首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
第十九届国际地球电磁感应学术讨论会于2008年10月23日~29日在北京召开,这次会议由IAGA及其所属的1-2国际电磁工作委员会主办,会议遵循IUGG“致力于振兴和推广地球和环境研究,并特别注重年轻一代的培养和前沿科学的发展”的宗旨,于2008年10月23日~29日由中国地球物理学会地球电磁专业委员会在北京召开,来自全球48个国家的近600位专家和学者与会。会议总结了两年来地球电磁领域所获得的阶段性成果,讨论了学术界目前关心的地球电磁研究中的热点问题,展示了我国地球电磁科学在资源、环境和地球动力学等领域的应用成果。  相似文献   

3.
4.
5.
No .1EarlyPermianRadiolariansfromBabuOphioliticM啨langeinSoutheasternYunnan .FengQinglai,LiuBenpei.2 7(1) :1- 3.TheEarlyPermianradiolarianswerefoundfromthechertoftheBabuophioliticm啨langeinsoutheasternYunnan .ThisradiolarianassemblageincludesPseu doalbaillellasca…  相似文献   

6.
7.
8.
Xu  Zhiguo  Sun  Lining  Rahman  Mohd Nashriq Abd  Liang  Shanshan  Shi  Jianyu  Li  Hongwei 《Natural Hazards》2022,111(3):2703-2719

A major left-lateral strike-slip Mw7.7 earthquake occurred in the vicinity of the Caribbean Sea on January 28, 2020. As a result, a small-scale tsunami was generated. The properties of the seismogenic source were described using observational data gathered for the earthquake and tsunami, as well as information on the regional tectonic setting. The tsunami was simulated with the COMCOT model and Okada’s dislocation model from finite fault solutions for MW7.7 Caribbean Sea earthquakes published by the United States Geological Survey. The simulation results were compared to tide gauge records to validate whether the seafloor’s vertical displacement generated by the strike-slip fault caused a small-scale tsunami. We conducted a spectral analysis of the tsunami to better understand the characteristics of tsunami records. The tsunami simulation results showed that the co-seismic vertical displacement caused by a strike-slip MW7.7 earthquake could have contributed to the small-scale tsunami, but the anomalously large high-frequency tsunami waves recorded by the George Town tide gauge 11 min after the earthquake were unrelated to the earthquake-generated tsunami. According to the spectrum analysis, the predominant period of noticeable high-frequency tsunami waves recorded by the George Town tide gauge occurred only two minutes after the earthquake. This indicates that the source of the small-scale tsunami was close to the George Town station and the possible tsunami source was 150 km away from George Town station. These facts suggest that a submarine landslide was caused by the strike-slip earthquake. The comprehensive analysis showed that the small-scale tsunami was not caused solely by co-seismic seafloor deformation from the strike-slip event but that an earthquake-triggered submarine landslide was the primary cause. Therefore, the combined impact of two sources led to the small-scale tsunami.

  相似文献   

9.
10.
11.
The groundwater leve in the Tokyo area had declined to about 60 m below the surface because of excess withdrawal of groundwater from various aquifers. Many construction workers died due to oxygen deficiency at construction sites from 1960 to 1980, the period of decreasing groundwater level. The compressed air in pneumatic foundation construction sites passed easily through the aquifer, and the oxygen in it was consumed by ferrous ions oxidizing to ferric ions. During periods of high barometric pressure, atmospheric air penetrates into the strata and it is deoxygenated there. Suffocation occurred not only at construction sites in underground excavations, but also in residences in Tokyo. Such acidents have become less frequent with recovery of the pore-water pressure in aquifers, which has accompanied the recovery of the groundwater level since 1972.With the recovery of the pore-water pressure and the groundwater level in the aquifer, fires and explosions resulting from gushes of methane have occurred in Tokyo lowlands since 1973. These blow-off gases are classified into two types: Kameido and Asakusa.The gas of the Kameido type originates from the Kazusa Group and migrates into upper alluvial deposits or Pleistocene sediments because of the recovery of pore-water pressure in the Kazusa Group. The gas of the Asakusa type formed from the air that penetrated the aquifers during the period of low groundwater level. Methane was produced by the depletion of oxygen accumulated in alluvial deposits and Pleistocene sediments. This gas blows off through wells in alluvial deposits and Pleistocene sediments at times of low barometric pressure. Accidents of the Asakusa type will not happen when the groundwater level and pore-water pressure in alluvial and Pleistocene sediments is restored to previous levels.  相似文献   

12.
13.
14.
15.
16.
17.
18.
19.
The earthquakes and tsunami on November 15, 2006 and January 13, 2007, near Simushir Island are described. Long-term and short-term precursors of the phenomena are discussed. A joint analysis of the seismological and geodetic data provided reliable interpretation of the source mechanisms of the earthquakes. The actions of the tsunami warning personnel are analyzed. Extensive experimental data on the tsunami occurrence at different sites of the Pacific Ocean are presented. The tsunami of November 15, 2006, was numerically modeled using coseismic vertical displacements of the ocean bottom calculated from GPS data. The observed and calculated data on the maximal tsunami run up are compared.  相似文献   

20.
Previous studies and borehole temperature measurements suggest that subsurface temperature distribution on the west side of Tokyo Bay (from Tokyo to Yokohama) is higher than that of the east side (Chiba side). To understand the groundwater flow and other factors which may contribute to the subsurface temperature discrepancy such as geological setting in the study area, groundwater temperature profiles were measured in 119 boreholes around the Tokyo Bay from 2002 to 2007. The data were analyzed and compared with previous studies. Horizontal distribution of subsurface temperature at the depths of −50 and −100 m was made to show the distribution of thermal regime. A cross-section across the bay of Tokyo was made to see the isothermal lines and distribution of hydraulic heads in a vertical perspective. These results show that the highest subsurface temperature zone is in the Tokyo area, along the river valley. Subsurface temperature at the depth of 50- and 100-m below sea level in the western part of the bay is comparatively higher than its eastern side at the same elevation and distance from the bay. This fact suggests that there is a regional groundwater flow system in the area and it is strongly affected by the geological structure, particularly buried valley systems of the bay during the Paleo-Tokyo River and the topographical driving force which is the result of the different elevation of recharge areas. Groundwater discharge is concentrated along the buried valley of Paleo-Tokyo River.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号