首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Soil interstitial waters and minerals were collected and analyzed to evaluate the influence of acid deposition on Al chemistry in the soil environment of the Green Lakes Valley Front Range, Colorado. The soil solutions were subjected to a series of batch Al experiments followed by computer modeling to separate the labile from the nonlabile Al, and to estimate the activity of Al3+. The Al solubility in the interstitial waters is complex and is controlled by organic solutes, H4SiO4, and pH. The pH and concentrations of SO2−4 do not correlate with Al concentrations. The chemical equilibria of Al are controlled by amorphous aluminosilicate Al(OH)3(1−x) SiO2x. Studies of mineralogy and soil water chemistry provide a useful combination to evaluate and predict the chemical processes of a soil environment.  相似文献   

2.
The aim of this study is to estimate the C loss from forest soils due to the production of dissolved organic C (DOC) along a north–south European transect. Dissolved organic matter (DOM) was extracted from the forest soils incubated at a controlled temperature and water content. Soils were sampled from forest plots from Sweden to Italy. The plots represent monocultures of spruce, pine and beech and three selected chronosequences of spruce and beech spanning a range of mean annual temperature from 2 to 14 °C. The DOM was characterized by its DOC/DON ratio and the C isotope composition δ13C. The DOC/DON ratio of DOM varied from 25 to 15 after 16 days of incubation and it decreased to between 16 and 10 after 126 days. At the beginning of incubation the δ13C values of DOC were 1‰ or 2‰ less negative than incubated soils. At the end of the experiment δ13C of DOC were the same as soil values. In addition to DOC production heterotrophic respiration and N mineralization were measured on the incubated soils. The DON production rates decreased from 30 to 5 μgN gC−1 d−1 after 16 days of incubation to constant values from 5 to 2 μgN gC−1 d−1 after 126 days at the end of experiment. The DIN production rates were nearly constant during the experiments with values ranging from 20 to 4 μgN gC−1 d−1. DOC production followed first-order reaction kinetics and heterotrophic respiration followed zero-order reaction kinetics. Kinetic analysis of the experimental data yielded mean annual DOC and respiration productions with respect to sites. Mean annual estimates of DOC flux varied from 3 to 29 g of C m−2 (1–19 mg C g−1 of available C), corresponding to mean DOC concentrations from 2 to 85 mg C L−1.  相似文献   

3.
Studies were conducted in conjunction with the Integrated Lake-Watershed Acidification Study (ILWAS) to examine the chemistry and leaching patterns of soluble humic substances in forested watersheds of the Adirondack region. During the summer growing season, mean dissolved organic carbon (DOC) concentrations in the ILWAS watersheds ranged from 21–32 mg C l?1 in O/A horizon leachates, from 5–7 mg C l?1 in B horizon leachates, from 2–4 mg C l?1 in groundwater solutions, from 6–8 mg C l?1 in first order streams, from 3–8 mg C l?1 in lake inlets, and from 2–7 mg C l?1 in lake outlets. During the winter, mean DOC concentrations dropped significantly in the upper soil profile. Soil solutions from mixed and coniferous stands contained as much as twice the DOC concentration of lysimeter samples from hardwood stands. Results of DOC fractionation analysis showed that hydrophobia and hydrophilic acids dominate the organic solute composition of natural waters in these watersheds. Charge balance and titration results indicated that the general acid-base characteristics of the dissolved humic mixture in these natural waters can be accounted for by a model organic acid having an averagepKa of 3.85, an average charge density of 4–5 μeq mg?1 C at ambient pH, and a total of 6–7 meq COOH per gram carbon.  相似文献   

4.
Information about the chemical electron accepting capacity (EAC) of dissolved organic matter (DOM) is scarce owing to a lack of applicable methods. We quantified the electron transfer from metallic Zn to natural DOM in batch experiments at DOC concentrations of 10–100 mg-C L− 1 and related it to spectroscopic information obtained from UV-, synchronous fluorescence, and FTIR- spectroscopy. The electron donating capacity of DOM and pre-reduced DOM was investigated using Fe(CN)63 as electron acceptor. Presence of DOM resulted in release of dissolved Zn, consumption of protons, and slower release of hydrogen compared to reaction of metallic Zn with water at pH 6.5. Comparison with reaction stoichiometry confirmed that DOM accepted electrons from metallic Zn. The release of dissolved Zn was dependent on pH, DOC concentration, ionic strength, and organic matter properties. The reaction appeared to be completed within about 24 h and was characterized by pseudo first order kinetics with rate constants of 0.5 to 0.8 h− 1. EAC per mass unit of carbon ranged from 0.22 mmol g− 1 C to 12.6 mmol g− 1 C. Depending on the DOM, a calculated 28–127% of the electrons transferred from metallic Zn to DOM could be subsequently donated to Fe(CN)63. EAC decreased with DOC concentration, and increased with aromaticity, carboxyl, and phenolic content of the DOM. The results indicate that an operationally defined EAC of natural DOM can be quantified by reaction with metallic Zn and that DOM properties control the electron transfer. Shortcomings of the method are the coagulation and precipitation of DOM during the experiment and the production of hydrogen and dissolved Zn by reaction of metallic Zn with water, which may influence the determined EAC.  相似文献   

5.
The amount of Cu and Fe associated with humic acids was estimated in five sediment cores from a tropical coastal lagoon (Piratininga Lagoon, Rio de Janeiro, Brazil). Core samples were analysed for humic acid contents, total Fe and Cu content. Fe and Cu associated with humic acids were also measured. Results show amounts of humic acids ranging from 0.7 to 21.7% of the dry weight of sediment (average 4.6%, standard deviation 4.4%). Concentrations of Fe and Cu ranged from 0.3 to 6.0% (average 2.2%, S.D. 1.2%) and from <1.0 to 65.0 μg g−1 (average 28.6 μg g−1, S.D. 16.4 μg g−1), respectively. The results of strongly bound metals show that while humic acids are the main carrier for Cu, Fe does not seems to be significantly associated with this organic matter.  相似文献   

6.
The present study aims to model iron speciation when interacting with natural organic matter. Experimental data for iron speciation were achieved with insolubilized humic acid as an organic matter analogue for 1.8 × 10− 3 M and 1.8 × 10− 4 M iron concentrations and 2–5 pH range. Combining EPR spectroscopy and chemical analysis allowed us to fit NICA-Donnan model parameters for both organic complexation of iron and oxides precipitation.  相似文献   

7.
A reversal of the conventional carbon isotope relationship, “terrestrial-lighter-than-marine” organic matter, has been documented for two Pennsylvanian (Desmoinesian) cyclothemic sequence cores from the Midcontinent craton of the central United States. “Deep” water organic-rich phosphatic black shales contain a significant proportion of algal-derived marine organic matter (as indicated by organic petrography, Rock-Eval hydrogen index and ratios) and display the lightest δ13C-values (max −27.80‰ for kerogen) while shallower water, more oxic facies (e.g. fossiliferous shales and limestones) contain dominantly terrestrial organic matter and have heavier δ13Ckerogen-values (to −22.87‰ for a stratigraphically adjacent coal). δ13C-values for extract fractions were relatively homogeneous for the organic-rich black shales with the lightest fraction (often the aromatics) being only 1‰, or less, more negative than the kerogen. Differences between extract fractions and kerogens were much greater for oxic facies and coals (e.g. saturates nearly 5‰ lighter than the kerogen).A proposed depositional model for the black shales calls upon a large influx of nutrients and humic detritus to the marine environment from the laterally adjacent, extremely widespread Pennsylvanian (peat) swamps which were rapidly submerged by transgression of the epicontinental seas. In this setting marine organisms drew upon a CO2-reservoir which was in a state of disequilibrium with the atmosphere, being affected by isotopically light “recycled-CO2” derived from the decomposition of peaty material in the water column and possibly from the anoxic diagenesis of organic matter in the sediments.  相似文献   

8.
Variations in the carbon isotopic composition (δ13C) of pristane, phytane, n-heptadecane (n-C17), C29 ααα 20R sterane, and aryl isoprenoids provide evidence for a diverse community of algal and bacterial organisms in organic matter of the Upper Ordovician Maquoketa Group of the Illinois Basin. Carbon isotopic compositions of pristane and phytane from the Maquoketa are positively covariant (r = 0.964), suggesting that these compounds were derived from a common source inferred to be primary producers (algae) from the oxygenated photic zone. A variation of 3‰ in δ13C values (−31 to −34‰) for pristane and phytane indicates that primary producers utilized variable sources of inorganic carbon. Average isotopic compositions of n-C17 (−32‰) and C29 ααα 20R sterane (−31‰) are enriched in 13C relative to pristane and phytane (−33‰) suggesting that these compounds were derived from a subordinate group of primary producers, most likely eukaryotic algae. In addition, a substantial enrichment of 13C in aryl isoprenoids (−14 to −18‰) and the identification of tetramethylbenzene in pyrolytic products of Maquoketa kerogen indicate a contribution from photosynthetic green sulfur bacteria to the organic matter. The presence of anaerobic, photosynthetic green sulfur bacteria in organic matter of the Maquoketa indicates that anoxic conditions extended into the photic zone.The δ13C of n-alkanes and the identification of an unusual suite of straight-chain n-alkylarenes in the m/z 133 fragmentograms of Ordovician rocks rich in Gloeocapsomorpha prisca (G. prisca) indicate that G. prisca did not contribute to the organic matter of the Maquoketa Group.  相似文献   

9.
Historic Hg mining in the Cache Creek watershed in the Central California Coast Range has contributed to the downstream transport of Hg to the San Francisco Bay-Delta. Different aspects of Hg mobilization in soils, including pedogenesis, fluvial redistribution of sediment, volatilization and eolian transport were considered. The greatest soil concentrations (>30 mg Hg kg−1) in Cache Creek are associated with mineralized serpentinite, the host rock for Hg deposits. Upland soils with non-mineralized serpentine and sedimentary parent material also had elevated concentrations (0.9–3.7 mg Hg kg−1) relative to the average concentration in the region and throughout the conterminous United States (0.06 mg kg−1). Erosion of soil and destabilized rock and mobilization of tailings and calcines into surrounding streams have contributed to Hg-rich alluvial soil forming in wetlands and floodplains. The concentration of Hg in floodplain sediment shows sediment dispersion from low-order catchments (5.6–9.6 mg Hg kg−1 in Sulphur Creek; 0.5–61 mg Hg kg−1 in Davis Creek) to Cache Creek (0.1–0.4 mg Hg kg−1). These sediments, deposited onto the floodplain during high-flow storm events, yield elevated Hg concentrations (0.2–55 mg Hg kg−1) in alluvial soils in upland watersheds. Alluvial soils within the Cache Creek watershed accumulate Hg from upstream mining areas, with concentrations between 0.06 and 0.22 mg Hg kg−1 measured in soils 90 km downstream from Hg mining areas. Alluvial soils have accumulated Hg released through historic mining activities, remobilizing this Hg to streams as the soils erode.  相似文献   

10.
Carbon biogeochemistry of the Betsiboka estuary (north-western Madagascar)   总被引:1,自引:0,他引:1  
Madagascar’s largest estuary (Betsiboka) was sampled along the salinity gradient during the dry season to document the distribution and sources of particulate and dissolved organic carbon (POC, DOC) as well as dissolved inorganic carbon (DIC). The Betsiboka was characterized by a relatively high suspended matter load, and in line with this, low DOC/POC ratios (0.4–2.5). The partial pressure of CO2 (pCO2) was generally above atmospheric equilibrium (270–1530 ppm), but relatively low in comparison to other tropical and subtropical estuaries, resulting in low average CO2 emission to the atmosphere (9.1 ± 14.2 mmol m−2 d−1). Despite the fact that C4 vegetation is reported to cover >80% of the catchment area, stable isotope data on DOC and POC suggest that C4 derived material comprises only 30% of both pools in the freshwater zone, increasing to 60–70% and 50–60%, respectively, in the oligohaline zone due to additional lateral inputs. Sediments from intertidal mangroves in the estuary showed low organic carbon concentrations (<1%) and δ13C values (average −19.8‰) consistent with important inputs of riverine imported C4 material. This contribution was reflected in δ13C signatures of bacterial phospholipid derived fatty acids (i + a15:0), suggesting the potential importance of terrestrial organic matter sources for mineralization and secondary production in coastal ecosystems.  相似文献   

11.
High nitrate concentrations, above the WHO guideline of 50 mg l−1, were observed in samples of shallow wells reaching the Yeumbeul suburb (Senegal) area groundwater. This groundwater is exploited by 7000 houses and therefore there are health implications. Correlations between parameters such as nitrate content (NO3) in the groundwater and soil water, the distance between shallow wells and family latrines, and soil water chloride (Cl) and colon bacillus content led to two possible sources of groundwater pollution: first, contamination by non impervious and shallow latrines; and second, the leaching of soil NO3 from waste organic matter carried in groundwater.  相似文献   

12.
Pore waters were collected from a sea-marginal, hypersaline pond in the Sinai and analyzed for dissolved organic carbon (DOC). The pore water DOC values ranged from 121 to 818 mg 1−1 with maxima between 15 and 54 cm deep. These values are some of the highest observed from recent sediments and probably reflect production via abiotic as well as biotic sources.  相似文献   

13.
The purpose of this study was to assess the effect of agricultural practices on the characteristics of soil organic carbon (SOC). The study area is located in the Central Volcanic Belt (Michoacán) in Mexico. The soil is an Acrisol, acidic and rich in clays and sesquioxides. Experimental plots were treated with four different agronomic management systems between 2002 and 2003: traditional, improved traditional, organic and fallow. Each treatment was replicated twice. Samples were taken at depths of 0–10 and 10–20 cm and were subjected to a physical fractionation process by way of particle size. SOC was fractionated into fulvic acids, humic acids and humin. After two years of cultivation, the SOC content increased significantly with the organic management (2.2 mg g−1 at 0–10 cm and 5.8 mg g−1 at 10–20 cm). The C content of the soil fine particle fraction increased with the traditional and organic managements. The organic C and N contents of the silt + clay particle-size fraction were mainly concentrated as humin, indicating that this SOM should be stable and have a low risk of mineralization. The humin C content only decreased significantly under the traditional and fallow treatments. The N content of the humin fraction decreased significantly under the traditional management system (from 69% to 54%), indicating the low sustainability of this soil management. The C/N ratio of the soil increased significantly under all treatments, but mainly under the traditional and organic treatments (from 12.1 and 12.8 to 13.7 and 14.0, respectively). This indicates a decrease in humus quality. In addition, the C/N of the humin increased significantly (from 13.3 and 12.7 to 19.2 and 16.0, respectively).  相似文献   

14.
A soil geochemical survey was conducted in a 27,000-km2 study area of northern California that includes the Sierra Nevada Mountains, the Sacramento Valley, and the northern Coast Range. The results show that soil geochemistry in the Sacramento Valley is controlled primarily by the transport and weathering of parent material from the Coast Range to the west and the Sierra Nevada to the east. Chemically and mineralogically distinctive ultramafic (UM) rocks (e.g. serpentinite) outcrop extensively in the Coast Range and Sierra Nevada. These rocks and the soils derived from them have elevated concentrations of Cr and Ni. Surface soil samples derived from UM rocks of the Sierra Nevada and Coast Range contain 1700–10,000 mg/kg Cr and 1300–3900 mg/kg Ni. Valley soils west of the Sacramento River contain 80–1420 mg/kg Cr and 65–224 mg/kg Ni, reflecting significant contributions from UM sources in the Coast Range. Valley soils on the east side contain 30–370 mg/kg Cr and 16–110 mg/kg Ni. Lower Cr and Ni concentrations on the east side of the valley are the result of greater dilution by granitic sources of the Sierra Nevada.Chromium occurs naturally in the Cr(III) and Cr(VI) oxidation states. Trivalent Cr is a non-toxic micronutrient, but Cr(VI) is a highly soluble toxin and carcinogen. X-ray diffraction and scanning electron microscopy of soils with an UM parent show Cr primarily occurs within chromite and other mixed-composition spinels (Al, Mg, Fe, Cr). Chromite contains Cr(III) and is highly refractory with respect to weathering. Comparison of a 4-acid digestion (HNO3, HCl, HF, HClO4), which only partially dissolves chromite, and total digestion by lithium metaborate (LiBO3) fusion, indicates a lower proportion of chromite-bound Cr in valley soils relative to UM source soils. Groundwater on the west side of the Sacramento Valley has particularly high concentrations of dissolved Cr ranging up to 50 μg L−1 and averaging 16.4 μg L−1. This suggests redistribution of Cr during weathering and oxidation of Cr(III)-bearing minerals. It is concluded that regional-scale transport and weathering of ultramafic-derived constituents have resulted in enrichment of Cr and Ni in the Sacramento Valley and a partial change in the residence of Cr.  相似文献   

15.
The wetland constructed at the Big Five Tunnel in Idaho Springs, Colorado was designed to remove, passively, heavy metals from acid mine drainage. In optimizing the design of such a wetland, an improved understanding of the chemical processes operating there was required, particularly SO42− reduction and sulfide precipitation. For this purpose, field and laboratory data were collected to study the balance of S in the system. Field data collected included water analyses of the mine drainage and wetland effluents and measurements of H2S gas emissions from the wetland. The concentration of sulfide in the wetland effluent ranged from 10−4 to 10−3 mol/l. The average rates of H2S emission from the surface of the substrate were 150 nmol/cm2/d in the summer and 0.17 and 0.35 nmol/cm2/d in the winter. This maximum estimated loss of sulfide was not significant in reducing the amount of sulfide available for precipitation with metals. Sequential extraction experiments for S on wetland substrates showed that acid volatile sulfides (AVS) increased with time in the wetland substrate. A serum bottle experiment was conducted to study the S balance in the Big Five wetland by quantitatively measuring the amount of S in different phases as microbial SO42− reduction progressed. The increase in AVS reasonably balanced the decrease in SO42− concentration in the experiment, suggesting that the decrease in SO42− concentration represented the amount of SO42− reduced and that nearly all of the sulfide produced was precipitated as AVS. Sulfide precipitation was determined to be the primary metal removal process in the wetland system and amorphous FeS is the primary iron sulfide formed in the substrate.  相似文献   

16.
The Integrated Lake Watershed Acidification Study (ILWAS) model was used to simulate the recovery of the highly acidified Clearwater Lake, Ontario. Recovery started in the mid-1970s and continued through the 1980s in response to an estimated 30–50% decrease in S deposition from smelter emissions in nearby Sudbury, Ontario. Appreciable recovery of Clearwater Lake between the mid-1970s and 1987 is simulated by the ILWAS model, as indicated by a 50% decrease in SO4 concentration, an 80% decrease in total Al concentration, an increase in acid-neutralizing capacity (ANC) from −60 to −17 μeq/l, and an increase in pH from 4.2 to 4.8. These decreases in acidic constituents are in good agreement with monitoring data. Long-term simulations indicate that deacidification may continue until 2020, if S deposition rates remain at or less than the 1987 level. Simulations for years beyond 2020 yield yearly average ANC values of 18–40 μeq/l and pH values of 6.2–6.6, which are comparable to the estimated pre-smelter pH of 6.0–6.5 for Clearwater Lake. The agreement between simulated and monitoring data for the first 10 a of recovery and the simulated long-term recovery of the lake to its presmelter level of acidity lend confidence in the capability of numerical models to simulate the reversibility of watershed acidification and suggest that some highly acidic watersheds may eventually recover, given substantial decreases in acid deposition.  相似文献   

17.
Ordos Basin, the second largest sedimentary basin in China, contains enormous natural gas resources. Each of the four giant gas fields discovered so far in this basin (i.e., Sulige, Yulin, Wushenqi and Jingbian) has over 100 billion cubic meters (bcm) or 3.53 trillion cubic feet (tcf) of proven gas reserves. This study examines the stable carbon isotope data of 125 gas samples collected from the four giant gas fields in the Ordos Basin. Source rocks in the Upper Paleozoic coal measures are suggested by the generally high δ13C values of C1–C4 gaseous hydrocarbons in the gases from the Sulige, Yulin and Wushenqi gas fields. While the δ13CiC4 value is higher than that of the δ13CnC4, the dominant ranges for the δ13C1, δ13C2, and δ13C3 values in these Upper Paleozoic reservoired gases are −34 to −32‰, −27 to −23‰, and −25 to −24‰, respectively. The δ13C values of methane, benzene and toluene in gases from the Lower Paleozoic reservoirs of the Jingbian field indicate a significant contribution from humic source rocks, as they are similar to those in the Upper Paleozoic reservoirs of the Sulige, Yulin and Wushenqi gas fields. However, the wide variation and reversal in the δ13C1, δ13C2 and δ13C3 values in the Jinbian gases cannot be explained using a single source scenario, thus the gases were likely derived dominantly from the Carboniferous-Permian coal measures with some contribution from the carbonates in the Lower Permian Taiyuan Formation. The gas isotope data and extremely low total organic carbon contents (<0.2% TOC) suggest that the Ordovician Majiagou Formation carbonates are unlikely to be a significant gas source rock, thus almost all of the economic gas accumulations in the Ordos Basin were derived from Upper Paleozoic source rocks.  相似文献   

18.
Dissolved organic carbon (DOC) dynamics in the Pawcatuck River estuary, a small temperate estuary in Rhode Island, United States, were examined through the use of field transect and in situ production studies. In late summer, when river discharge was minimal, phytoplankton blooms occurred in the upper reaches of the estuary and released large amounts of autochthonous DOC that accumulated in the middle reaches of the estuary. DOC production rates in August months, calculated both by mixing diagrams and in situ DOC incubations, ranged from 6.67 to 34.7 μmol C l−1 d−1 and were positively correlated with DCMU-enhanced fluorescence, an estimate of phytoplankton photosynthetic activity (r2=0.796, p<0.001). The percent extracellular release (PER) of DOC from phytoplankton, calculated from measured in situ DOC production and net phytoplankton production (NPP) rates, ranged from 5.8% to 40.6% and was negatively correlated with NPP (r2=0.80, p<0.01). Accumulated DOC was principally nonhumic in nature, and the humic DOC component behaved quite differently with either conservative mixing or significant removal at the head of the estuary. Humic removal at times amounted to approximately 50% of the humic material and 25% of the total incoming riverine DOC. These large humic losses were not observed in bulk DOC-salinity mixing diagrams but required distinct analyses of the humic and nonhumic components. DOC addition and removal processes co-occur in this system and observation of bulk DOC mixing diagrams may mask the true dynamic nature of the estuarine DOC pool. The net result of the DOC addition and removal processes is a seasonally variable transformation of a humic-rich incoming riverine DOC to a nonhumic enriched bulk DOC component that varies seasonally and with river discharge.  相似文献   

19.
Elemental (C/N ratio) and C isotope composition (δ13C) of particulate organic C (POC) and organic C content (OC) of total suspended solids (TSS) were determined for two subtropical karstic tributaries of the Yangtze River, the Wujiang (the eighth largest tributary) and Yuanjiang (the third largest tributary). For the latter, two headwaters, the karstic Wuyanghe and non-karstic Qingshuijiang were studied. The Wujiang catchment is subject to intensive land use, has low forest coverage and high soil erosion rate. The δ13C of POC covered a range from −30.6‰ to −24.9‰, from −27.6‰ to −24.7‰, and from −26.2‰ to −23.3‰ at the low-water stage, while at the high-water stage varied in a span between −28.6‰ and −24.4‰, between −27.7‰ and −24.5‰, and between −27.6‰ and −24.2‰ for the Wujiang, Wuyanghe, and Qingshuijiang, respectively. The combined application of C isotopes, C/N ratio, OC, and TSS analyses indicated that catchment soil was the predominant source of POC for the Wujiang while for the Wuyanghe and Qingshuijiang, in-stream processes supplied the main part of POC in winter and summer. A significant increase in δ13C value (1.4‰) of POC was found in the Wujiang during summer, and was attributed to the enhanced soil erosion of the dry arable uplands close to the riverbanks of the main channel. Based on a conservative estimate, POC fluxes were 3.123 × 1010, 0.084 × 1010, and 0.372 × 1010 g a−1 while export rates of POC were 466, 129, and 218 mg m−2 a−1 for the Wujiang, Wuyanghe, and Qingshuijiang, respectively. The POC export rate for the karstic Wujiang, with intensive land use, was 2–3 higher than that of the karstic Wuyanghe or of the non-karstic Qingshuijiang where soil erosion was minor. Such high values imply rapid degradation of related karstic ecosystems impacted by intensive land use activities, and pose a potential threat to the health of the Three Gorges Reservoir.  相似文献   

20.
Histic Andosol in Western Iceland was studied using laboratory based repacked microcosms conjointly with sampling of field soil solution. The main primary phase of the 205 cm thick soil profile was basaltic glass, allophane content ranged from 2 to 22 wt.% and the soil carbon content ranged from 11 to 42 wt.%. At constant temperature, the dissolution rate of the basaltic glass, and probably allophane and imogolite, was dictated by the aH+3 / aAl3+ activity ratio only, which in turn is governed by the pH, total dissolved Al and the anions capable of complexing Al3+; SO42−, F and organic anions (DOC). Dissolution rate was slowed down by up to 20% by decreasing undersaturation in the field. Dissolution rate of basaltic glass was stable after an initial flushing event at the beginning of microcosm experiments. Predicted dissolution rates increased up to a factor of 7 and 30 by speciating Al3+ with oxalate in field and microcosms respectively. Speciation with oxalate generally had more effect in shallow horizons than deep horizons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号