首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper we consider a hydrodynamic model for the matter density distribution in a self gravitating, isentropic 2-d disk of gas where the isentropy coefficient is allowed to be a function of position. For this model we prove analytically the existence of steady state and time dependent solutions in which the matter density in the disk is oscillatory and pattern forming. This research is motivated in part by recent astronomical observations and Laplace conjecture (made in 1796) that planetary systems evolve from a family of isolated rings that are formed within a primitive interstellar gas cloud.  相似文献   

2.
3.
Most rapidly and differentially rotating disk galaxies, in which the sound speed (thermal velocity dispersion) is smaller than the orbital velocity, display graceful spiral patterns. Yet, over almost 240 yr after their discovery in M51 by Charles Messier, we still do not fully understand how they originate. In this first paper of a series, the dynamical behavior of a rotating galactic disk is examined numerically by a high-order Godunov hydrodynamic code. The code is implemented to simulate a two-dimensional flow driven by an internal Jeans gravitational instability in a nonresonant wave–“fluid” interaction in an infinitesimally thin disk composed of stars or gas clouds. A goal of this work is to explore the local and linear regimes of density wave formation, employed by Lin, Shu, Yuan and many others in connection with the problem of spiral pattern of rotationally supported galaxies, by means of computer-generated models and to compare those numerical results with the generalized fluid-dynamical wave theory. The focus is on a statistical analysis of time-evolution of density wave structures seen in the simulations. The leading role of collective processes in the formation of both the circular and spiral density waves (“heavy sound”) is emphasized. The main new result is that the disk evolution in the initial, quasilinear stage of the instability in our global simulations is fairly well described using the local approximation of the generalized wave theory. Certain applications of the simulation to actual gas-rich spiral galaxies are also explored.  相似文献   

4.
5.
Within the model of solid-body accumulation of planets (or their nuclei) the accumulation and migration of bodies from the feeding zones of the giant planets are investigated. The investigation is based on results of computer simulation of evolving disks which initially consisted of hundreds of particles moving about the Sun and coagulating under collisions. In some models the disks initially consisted of identical bodies. In other models they included also almost-formed planets. The computer simulation results as well as analytical investigations of the disk evolution depending on the number of particles in the disk allowed some estimates and conclusions on the accumulation process when the number of initial bodies was great (~ 106–1012). In this paper the characteristics of an initial protoplanetary circumsolar cloud, the body migration in the forming solar system, the planet orbit evolution, the formation of the beyond-Neptune belt and asteroid belts between the giant planet orbits are considered. The results obtained confirm many analytical estimates earlier made by V. S. Safronov and his colleagues.  相似文献   

6.
Our goal is to study the regime of disk accretion in which almost all of the angular momentum and energy is carried away by the wind outflowing from the disk in numerical experiments. For this type of accretion the kinetic energy flux in the outflowing wind can exceed considerably the bolometric luminosity of the accretion disk, what is observed in the plasma flow from galactic nuclei in a number of cases. In this paper we consider the nonrelativistic case of an outflow from a cold Keplerian disk. All of the conclusions derived previously for such a system in the self-similar approximation are shown to be correct. The numerical results agree well with the analytical predictions. The inclination angle of the magnetic field lines in the disk is less than 60°, which ensures a free wind outflow from the disk, while the energy flux per wind particle is greater than the particle rotation energy in its Keplerian orbit by several orders of magnitude, provided that the ratio r A/r ? 1, where r A is the Alfvénic radius and r is the radius of the Keplerian orbit. In this case, the particle kinetic energy reaches half the maximum possible energy in the simulation region. The magnetic field collimates the outflowing wind near the rotation axis and decollimates appreciably the wind outflowing from the outer disk periphery.  相似文献   

7.
We consider a passage of the stars through the accretion disk near the supermassive black hole in the nuclei of active galaxies and quasars. When a star penetrates the disk, a hydrodynamical track is formed behind it. The boundary of the track is a cylindric shock-wave. The region of the track is optically thick with respect to the true absorption. The transfer of the energy dissipated by the passage of the star with a radius ≈1012 cm (the typical dimensions of a star in a galactic nucleus) across the disk provided by the radiative heat conduction. Each star passage through the intermediate region of the disk results in the appearance of a bright spot on its surface. The energy emitted by the spots lies inside the frequency range from visible to UV, exceeding the disk luminosity due to accretion in the range considered.  相似文献   

8.
用一个星系相互作用数值模拟的综合三体模型,研究椭圆星系是否由盘星系合并而成。结果表明,主要取决于星系的盘面和星系运行轨道面的夹角。如果夹角不等于零,盘星系的相互作用是可能形成椭圆星系的,否则还是盘星系。  相似文献   

9.
10.
Exact radially-dependent particular solutions to the hydrodynamic equations for a disk galaxy are found. The mass density is calculated for a known Schwarzschild distribution function and also a distribution function is calculated from a known mass density.  相似文献   

11.
Recent results of the gamma-ray Cherenkov astronomy definitely prove the existence of fast variability in the very high energy (V.H.E.) gamma-ray flux of some active galactic nuclei. The BL Lac PKS 2155-304 for instance showed variations down to a few minutes time scale. From standard light travel time argument, these variations put extremely strong constraints on the size of the TeV emitting zone, which has to be of the order of a few Schwarzschild radius, even for high values of the relativistic Doppler factor of the emitting jets. Such discovery is a challenge for particle acceleration scenarios, which have to imagine efficient acceleration processes at work in a very compact zone. Eventually, the immediate vicinity of the central black hole appears as the most conservative choice for the location of the TeV emission region of active galactic nuclei. In this paper, we propose a two-step mechanism for charged particle acceleration in the magnetosphere of a massive black hole surrounded by an accretion disk. Particles first gain energy by a stochastic process during the accretion phase. It is shown that effective proton acceleration up to energies 1017–1019 eV is possible in a low-luminosity magnetized accretion disk with 2D turbulent motion. The distribution function of energetic protons over energies is a power law function with typical index ≃−1. Here electrons are not very efficiently accelerated because of their drastic losses by synchrotron radiation. In a second time, part of the fast particles escape from the disk and are then entrained by the magnetic structure above the disk, in the rotating black hole magnetosphere. They thus gain additional energy by direct centrifugal mechanism, up to about 1020 eV for the protons and to 10–100 TeV for the electrons when they cross the light cylinder surface. Such energetic particles can further radiate in the TeV spectral range observed by Cherenkov experiments as HESS, MAGIC and VERITAS. Energetic protons can produce γ-radiation in the energy band 1 GeV–100 TeV and above mainly by nuclei collisions with the disk matter, clouds, or ambient low energy photons. Energetic electrons can also reach the required spectral range by inverse Compton emission. However their acceleration is less efficient due to heavy radiation losses, and only gained by centrifugal process during the second phase of the whole mechanism we describe. Our present analysis would therefore favor hadronic scenarios for TeV emission of active galactic nuclei. It is tempting to relate long term variability over years of TeV active galactic nuclei to the first stochastic acceleration phase, which also provides the needed power law particle distributions, while short term variability over minutes is more likely due to perturbations of the second fast direct acceleration phase.  相似文献   

12.
We model the growth of Jupiter via core nucleated accretion, applying constraints from hydrodynamical processes that result from the disk-planet interaction. We compute the planet's internal structure using a well tested planetary formation code that is based upon a Henyey-type stellar evolution code. The planet's interactions with the protoplanetary disk are calculated using 3-D hydrodynamic simulations. Previous models of Jupiter's growth have taken the radius of the planet to be approximately one Hill sphere radius, RH. However, 3-D hydrodynamic simulations show that only gas within ∼0.25RH remains bound to the planet, with the more distant gas eventually participating in the shear flow of the protoplanetary disk. Therefore in our new simulations, the planet's outer boundary is placed at the location where gas has the thermal energy to reach the portion of the flow not bound to the planet. We find that the smaller radius increases the time required for planetary growth by ∼5%. Thermal pressure limits the rate at which a planet less than a few dozen times as massive as Earth can accumulate gas from the protoplanetary disk, whereas hydrodynamics regulates the growth rate for more massive planets. Within a moderately viscous disk, the accretion rate peaks when the planet's mass is about equal to the mass of Saturn. In a less viscous disk hydrodynamical limits to accretion are smaller, and the accretion rate peaks at lower mass. Observations suggest that the typical lifetime of massive disks around young stellar objects is ∼3 Myr. To account for the dissipation of such disks, we perform some of our simulations of Jupiter's growth within a disk whose surface gas density decreases on this timescale. In all of the cases that we simulate, the planet's effective radiating temperature rises to well above 1000 K soon after hydrodynamic limits begin to control the rate of gas accretion and the planet's distended envelope begins to contract. According to our simulations, proto-Jupiter's distended and thermally-supported envelope was too small to capture the planet's current retinue of irregular satellites as advocated by Pollack et al. [Pollack, J.B., Burns, J.A., Tauber, M.E., 1979. Icarus 37, 587-611].  相似文献   

13.

The sequence of evolution of the protoplanetary gas-and-dust disk around the parent star includes, according to modern concepts, its compression in the central plane and decay into separate dust condensations (clusters) due to the occurrence of various types of instabilities. The interaction of dust clusters of a fractal structure during their collisions is considered as a key mechanism for the formation and growth of primary solids, which serve as the basis for the subsequent formation of planetesimals and embryos of planets. Among the mechanisms contributing to the formation of planetesimals, an important place belongs, along with gravitational instability, hydrodynamic instabilities, in particular, the socalled streaming instability of the two-phase gas-dust layer due to its ability to concentrate dispersed particles in dense clots. In contrast to a number of existing models of streaming instability, in which dust particles are considered structurally compact and monodisperse, this paper proposes a more realistic model of polydisperse particles of fractal nature, forming dust clusters as a result of coagulation. The instability of the dust layer in the central plane of the protoplanetary disk under linear axisymmetric perturbations of its parameters is considered. A preliminary conclusion can be drawn that the proposed model of dust fractal aggregates of different scales increases the efficiency of linear growth of hydrodynamic instabilities, including the streaming instabilities associated with the difference between the velocities of the dust and gas phases.

  相似文献   

14.
Nonstationary hydrodynamic models of a viscous accretion disk around a central compact object were constructed. Two different numerical methods (TVD and SPH) are used to study the dynamics of dissipatively unstable acoustic perturbations at the nonlinear stage in terms of the standard α-disk model. The standard disk accretion in the Shakura-Sunyaev model is unstable against acoustic waves for various parameters of the system. If the α parameter, which specifies the level of turbulent viscosity, exceeds α?0.03, then a complex nonstationary system of small-scale weak shock waves is formed. The growth rate of the perturbations is higher in the central disk region. For α?0.2, the relative shock amplitude can exceed 50% of the equilibrium disk parameters. The reflection of waves from the disk boundaries and their nonlinear interaction are important factors that can produce unsteady accretion. The luminosity of such a disk undergoes quasi-periodic oscillations at a level of several percent (?5%) of the equilibrium level.  相似文献   

15.
16.
The problem of determining the pattern of gas motions in the central regions of disk spiral galaxies is considered. Two fundamentally different cases—noncircular motions in the triaxial bar potential and motions in circular orbits but with orientation parameters different from those of the main disk—are shown to have similar observational manifestations in the line-of-sight velocity field of the gas. A reliable criterion is needed for the observational data to be properly interpreted. To find such a criterion, we analyze two-dimensional nonlinear hydrodynamic models of gas motions in barred disk galaxies. The gas line-of-sight velocity and surface brightness distributions in the plane of the sky are constructed for various inclinations of the galactic plane to the line of sight and bar orientation angles. We show that using models of circular motions for inclinations i>60° to analyze the velocity field can lead to the erroneous conclusions of a “tilted (polar) disk” at the galaxy center. However, it is possible to distinguish bars from tilted disks by comparing the mutual orientations of the photometric and dynamical axes. As an example, we consider the velocity field of the ionized gas in the galaxy NGC 972.  相似文献   

17.
Patrick Cassen  Ann Moosman 《Icarus》1981,48(3):353-376
An analysis is presented of the hydrodynamic aspects of the growth of protostellar disks from the accretion (or collapse) of a rotating gas cloud. The size, mass, and radiative properties of protostellar disks are determined by the distribution of mass and angular momentum in the clouds from which they are formed, as well as from the dissipative processes within the disks themselves. The angular momentum of the infalling cloud is redistributed by the action of turbulent viscosity on a shear layer near the surface of the disk (downstream of the accretion shock) and on the radial shear across cylindrical surfaces parallel to the rotation axis. The fraction of gas that is fed into a central core (protostar) during accretion depends on the ratio of the rate of viscous diffusion of angular momentum to the accretion rate; rapid viscous diffusion (or a low accretion rate) promotes a large core-to-disk mass ratio. The continuum radiation spectrum of a highly viscous disk is similar to that of a steady-state accretion disk without mass addition. It is possible to construct models of the primitive solar nebula as an accretion disk, formed by the collapse of a slowly rotating protostellar cloud, and containing the minimum mass required to account for the planets. Other models with more massive disks are also possible.  相似文献   

18.
Supersonic plasma jets are ubiquitous in astrophysics. Our study focus on the jets emanated from Herbig-Haro (HH) objects. They have velocities of a few hundred km/s and are extending over the distances more than a parsec. Interaction of the jets with surrounding matter produces two specific structures in the jet head: the bow shock and the Mach disk. The radiative cooling of these shocks affects strongly the jet dynamics. A tool to understand the physics of these jets is the laboratory experiment. A supersonic jet interaction with surrounding plasma was studied on the PALS laser facility. A collimated high-Z plasma jet with a velocity exceeding 400 km/s was generated and propagated over a few millimeters length. Here we report on study the effect of radiative cooling on the head jet structure with a 2D radiative hydrodynamic code. The simulation results demonstrated the scalability of the experimental observations to the HH jets.  相似文献   

19.
We present the results of our spectropolarimetric observations for a number of active galactic nuclei (AGNs) carried out at the 6-m telescope with the SCORPIO focal reducer. The derived wavelength dependences of the polarization have been analyzed by taking into account the Faraday rotation of the polarization plane on the photon mean free path in a magnetized accretion disk. As a result, based on traditional accretion disk models, we have determined the magnetic field strength and distribution and a number of physical parameters of the accreting plasma in the region where the optical radiation is generated.  相似文献   

20.
The evolutionary hydrodynamic model for the formation and growth of loose dust aggregates in the aerodisperse medium of a laminar disk, which was originally comprised of the gas and solid (sub)micrometer particles, is considered as applied to the problem of the formation of planetesimals in the Solar protoplanetary cloud. The model takes into account the fractal properties of dust clusters. It is shown that the clusters partly merge in the process of cluster-cluster coagulation, giving rise to the formation of large fractal aggregates that are the basic structure-forming elements of loose protoplanetesimals arising as a result of physicochemical and hydrodynamic processes similar to the processes of growth of the fractal clusters. Earlier, the modeling was conventionally performed in an “ordinary” continuous medium without considering the multifractional structure of the dust component of the protoplanetary cloud and the fractal nature of the dust clusters being formed during its evolution. Instead, we propose to consider a complex of loose dust aggregates as a special type of continuous medium, namely, the fractal medium for which there exist points and regions that are not filled with its particles. We suggest performing the hydrodynamic modeling of this medium, which has a noninteger mass dimensionality, in a fractional integral model (its differential form) that takes the fractality into account using fractional integrals whose order is determined by a fractal dimensionality of the disk medium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号