vegetation, and a common landscape pattern is broken marsh that expands at the expense of surrounding unbroken marsh. We tested the hypothesis that vegetation is more stressed in broken marsh than in adjacent unbroken marsh, as indicated by vegetation aboveground biomass, species diversity and soil Eh, on transects that extended from broken marsh to unbroken marsh at Marsh Island, Louisiana. Soil Eh, vegetation above-ground biomass and species diversity did not differ between broken marsh and unbroken marsh, and above-ground biomass was similar to that reported from other marshes. Thus, we rejected the hypothesis that marsh loss is related to vegetation stress. Two factors were related to vegetation vigour: soil drainage and soil bulk density. Surprisingly, significant soil drainage occurred in broken marsh but not in unbroken marsh. Above-ground biomass of the dominant plant, Spartina patens (Aiton) Muhl., was lowest where soil bulk density was less than 0-08 gcm−3, which illustrated the importance of mineral matter accumulation in submerging coastal marshes. The mechanism of marsh loss appeared to be erosion below the living root zone, as indicated by the vertical and often undercut marsh-water interface, and by the separation of sod clasts. This is different from more rapid marsh loss associated with plant stress which we observed in other Louisiana marshes only 135 km away, indicating that marsh loss mechanisms can vary spatially even within a relatively small region.  相似文献   

18.
Marsh soil properties vary drastically across estuarine salinity gradients, which can affect soil strength and, consequently, marsh edge erodibility. Here, we quantify how marsh erosion differs between saline and brackish marshes of the Mississippi Delta. We analyzed long-term (1932–2015) maps of marsh loss and developed an algorithm to distinguish edge erosion from interior loss. We found that the edge erosion rate remains nearly constant at decadal timescales, whereas interior loss varies by more than 100%. On average, roughly half of marsh loss can be attributed to edge erosion, the other half to interior loss. Based on data from 42 cores, brackish marsh soils had a lower bulk density (0.17 vs. 0.27 g/cm3), a higher organic content (43% vs. 26%), a lower shear strength (2.0 vs. 2.5 kPa), and a lower shear strength in the root layer (13.8 vs. 20.7 kPa) than saline marsh soils. We then modified an existing marsh edge erosion model by including a salinity-dependent erodibility. By calibrating the erodibility with the observed retreat rates, we found that the brackish marsh is two to three times more erodible than the saline marshes. Overall, this model advances the ability to simulate estuarine systems as a whole, thus transcending the salinity boundaries often used in compartmentalized marsh models.  相似文献   

19.
Chromophoric dissolved organic matter (CDOM) optical properties were measured in surface and pore waters as a function of depth and distance from an oil well in a southern California salt marsh. Higher fluorescence and absorbances in pore vs. surface waters suggest soil pore water is a reservoir of CDOM in the marsh. Protein-like fluorophores in pore waters at distinct depths corresponded to variations in sulfate depletion and Fe(II) concentrations from anaerobic microbial activity. These variations were supported by fluorescence indexes and are consistent with differences in optical molecular weight and aromaticity indicators. Fluorescence indices were consistent with autochthonous material of aquatic origin in surface waters, with more terrestrial, humified allochthonous material in deeper pore waters. CDOM optical properties were consistent with significantly enhanced microbial activity in regions closest to the oil well, along with a three-dimensional excitation/emission matrix fluorescence spectrum peak attributable to oil, suggesting anaerobic microbial degradation of oil.  相似文献   

20.
In parts of North America and Europe, present and future sedimentary deficits translate into major areal losses of coastal salt marsh. Physically based simulations of medium- to long-term adjustment to accelerated sea-level rise are few, partly due to the difficulty in extrapolating imperfectly understood sedimentation parameters. This paper outlines the implementation and application of a simple one-dimensional mass balance model designed to simulate the vertical adjustment of predominantly minerogenic marsh surfaces to various combinations of sediment supply, tidal levels and regional subsidence. Two aspects of marsh growth are examined, with reference to sites on the macro-tidal north Norfolk coast, U.K.: (i) historical marsh growth under a scenario of effective (long-term) eustatic stability but slow regional subsidence; and (ii) marsh response to various non-linear eustatic rise scenarios for the next century. In contrast to more organogenic North American marshes, sedimentation rates in Norfolk are strongly time-dependent. Where the overall sediment budget is so closely linked to marsh age and relative elevation, some form of numerical simulation offers a preferred means of predicting the impact of accelerated sea-level rise. Simulations performed here show that only the most dramatic eustatic scenarios result in ecological ‘drowning’ and reversion to tidal flat within the conventional 2100 prediction interval. Currently favoured scenarios give rise to accretionary deficits which are clearly sustainable in the short-term, albeit at the expense of increased inundation frequency and consequent changes in the distribution of marsh flora and fauna.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号