首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A one-layer time-invariant eddy viscosity model is specified to develop a mathematical model for describing the essential features of the turbulent wave boundary layer over a rough bed. The functional form of the eddy viscosity is evaluated based on a modified one-equation turbulence model in which the eddy viscosity varies in time and space. The present eddy viscosity model simplifies much of the mathematical complexity in many existing models. Predictions from the present model have been compared favorably with a wide range of experimental data. It is found that the eddy viscosity model adopted in the present study is physically reasonable.  相似文献   

2.
Large Eddy Simulation for Wave Breaking in the Surf Zone   总被引:1,自引:0,他引:1  
In this paper, (he large eddy simulation method is used combined with the marker and cell method to study the wave propagation or shoaling and breaking process. As wave propagates into shallow water, the shoaling leads lo the increase of wave height, and then at a certain position, the wave will be breaking. The breaking wave is a powerful agent for generating turbulence, which plays an important role in most of the fluid dynamic processes throughout the surf zone, such as transformation of wave energy, generation of near-shore current and diffusion of materials. So a proper numerical model for describing the turbulence effect is needed. In this paper, a revised Smagorinsky subgrid-scale mode! is used to describe the turbulence effect. The present study reveals that the coefficient of the Smagorinsky model for wave propagation or breaking simulation may be taken as a varying function of the water depth and distance away from the wave breaking point. The large eddy simulation model presented in this pape  相似文献   

3.
An approximate steady solution of the wave-modified Ekman current is presented for gradually varying eddy viscosity by using the WKB method with the variation of parameters technique. The parameters involved in the solution can be determined by the two-dimensional wavenumber spectrum of ocean waves, wind speed, the Coriolis parameter and the densities of air and water. The solution reduces to the exact solution when the eddy viscosity is taken as a constant. As illustrative examples, for a fully developed wind-generated sea with different wind speeds and a few proposed gradually varying eddy viscosities, the current profiles calculated from the approximate solutions are compared with those of the exact solutions or numerical ones by using the Donelan and Pierson wavenumber spectrum, the WAM wave model formulation for wind input energy to waves, and wave energy dissipation converted to currents. It is shown that the approximate solution presented has an elegant form and yet would be valid for any given gradually varying eddy viscosity. The applicability of the solution method to the real ocean is discussed following the comparisons with published observational data and with the results from a large eddy simulation of the Ekman layer.  相似文献   

4.
Based on a wave bottom boundary layer model and a sediment advection-diffusion model, seven turbulence schemes are compared regarding their performances in prediction of near-bed sediment suspension beneath waves above a plane bed. These turbulence algorithms include six empirical eddy viscosity schemes and one standard two-equation k-ε model. In particular, different combinations of typical empirical formulas for the eddy viscosity profile and for the wave friction factor are examined. Numerical results are compared with four laboratory data sets, consisting of one wave boundary layer hydrodynamics experiment and three sediment suspension experiments under linear waves and the Stokes second-order waves. It is shown that predictions of near-bed sediment suspension are very sensitive to the choices of the empirical formulas in turbulence schemes. Simple empirical turbulence schemes are possible to perform equally well as the two-equation k-ε model. Among the empirical schemes, the turbulence scheme, combining the exponential formula for eddy viscosity and Swart formula for wave friction factor, is the most accurate. It maintains the simplicity and yields identically good predictions as the k-ε model does in terms of the wave-averaged sediment concentration.  相似文献   

5.
Sea ice can attenuate wave energy significantly when waves propagate through ice covers.In this study,a third-generation wave model called simulating wave nearshore(SWAN)was advanced to include damping of wave energy due to friction in the boundary layer below the ice.With the addition of an eddy viscosity wave-ice model,the resulting new SWAN model was applied to simulate wave height in the Bohai Sea during the freezing winter.Its performance was validated with available buoy data near the ice edge,and the new model showed an improvement in accuracy because it considered the ice effect on waves.We then performed a wave hindcast for the Bohai Sea during a freezing period in the winter of 2016 that had the severest ice conditions in recent years and found that the mean significant wave height changed by approximately 16.52%.In the Liaodong Bay,where sea ice concentration is highest,the change reached 32.57%,compared with the most recent SWAN model version.The average influence of sea ice on wave height simulation was also evaluated over a five-year(2013-2017)hindcast during January and February.We found that the wave height decrease was more significant in storm conditions even the eddy viscosity wave-ice model itself showed no advantage on damping stronger waves.  相似文献   

6.
本文将流速分解模型应用于作为超浅海风暴潮的渤海风潮,并讨论了变湍粘性系数的确定。作为一个初步的,但较为成功的数值试验例子,描述了实际风场作用下的渤海风潮,比较了变湍粘性系数模型与常湍粘性系数模型的计算结果间的差异。  相似文献   

7.
基于Jenkins(1989)建立的包含Stokes漂流、风输入和波耗散影响的修正Ekman模型,采用Paskyabi等(2012)使用的推广的Donelan等(1987)中的谱和波耗散函数,并利用Paskyabi等(2012)中修正方法给出的包含高频波的风输入函数,在粘性不依赖于水深及粘性随深度线性变化的条件下,研究了包含高频毛细重力波的随机表面波对Stokes漂流和Song(2009)导出的波浪修正定常Ekman流解的影响。结果表明高频表面波使Stokes漂流在海表面剪切加强,对定常Ekamn流解的影响通常不能忽略,但对Ekman流场的角度偏转影响很小。最后,将考虑高频表面波尾谱影响所估算的定常Ekman流解与已有观测结果以及经典Ekman解进行了比对分析。  相似文献   

8.
A new set of Boussinesq-type equations describing the free surface evolution and the corresponding depth-integrated horizontal velocity is derived with the bottom boundary layer effects included. Inside the boundary layer the eddy viscosity gradient model is employed to characterize Reynolds stresses and the eddy viscosity is further approximated as a linear function of the distance measured from the seafloor. Boundary-layer velocities are coupled with the irrotational velocity in the core region through boundary conditions. The leading order boundary layer effects on wave propagation appear in the depth-integrated continuity equation to account for the velocity deficit inside the boundary layer. This formulation is different from the conventional approach in which a bottom stress term is inserted in the momentum equation. An iterative scheme is developed to solve the new model equations for the free surface elevation, depth-integrated velocity, the bottom stress, the boundary layer thickness and the magnitude of the turbulent eddy viscosity. A numerical example for the evolution of periodic waves propagating in one-dimensional channel is discussed to illustrate the numerical procedure and physics involved. The differences between the conventional approach and the present formulation are discussed in terms of the bottom frictional stress and the free surface profiles.  相似文献   

9.
An analytical theory which describes the motion in an oscillatory smooth turbulent boundary layer using a two-layer time invariant eddy viscosity model is presented. The eddy viscosity in the inner layer increases quadratically with the height above the wall. In the outer layer the eddy viscosity is taken as a constant.  相似文献   

10.
为模拟潜堤上破碎波浪传播时产生能量的耗散这一特性,在改进的具有四阶色散的Boussinesq水波方程中中入二阶紊动粘性项,建立了考虑波浪破碎的水波数学模型.在非交错网格下建立了有限差分数值模型,并利用三阶Adams-Bash forth格式预报、四阶Adams-Mouton格式校正对数值模型进行求解.通过数值试验,模拟...  相似文献   

11.
超浅海风暴潮模型提出后[2],对渤海风潮,作为超浅海问题,进行了数值研究[1]。其结果的分析和观测资料的比较都表明了该模型有一定的应用价值;故,对超浅海风暴潮模型作进一步的探讨是有一定意义的。尤其因为我国是一个多浅水域和多风暴潮的国家,这种研究就具有更重要的意义。  相似文献   

12.
基于大涡模拟和局部滤波同化方法的海洋环流模式   总被引:3,自引:1,他引:2  
结合最小二乘法极值原理,提出了一种基于局部谱展开的滤波同化方法,把测量数据和数值计算过程中出现的高频短波滤掉,并将高度计数据同化到了求解过程中.结果既增加了数值稳定性,又提高了数值模拟的准确性.针对在海洋环流问题中水平的流动性质和垂直的不同的特点,我们还将大涡模拟的思想和直接涡黏的思想分别应用于水平方向和垂直方向,给出的方法是一种适用于海洋环流和浅水环流问题的大涡模拟湍流模式.对热带和北太平洋一年四季非定常季风作用下环流的数值模拟表明,提出的方法非常有效,数值结果与实际相当吻合.  相似文献   

13.
Existing models of the wave bottom boundary layer have focused on the vertical and temporal dynamics associated with monochromatic forcing. While these models have made significant advances, they do not address the more complicated dynamics of random wave forcing, commonly found in natural environments such as the surf zone. In the closed form solution presented here, the eddy viscosity is assumed to vary temporally with the bed shear velocity and linearly with depth, however, the solution technique is valid for any eddy viscosity which is separable in time and space. A transformation of the cross-shore velocity to a distorted spatial domain leads to time-independent boundary conditions, allowing for the derivation of an analytic expression for the temporal and vertical structure of the cross-shore velocity under an arbitrary wave field. The model is compared with two independent laboratory observations. Model calculations of the bed shear velocity are in good agreement with laboratory measurements made by Jonsson and Carlsen (1976, J. Hydraul. Res., 14, 45–60). A variety of monochromatic, skewed, and asymmetric wave forcing conditions, characteristic of those found in the surf zone, are used to evaluate the relative effects on the bed shear. Because the temporal variation of the eddy viscosity is assumed proportional to the bottom shear, a weakly nonlinear interaction is created, and a fraction of the input monochromatic wave energy is transferred to the odd harmonics. For a monochromatic input wave, the ratio of the third harmonic of velocity at the bed to the first is <10%. However, for a skewed and asymmetric input wave, this ratio can be as large as 30% and is shown to increase with increasing root-mean-square input wave acceleration. The work done by the fluid on the bed is shown to be a maximum under purely skewed waves and is directed onshore. Under purely asymmetric waves, the work done is significantly smaller and directed offshore.  相似文献   

14.
An analytical theory which describes the motion in a turbulent wave boundary layer near a rough sea bottom by using a two-layer time invariant eddy viscosity model is presented. The eddy viscosity in the inner layer increases quadratically with the height above the sea bottom. In the outer layer the eddy viscosity is taken as a constant. The mean velocity and shear stress profiles, the bottom shear stress and the bottom friction coefficient are presented, and comparisons are made with experimental results.  相似文献   

15.
《Coastal Engineering》2001,43(2):131-148
Four different expressions for wave energy dissipation by bottom friction are intercompared. For this purpose, the SWAN wave model and the wave data set of Lake George (Australia) are used. Three formulations are already present in SWAN (ver. 40.01): the JONSWAP expression, the drag law friction model of Collins and the eddy–viscosity model of Madsen. The eddy–viscosity model of Weber was incorporated into the SWAN code. Using Collins' and Weber's expressions, the depth- and fetch-limited wave growth laws obtained in the nearly idealized situation of Lake George can be reproduced. The wave model has shown the best performance using the formulation of Weber. This formula has some advantages over the other formulations. The expression is based on theoretical and physical principles. The wave height and the peak frequency obtained from the SWAN runs using Weber's bottom friction expression are more consistent with the measurements. The formula of Weber should therefore be preferred when modelling waves in very shallow water.  相似文献   

16.
Effects of mesoscale eddies on the internal solitary wave propagation   总被引:3,自引:1,他引:2  
The mesoscale eddy and internal wave both are phenomena commonly observed in oceans. It is aimed to investigate how the presence of a mesoscale eddy in the ocean affects wave form deformation of the internal solitary wave propagation. An ocean eddy is produced by a quasi-geostrophic model in f-plane, and the one-dimensional nonlinear variable-coefficient extended Korteweg-de Vries (eKdV) equation is used to simulate an internal solitary wave passing through the mesoscale eddy field. The results suggest that the mode structures of the linear internal wave are modified due to the presence of the mesoscale eddy field. A cyclonic eddy and an anticyclonic eddy have different influences on the background environment of the internal solitary wave propagation. The existence of a mesoscale eddy field has almost no prominent impact on the propagation of a smallamplitude internal solitary wave only based on the first mode vertical structure, but the mesoscale eddy background field exerts a considerable influence on the solitary wave propagation if considering high-mode vertical structures. Furthermore, whether an internal solitary wave first passes through anticyclonic eddy or cyclonic eddy, the deformation of wave profiles is different. Many observations of solitary internal waves in the real oceans suggest the formation of the waves. Apart from topography effect, it is shown that the mesoscale eddy background field is also a considerable factor which influences the internal solitary wave propagation and deformation.  相似文献   

17.
Themixingmechanismintheformationofoceanshearwaves¥QiaoFangli(FirstInstituteofOceanography,StateoceanicAdministration,Qingdao2...  相似文献   

18.
A transformation method is presented by which current profiles (of tidal or wind-induced origin) can be extracted at any horizontal position and moment in time from a vertically integrated, two-dimensional, hydrodynamic numerical model. An arbitrary vertical variation of eddy viscosity can be included in the method, which can incorporate a no-slip bottom boundary condition. The technique assumes that the sea is homogeneous.The method is used to improve the representation of bottom stress within the two-dimensional model, whereby the bottom stress is no longer related simply to the depth-mean current as in the “conventional” two-dimensional, vertically integrated model.Idealized calculations for a range of eddy viscosity profiles, show that elevations, current profiles, and time series of current extracted from this “enhanced” two-dimensional numerical model are in good agreement with currents obtained from a full three-dimensional model.  相似文献   

19.
The impact of parameterized topographic internal lee wave drag on the input and output terms in the total mechanical energy budget of a hybrid coordinate high-resolution global ocean general circulation model forced by winds and air-sea buoyancy fluxes is examined here. Wave drag, which parameterizes the generation of internal lee waves arising from geostrophic flow impinging upon rough topography, is included in the prognostic model, ensuring that abyssal currents and stratification in the model are affected by the wave drag.An inline mechanical (kinetic plus gravitational potential) energy budget including four dissipative terms (parameterized topographic internal lee wave drag, quadratic bottom boundary layer drag, vertical eddy viscosity, and horizontal eddy viscosity) demonstrates that wave drag dissipates less energy in the model than a diagnostic (offline) estimate would suggest, due to reductions in both the abyssal currents and stratification. The equator experiences the largest reduction in energy dissipation associated with wave drag in inline versus offline estimates. Quadratic bottom drag is the energy sink most affected globally by the presence of wave drag in the model; other energy sinks are substantially affected locally, but not in their global integrals. It is suggested that wave drag cannot be mimicked by artificially increasing the quadratic bottom drag because the energy dissipation rates associated with bottom drag are not spatially correlated with those associated with wave drag where the latter are small. Additionally, in contrast to bottom drag, wave drag is a non-local energy sink.All four aforementioned dissipative terms contribute substantially to the total energy dissipation rate of about one terawatt. The partial time derivative of potential energy (non-zero since the isopycnal depths have a long adjustment time), the surface advective fluxes of potential energy, the rate of change of potential energy due to diffusive mass fluxes, and the conversion between internal energy and potential energy also play a non-negligible role in the total mechanical energy budget. Reasons for the <10% total mechanical energy budget imbalance are discussed.  相似文献   

20.
通过改进海床阻力系数和设置合适的垂向紊动背景系数,应用FVCOM模型成功再现了钱塘江河口强涌潮的演进过程。海床阻力系数采用Manning公式形式,取值随水深、地形在0.000 2~0.002 9之间变化;垂向紊动背景系数取1×10-4 m2/s。模拟结果较好地复演了涌潮到达时刻、涌潮高度及涌潮抬升过程、涌潮水平流速以及其沿垂向分布规律,表明阻力系数及垂向紊动背景系数等关键参数的改进和处理是合理的,可应用于涌潮三维潮流运动特征模拟。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号