首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
风化作用对西宁盆地野外露头有机质性质的影响及校正   总被引:32,自引:0,他引:32  
讨论了风化作用对西宁盆地野外露头烃源岩有机质性质的影响及校正方法。风化作用可使有机质丰度降低,风化因子为2.07~4.46。现今中侏罗统野外露头泥岩的有机质丰度为中等,经风化校正之后,达到了好烃源岩的标准。风化作用对有机质类型参数影响强度从弱到强的顺序为H/C原子比、αααC27甾烷质量分数、干酪根碳同位素组成、红外光谱1460cm-1与1600cm-1处的峰高比、干酪根显微组分质量分数、IH、O/C原子比。在研究野外露头的有机质类型时,应选取那些受风化作用影响较小的参数,作为主要指标。同时,也要参考当时的沉积环境,因为古代的沉积环境决定了现在的有机质类型。通过人工改变埋藏轨迹和地热史的研究,我们预测西宁盆地内中侏罗统烃源岩的Ro为0.84%,已进入大量生油的成熟阶段,而中侏罗统野外露头的实测Ro为0.59%,属于低成熟阶段,这一研究对西宁盆地的含油气远景评价无疑具有重要意义  相似文献   

2.
刘再华 《地球学报》2001,22(5):477-480
CO2向H^ 和HCO3^-的转换是一相对慢速过程。因此,其动力学可能决定碳酸盐岩的溶解速率。在灰岩和白云岩的溶解实验中,使用了自然界普遍存在的碳酸酐酶(CA)来催化这一CO2转换反应,结果发现,对灰岩而言,加入CA后,其溶解速率在高CO2分层时可增加10倍,而对白云岩,其溶解速率增加主要在低CO2分压时,可达3倍左右。这一发现表明,化学风化(包括碳酸盐岩溶解和硅酸盐风化)作用在大气CO2沉降和全球碳循环里的所谓丢失的汇中的重要性需要重新评价。毫无疑问,已往的研究由于未认识到CA在风化中的催化作用,因此低估了风化作用的速率,同时也低估了风化作用对大气CO2沉降的贡献。另一方面,也表明了研究自然界不同水体中CA分布及其活度和CA在自然界风化作用中的作用的必要性。  相似文献   

3.
硅酸盐岩通过与二氧化碳的化学反应,去除大气二氧化碳并将其封存在风化产物或海洋碳酸盐岩中,是影响全球碳循环以及气候变化的要素之一。定量计算全球硅酸盐岩通过风化作用消耗的二氧化碳总量是了解地球现今与过去气候变化的关键。作者系统调研了5个硅酸盐岩化学风化—二氧化碳消耗定量模型的数据来源、研究方法、计算公式以及各模型的主要影响因素,并且以最新的Celine模型所计算得出的二氧化碳消耗量为参考标准,对比了各模型的优缺点与适用范围。现有模型估计全球硅酸盐岩化学风化的二氧化碳消耗量为69~169 Tg/yr,其中各模型的主要参数包括气候(温度、径流)与岩性,次要参数包括构造隆升、火山与植物作用等。在未来探索硅酸盐岩化学风化所消耗二氧化碳的定量计算中,应考虑更多控制作用的影响以及各因素之间的相互联系。此外,利用大数据分析方法将这些定量模型推广应用于深时地球古气候重建可能是未来的研究趋势。  相似文献   

4.
中国岩石风化作用所致的碳汇能力估算   总被引:18,自引:0,他引:18  
邱冬生  庄大方  胡云锋  姚锐 《地球科学》2004,29(2):177-182,190
岩石的风化作用同时参与了短时间尺度和长时间尺度的全球碳循环 ,对碳酸盐岩而言 ,它的风化作用在短时间尺度上对大气二氧化碳循环具有重要影响 ,但在长时间尺度上不产生净碳汇 ;而硅酸盐岩等其他类型岩石的风化过程由于反应速率较慢 ,在短时间尺度上对全球碳循环及其变化反应不灵敏 ,但它所产生的净碳汇是遗漏汇的组成之一 .为了准确估计我国岩石风化所致的碳汇能力 ,简要评价了现有的各种模型和方法 ,并基于GEM -CO2 模型进行了计算 .计算结果表明 ,我国岩石每年因溶蚀、风化作用共消耗的CO2 约为 4 .72× 10 7t,折合成C为 1.4 1× 10 7t,其中由碳酸盐类岩石风化消耗的碳量最多 ,约为 0 .74× 10 7t/a ,占总量的 5 2 .6 5 % .硅酸盐岩及其他类型岩石风化消耗的碳量约为 0 .6 7× 10 7t/a ,占总量的 4 7.35 % .岩石风化所致碳汇能力的空间分布首先取决于岩石类型 ,其次受地区的气候条件控制 .  相似文献   

5.
<正>大陆岩石化学风化作为大洋可容元素的主要来源,在大洋生物-地球化学循环中起着至关重要的作用,硅酸盐岩化学风化通过调节大气CO2浓度而稳定着全球气候变化[1]。大陆硅酸盐岩化学风化受到岩性、构背景以及气候因素的多重控制,但硅酸盐岩化学风化是全球碳循环过程中的一种负反馈作用,还是气候变化的驱动者?两者之间的相互作用机制仍然存在很大争议,研究大陆硅酸盐岩化学风化对过去气候变化的响应过程是解决这些争议的关键[2-3]。然而,受到风化产物物源、搬运过程,沉积环境变化的多重影响,  相似文献   

6.
目前,全球碳循环研究主要集中在海洋碳汇以及陆地土壤和植被碳汇,而对岩石风化碳汇仅考虑地质长时间尺度的硅酸盐风化作用,而认为碳酸盐风化在长时间尺度上对碳汇无贡献。然而,碳酸盐相对于硅酸盐有快得多的溶解速度,且对全球变化(特别是气候和CO2变化)的响应迅速,同时由于生物作用和人为活动的影响,使得碳酸盐风化碳汇的能力需要重新评价。最新的研究发现,由碳酸盐溶解、全球水循环及水生生物光合利用溶解无机碳共同作用,即水-岩-气-生相互作用形成的大气碳汇,远远大于之前只估计了河流输运的无机碳汇,其量级与森林碳汇量相当,因此有必要对传统的碳汇研究思路和方法进行某些变革,这有可能为解决所谓的全球“碳失汇”问题找到一条出路。   相似文献   

7.
硅酸盐风化与全球碳循 环研究回顾及新进展   总被引:4,自引:0,他引:4  
硅酸盐风化是大气CO2 的一个主要汇,直接影响到全球碳循环进而影响全球气候。自Walker 等(1981)进行的开创 工作以来,有关“硅酸盐风化- 碳循环- 气候变化”方面的研究大量涌现。从计算机模型到河流水化学研究,从流域面积 超过百万平方公里的大河到数十数百平方公里的单岩性小河流,取得了很多重要的进展。从全球尺度上看,硅酸盐风化每 年所消耗的大气CO2 量为0.138~0.169 Gt,相比现在大气碳库中碳的含量(约800 Gt),乍看似乎是微不足道的,然而硅酸盐 风化消耗CO2 并将其作为碳酸盐矿物埋藏在海洋,它的存留时间超过了百万年。因此,在地质时间尺度上,硅酸盐风化是 调节全球碳循环的一个重要机制。对小流域进行的研究发现,热带地区流经玄武岩/蛇绿岩的小流域有着最高的硅酸盐风化 和大气CO2 消耗速率,热带区域火山岩化学风化消耗的大气CO2 占全球硅酸盐风化所消耗量的10%,而流域面积不到1%。  相似文献   

8.
硅酸盐岩风化对气候变化和构造运动的反馈对长尺度气候变化可能起到重要的调节作用,对该反馈过程的定量认识有助于更确切理解地球碳循环的运行规律。通常认为风化类型可分为两种,分别是供应限制和动力学限制。全球变暖可能促进了动力学限制流域的化学风化作用,然而,关于这方面的认识仍很有限。育空河流域是典型的动力学限制风化区域,研究育空河的风化对气候变暖的响应有助于深入认识气候和大陆风化之间的相互作用。正演模型是区分河流风化端元的重要手段,文章利用正演模型对育空河流域从1975年到2019年的主要离子组成的数据集进行分析,并获得了该流域在过去几十年的化学风化速率的变化趋势。结果表明,育空河水化学性质主要受到碳酸盐岩风化和硅酸盐岩风化控制,两者多年平均碳汇通量分别为2.1×1011 mol/yr和4.1×1010 mol/yr,处于世界主要大河碳汇通量的中间水平。更重要的是,在同一时期,伴随着2.2℃的温度增幅和13.7%的径流量增加,流域内的阳离子总通量增加了35.7%,其中硅酸盐岩和碳酸盐岩风化产生的阳离子通量分别增加了41%和35%,阳离子通量/风化速率对气候的敏感性与冰岛地区的研究结果符合的很好,与风化速率加快相对应的,硅酸盐岩风化碳汇通量相对增加了59.6%。尽管碳汇的增加在绝对通量上相比人类化石燃烧产生的碳排放通量微不足道,但是考虑到构造尺度内全球硅酸盐岩风化速率的增强,尤其是在较为寒冷的高纬度地区,额外的二氧化碳固定量可能对地球历史时期的全球气候产生重要影响。  相似文献   

9.
流域盆地的风化作用与全球气候变化   总被引:16,自引:1,他引:16  
介绍了岩石风化作用与流域盆地的物质输送对于研究全球海-陆物质循环和全球气候变化的重要意义。讨论了运用河流的颗粒相和溶解相载荷分别去估算机械剥蚀率和化学风化率的科学性及各种计算方法。从全球的观点对岩性、径流、地势、气候、植被以及人为活动 6个因素对于岩石风化作用及河流颗粒相和溶解相物质输送的影响进行了详细的讨论,得到岩性是决定机械剥蚀率和化学风化率的主导因素,径流和地势是影响河流颗粒物输送的重要因素,而径流和气候则对河流溶解离子的输送影响较大,此外植被和人为活动对河流化学及颗粒物输送的影响也越来越受到人们的关注。探讨了岩石化学风化作用消耗的CO2量及其对全球气候变化的影响,在此基础上,归纳了岩石化学风化作用与气候变化的模式。  相似文献   

10.
流域的岩石化学风化过程是全球碳循环中的重要环节。近年来流域水化学碳汇通量估算已越来越多地关注到外源水(硅酸盐风化)及外源酸对全球碳循环的影响。文章选取万华岩地下河流域为研究区,流域硅酸盐岩和碳酸盐岩分布面积占比为64%和36%,于2017年对洞口进行为期一年的取样监测,并分别于4月和9月对万华岩地下河系统内13个水点的离子组成进行监测,利用水化学平衡法和Galy模型,对流域岩石化学风化速率和CO2消耗通量进行了计算,对万华岩地下河系统的岩石风化和碳循环过程进行了分析。结果表明,万华岩地下河系统岩石风化消耗CO2的速率为31.02 t·(km2·a)-1;以碳酸岩风化为主,其风化速率为硅酸盐溶蚀的20倍;流域内碳酸盐岩风化对CO2消耗量占到整个流域的92.16%;不同岩石风化类型对碳通量的贡献率以碳酸溶解碳酸盐岩最大,为87.06%;流域上游的外源水对岩溶碳汇具有巨大的促进作用,外源水汇入后碳酸盐岩碳汇速率可以达到无外源水汇入流域的2倍;硫酸溶解碳酸盐岩次之,为9.24%;碳酸风化硅酸盐岩最小,为3.7%,在计算流域碳汇量的时候应将硫酸参与岩石风化的影响去除。  相似文献   

11.
岩溶区碳循环与大气CO2的源汇关系:以贵州岩溶区为例   总被引:1,自引:0,他引:1  
李彬  袁道先 《中国岩溶》1996,15(1):41-49
全球碳循环的研究表明,人为CO2收支存在不平衡现象,据不同的估算,其未知汇为(1.8±1.4)×10^15gC/a或(2.0~4.7)×10^15gC/a。通过对贵州高原岩溶区岩溶作用带及其相邻圈层碳循环的观测,研究表明,岩溶作用带的碳循环强度与其相邻圈层(土壤层,生物圈,大气圈)的碳循环强度密切相关,表层带岩溶泉水中的HCO^-3与上部圈层的CO2浓度呈较好的正相关关系。同时,在不同生态,地质条  相似文献   

12.
硫酸参与的长江流域岩石化学风化速率与大气CO2消耗   总被引:4,自引:0,他引:4  
流域的岩石化学风化过程是全球碳循环中的重要环节。以往的流域水化学碳汇通量估算大多是基于碳酸的风化作用。而实际上,硫酸和碳酸一样,也参与了流域碳元素的地球化学循环,从而对全球碳循环过程产生影响。长江流域水体近几年出现酸化现象,大部分河段SO42-和Ca2+含量增高,其对应的岩石风化过程和大气CO2消耗速率也发生变化。文章对长江干流及主要支流2013年不同季节的离子组成进行监测,利用水化学平衡法和Galy估算模型,对长江流域岩石化学风化速率和CO2消耗通量进行了估算,对硫酸参与下的长江流域岩石风化和碳循环过程进行了分析。结果表明,长江流域水体离子主要来源于硅酸盐岩风化和碳酸盐岩风化。其中碳酸盐岩风化对河水离子贡献率为92%。在硅酸盐岩广泛分布的赣江流域,碳酸盐岩风化离子贡献也达85%。分析表明,硫酸参与了长江流域的岩石风化过程,对水体中离子产生一定影响。硫酸的参与加快了碳酸盐岩的化学风化速率,平均提高约30%,但是使流域大气CO2消耗速率降低。在不考虑蒸发岩溶蚀作用下,平均从516×103 mol/km2·a降至356×103 mol/km2·a,降低约31%。在各支流中,硫酸对乌江流域碳酸盐岩的风化和碳循环的影响最大,而对雅砻江的影响最小,这与乌江流域的含煤地层、矿床硫化物及大气酸沉降有关。  相似文献   

13.
李悦 《地球化学》1994,23(4):350-356
从地球化学角度出发,对钱塘江流域的物质平衡关系及起控制作用的化学风化反应进行了探讨和计算。结果表明,降雨提供了河水中大部分的K~+、Na~+和SO~2-_4。另外,灰岩地区碳酸钙的溶解反应提供了河水中大部分的Ca~2+和HCO~-_3,硅酸盐岩地区钠长石和黑云母生成高岭石的风化反应提供了剩余的K~+、Na~+、H_4SiO_4和大部分的Mg~2+及少量的HCO~-_3。石膏和白云石的风化反应控制了SO~2-_4和Mg~2+的平衡,其中碳酸钙的溶解反应占主导地位。流域的化学侵蚀率和机械剥蚀率分别为0.022和0.071(kg·m-2·a-1),碳酸盐岩区的物质流出量是硅酸盐岩区的2倍。  相似文献   

14.
云南滇池地区风化磷块岩的风化指标研究   总被引:3,自引:0,他引:3  
黄毅  田升平 《矿物学报》1995,15(1):15-20
长期风化作用使云南滇池地区形成了大面积的风化磷块岩矿石,这种矿石是制取高效磷肥的优质原料。为了圈定这些风化磷块岩矿石,须确定适宜的风化指标。笔者通过风化磷块岩形成过程化学组分变化研究,首次提出将风化指标分为“直接法”和“间接法”两类,进而提出CO2风化指标为直接法中指标,2P2O5+A.I^1)风化指标为间接法中推荐指标。  相似文献   

15.
长石风化作用及影响因素分析   总被引:6,自引:0,他引:6       下载免费PDF全文
长石类矿物是地壳中最常见的硅酸盐矿物,其风化作用对地球表面环境有显著影响,因而是风化作用研究的重点矿物之一。文中以长石为例,对硅酸盐矿物的风化作用研究现状从矿物的自然风化、模拟矿物化学风化和矿物的生物风化3个方面进行阐述;对影响矿物风化的各种因素及其在风化过程中所起的作用,以及长石微生物风化作用的机理和过程进行分析;指出目前硅酸盐矿物风化研究中存在的问题,并对未来的发展方向提出建议,指出对微生物-矿物复合体微环境物理化学性质的深入研究可能成为揭示微生物-矿物相互作用机理的一个突破口。  相似文献   

16.
研究云母和长石等原生硅酸盐矿物的风化速率和风化产物对于深入理解土壤发生过程、营养元素循环以及全球气候变化具有重要的理论意义。本文从自然风化、人工化学风化和生物风化3方面总结了原生硅酸盐矿物风化作用及其产物的特点,重点阐述了微生物参与下的生物风化作用和生物矿化作用及其意义。野外观察和室内实验研究结果表明,微生物可以加速矿物的分解,而且其细胞表面及其产生的胞外多聚糖可以作为次生矿物成核的模板。  相似文献   

17.
陆地生态系统和气候系统紧密相关,特别是植物,土壤和大气圈之间的碳循环。已有人提出气候和大气二氧化碳浓度的变化调整循环,使大量的碳沉淀提供给陆地生态系统,但直接证据很有限。估计了稳定气候态之间变化引起的生态系统碳储备变化,但对生态系统碳流动对短期气候变化的动力响应不了解得不够充分。用一个陆地生物持球化学模式,配合一个一般的循环莱模拟短期气候变化,定量研究1861-2070年大气CO2气候引起的短期生  相似文献   

18.
流域的岩石化学风化过程是全球碳循环中的重要环节。以往的流域水化学碳汇通量估算大多是基于碳酸对岩石的风化作用。而实际上,硫酸和碳酸一样,也参与了碳元素的地球化学循环,从而对全球碳循环过程产生影响。长江流域水体近几年出现酸化现象,大部分河段SO_4~(2-)和Ca~(2+)含量增高,其对应的岩石风化过程和大气CO_2消耗速率也发生变化。文章对长江干流及主要支流2013年不同季节的离子组成进行监测,利用水化学平衡法和Galy估算模型,对长江流域岩石化学风化速率和CO_2消耗通量进行了估算,对硫酸参与下的长江流域岩石风化和碳循环过程进行了分析。结果表明,长江流域水体离子主要来源于硅酸盐岩风化和碳酸盐岩风化。其中碳酸盐岩风化对河水离子贡献率为92%。在硅酸盐岩广泛分布的赣江流域,碳酸盐岩风化离子贡献也达85%。分析表明,硫酸参与了长江流域的岩石风化过程,对水体中离子产生一定影响。硫酸的参与加快了碳酸盐岩的化学风化速率,平均提高约28%。在不考虑硫酸溶蚀作用下,流域大气CO_2消耗速率平均为514.12×10~3 mol/km~2·a,但是硫酸参与时,CO_2消耗速率为467.18×10~3 mol/km~2·a,扣除碳汇量约14%。在各支流中,乌江流域受硫酸影响最大,而对雅砻江的影响最小,这与乌江流域的含煤地层、矿床硫化物及大气酸沉降有关。  相似文献   

19.
碳酸盐岩在全球碳循环过程中的作用   总被引:22,自引:3,他引:22  
碳酸盐岩是地球上最主要的碳库,开展全球变化研究应重视碳酸盐岩在岩溶作用过程中的地球化学动力学研究。这方面的科学问题有二个。第一是关于全球碳酸盐岩的碳库容量问题,尚须利用全球沉积岩和碳酸盐岩数据库,根据全球地质历史时期碳酸盐岩的分布面积、厚度和岩石成分等进行重新计算。其次是关于碳酸盐岩在岩溶作用过程中对全球碳循环的动力学贡献问题。一方面碳酸盐岩的溶蚀作用不仅关系到海洋CaCO_3的供给量而影响海洋中碳通量的平衡,而且还可直接回收大气圈中的CO_2;另一方面由于钙华的沉积又可向大气圈释放CO_2,而影响温空气体的变化。它们构成了大气温室气体源汇关系中不可忽视的一项。  相似文献   

20.
<正>化学风化作用是地球表面演化的重要过程之一,是地表物质循环的关键环节。然而,对于长时间尺度上硅酸盐风化的强度以及控制风化作用的因素,目前还存在争议。由于在水岩反应中会发生显著同位素分异,锂同位素被认为可以示踪硅酸盐风化。英国Durham大学的Dellinger和他的合作者汇总了全球几大水系(如亚马逊河、刚果河、长江等)的河流沉积物数据,  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号