首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
2.
Aquifer storage and recovery (ASR) can provide a means of storing water for irrigation in agricultural areas where water availability is limited. A concern, however, is that the injected water may lead to a degradation of groundwater quality. In many agricultural areas, nitrate is a limiting factor. In the Umatilla Basin in north central Oregon, shallow alluvial groundwater with elevated nitrate‐nitrogen of <3 mg/L to >9 mg/L is injected into the Columbia River Basalt Group (CRBG), a transmissive confined aquifer(s) with low natural recharge rates. Once recovery of the injected water begins, however, NO3‐N in the recovered water decreases quickly to <3 mg/L (Eaton et al. 2009), suggesting that NO3‐N may not persist within the CRBG during ASR storage. In contrast to NO3‐N, other constituents in the recovered water show little variation, inconsistent with migration or simple mixing as an explanation of the NO3‐N decrease. Nitrogen isotopic ratios (δ15N) increase markedly, ranging from +3.5 to > +50, and correlate inversely with NO3‐N concentrations. This variation occurs in <3 weeks and recovery of <10% of the originally injected volume. TOC is low in the basalt aquifer, averaging <1.5 mg/L, but high in the injected source water, averaging >3.0 mg/L. Similar to nitrate concentrations, TOC drops in the recovered water, consistent with this component contributing to the denitrification of nitrate during storage.  相似文献   

3.
The New Jersey Department of Environmental Protection's Technical Regulations require the horizontal and vertical delineation of contamination. Monitor wells screened at increasingly deeper intervals are used to delineate vertical contamination. In New Jersey, the open interval in a bedrock well cannot exceed 7.6 m. Since contamination has been found at depths as great as 91.4 m in a production well in the study area, it would be prohibitively expensive to install monitor wells with 7.6 m open holes at ever-increasing depths until no contamination was found. Isolation of discrete zones in boreholes using pneumatic packers was implemented at a site in north central New Jersey. Ground water samples were collected from selected 6.1 m sections of boreholes drilled into fractured bedrock at three locations on the property and one offsite location. The ground water samples were analyzed in a field laboratory. The analytical results were used to determine the vertical extent of gasoline-related compounds dissolved in the ground water on the property and offsite. These compounds include benzene, ethylbenzene, methyl tertiary butyl ether, toluene, and xylenes. The four boreholes were converted into bedrock monitor wells. The intake interval for each of the wells was selected through evaluation of the vertical distribution of contaminants as determined from analytical results obtained from a field laboratory located onsite. Three wells are used for the recovery of contaminated ground water. The recovered water will be treated at the onsite air-stripping unit. The fourth well is used to chemically and hydraulically monitor the progress of the ground water recovery program.  相似文献   

4.
5.
6.
7.
Inflow to a tunnel is a great public concern and is closely related to groundwater hydrology, geotechnical engineering, and mining engineering, among other disciplines. Rapid computation of inflow to a tunnel provides a timely means for quickly assessing the inflow discharge, thus is critical for safe operation of tunnels. Dewatering of tunnels is another engineering practice that should be planned. In this study, an analytical solution of the inflow to a tunnel in a fractured unconfined aquifer is obtained. The solution takes into account either the spherical or slab-shaped matrix block and the unsteady state interporosity flow. The instantaneous drainage water table and anisotropic hydraulic conductivities of the fractures network are also considered. Both uniform flux and uniform head boundary condition are considered to simulate the constant head boundary condition in the tunnel. The effects of the hydraulic parameters of the fractured aquifer on the inflow variation of the tunnel are explored. The application of the presented solution to obtain the optimum location and discharge of the well to minimize the inflow to a tunnel is illustrated.  相似文献   

8.
9.
10.
11.
12.
Field Data and Ground Water Modeling in a Layered Fractured Aquifer   总被引:5,自引:0,他引:5  
  相似文献   

13.
14.
As part of an agricultural non-point-source study in the Conestoga River head waters area in Pennsylvania, different methods for collecting ground water samples from a fractured carbonate-rock aquifer were compared. Samples were collected from seven wells that had been cased to bedrock and drilled as open holes to the first significant water-bearing zone. All samples were analyzed for specific conductance, dissolved oxygen, and dissolved-nitrogen species. Water samples collected by a point sampler without pumping the well were compared to samples collected by a submersible pump and by a point sampler after pumping the well. Samples collected by using a point sampler, adjacent to major water-bearing zones in an open borehole without pumping the well, were not statistically different from samples collected from the pump discharge or from point samples collected adjacent to major water-bearing zones after pumping the well. Samples collected by using a point sampler without pumping the well at depths other than those adjacent to the water-bearing zones did not give the same results as the other methods, especially when the water samples were collected from within the well casings. It was concluded that, for the wells at this site, sampling adjacent to major water-bearing zones by using a point sampler without pumping the well provides samples that are as representative of aquifer conditions as samples collected from the pump discharge after reaching constant temperature and specific conductance, and by using a point sampler after pumping the well.  相似文献   

15.
The flowpath dependent approaches that are typically employed to assess biodegradation of chloroethene contaminants in unconsolidated aquifers are problematic in fractured rock settings, due to difficulties defining discrete groundwater flowpaths in such systems. In this study, the variation in the potential for chloroethene biodegradation with depth was evaluated in a fractured rock aquifer using two flowpath independent lines of field evidence: (1) the presence of the three biochemical prerequisites [electron donor(s), chloroethene electron acceptor(s), and chlororespiring microorganism(s)] for efficient chloroethene chlororespiration and (2) the in situ accumulation of chloroethene reductive dechlorination daughter products. The validity of this approach was assessed by comparing field results with the results of [1, 2-14C] cis -DCE microcosm experiments. Microcosms were prepared with depth-specific core material, which was crushed and emplaced in discrete packer intervals for 1 year to allow colonization by the indigenous microbial community. Packer intervals characterized by significant electron donor concentrations, elevated numbers of chlororespiring microorganisms, and high reductive dechlorination product to parent contaminant ratios correlated well with the production of 14C-labeled reductive dechlorination products in the microcosm experiments. These results indicate that, in the absence of information on discrete groundwater flowpaths, a modified approach emphasizing flowpath independent lines of evidence can provide insight into the temporal and spatial variability of contaminant biodegradation in fractured rock systems.  相似文献   

16.
17.
Pilot-scale testing of an innovative ground water remediation technology was conducted in a source zone of a trichloroethene-contaminated Superfund site in Tucson, Arizona. The technology is designed to enhance the removal of low-solubility organic contaminants from heterogeneous sedimentary aquifers by using a dual-screened vertical circulation well to inject and extract solutions containing a complexing sugar (hydroxypropyl-beta-cyclodextrin (HPCD]). Prior to initiating the pilot test, tracer tests were conducted to determine hydraulic characteristics of the vertical flow field and to evaluate trichloroethene-elution behavior during water flushing. The pilot test involved injecting approximately 4 m3 of a 20% HPCD solution into the upper screened interval of the well and extracting from the lower screened interval. The results of the pilot test indicate that the cyclodextrin solution increased the rate of trichloroethene removal from the aquifer. The concentrations of trichloroethene in the ground water extracted from the lower screened interval of the well increased by a factor of three (∼750 μg/L) in the presence of the cyclodextrin pulse, compared to concentrations obtained during previous water flushing (∼250 μg/L). Furthermore, the concentration of trichloroethene in water collected from the circulation well under static conditions was reduced to 6% of the levels measured prior to the test.  相似文献   

18.
Heat as a tracer in fractured porous aquifers is more sensitive to fracture-matrix processes than a solute tracer. Temperature evolution as a function of time can be used to differentiate fracture and matrix characteristics. Experimental hot (50 °C) and cold (10 °C) water injections were performed in a weathered and fractured granite aquifer where the natural background temperature is 30 °C. The tailing of the hot and cold breakthrough curves, observed under different hydraulic conditions, was characterized in a log–log plot of time vs. normalized temperature difference, also converted to a residence time distribution (normalized). Dimensionless tail slopes close to 1.5 were observed for hot and cold breakthrough curves, compared to solute tracer tests showing slopes between 2 and 3. This stronger thermal diffusive behavior is explained by heat conduction. Using a process-based numerical model, the impact of heat conduction toward and from the porous rock matrix on groundwater heat transport was explored. Fracture aperture was adjusted depending on the actual hydraulic conditions. Water density and viscosity were considered temperature dependent. The model simulated the increase or reduction of the energy level in the fracture-matrix system and satisfactorily reproduced breakthrough curves tail slopes. This study shows the feasibility and utility of cold water tracer tests in hot fractured aquifers to boost and characterize the thermal matrix diffusion from the matrix toward the flowing groundwater in the fractures. This can be used as complementary information to solute tracer tests that are largely influenced by strong advection in the fractures.  相似文献   

19.
Neighboring springs draining fractured‐rock aquifers can display large differences in water quality and flow regime, depending on local variations of the connectivity and the aperture size distribution of the fracture network. Consequently, because homogeneous equivalent parameters cannot be assumed a priori for the entire regional aquifer, the vulnerability to pollution of such springs has to be studied on a case by case basis. In this paper, a simple lumped‐parameter model usually applied to estimate the mean transit time of water (or tracer) is presented. The original exponential piston‐flow model was modified to take land‐use distribution into account and applied to predict the evolution of atrazine concentration in a series of springs draining a fractured sandstone aquifer in Luxembourg, where despite a nationwide ban in 2005, atrazine concentrations still had not begun to decrease in 2009. This persistence could be explained by exponentially distributed residence times in the aquifer, demonstrating that in some real world cases, models based on the groundwater residence time distribution can be a powerful tool for trend reversal assessments as recommended for instance by current European Union guidelines.  相似文献   

20.
Aquifer Test Analysis in Fractured Rocks with Linear Flow Pattern   总被引:2,自引:0,他引:2  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号