首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A garnet–biotite–Al2SiO5–quartz (GBAQ) geobarometer was empirically calibrated using more than 700 natural metapelites with a broad compositional range of garnet and biotite under P–T conditions of 450–950°C and 1–17 kbar. In the calibration, activity models of garnet and biotite identical to those in the garnet–biotite (GB) geothermometer of Holdaway [American Mineralogist 2000, 85: 881–892] were used. Therefore, the GBAQ geobarometer and the GB geothermometer can be simultaneously applied to iteratively estimate metamorphic P–T conditions. Successful applications of the GBAQ geobarometer to natural metapelites certify its validity. Most importantly, when plagioclase is absent or CaO components in garnet and/or plagioclase are deficient, this geobarometer may prove useful for estimating metamorphic pressures. The random error of the present GBAQ geobarometer is inferred to be around ±1.8 kbar. An electronic spreadsheet is available as Table S4 to apply the GBAQ geobarometer in combination with the GB geothermometer.  相似文献   

2.
The garnet–muscovite (GM) geothermometer and the garnet–muscovite–plagioclase–quartz(GMPQ) geobarometer have been simultaneously calibrated underconditions of T = 450–760°C and P = 0·8–11·1kbar, using a large number of metapelitic samples in the compositionalranges = 0·53–0·81, = 0·05–0·24, = 0·03–0·23 in garnet, = 0·17–0·74 in plagioclase, and Fe = 0·04–0·16, Mg =0·04–0·13, AlVI = 1·74–1·96in muscovite on the basis of 11 oxygens. The resulting GM thermometeryielded similar temperature estimates (mostly within ±50°C)to that of the garnet–biotite thermometer, and successfullydiscerned the expected systematic temperature change of progradesequences, thermal contact zones and an inverted metamorphiczone. The resulting GMPQ barometer yielded similar pressureestimates (mostly within ±1·0 kbar) to the garnet–aluminumsilicate–plagioclase–quartz (GASP) barometer andplaced the aluminosilicate-bearing samples in the appropriatealuminosilicate stability fields. Application of the GMPQ barometerto thermal contact aureoles or rocks within limited geographicalareas confirmed the expected constant pressures that shouldexist in these settings. The random errors of the GM thermometerand the GMPQ barometer are estimated to be ±16°Cand ±1·5 kbar, respectively. When biotite or aluminosilicateis absent in metapelites, metamorphic P–T conditions maybe determined by simultaneously applying the GM thermometerand the GMPQ barometer. KEY WORDS: application; calibration; geobarometer; geothermometer; metapelite  相似文献   

3.
The calibration of the olivine-spinel geothermometer by Fabries(1979) is commonly adopted by a number of petrologists.But the temperatures calculated in this way for ultramafic focks are significantly lower than those obtained by the pyroxene geothermometers.These O1-Sp temperatures are also lower than those measured experi-mentally in the natural system (four-phase lherzolite).Different rates of cation diffusion cannot fully account for these differences.The temperature deviation is actually related to the inconsistencies between natural and experimental data which support the calibration .A re-evaluation of the calibration is proposed on the basis of a set of new experimental data.  相似文献   

4.
Abstract End-member, continuous and degenerate reactions are derived for the multisystem with the six components Na2O, CaO, (Mg/Fe)O, Al2O3, SiO2, H2O among the phases plagioclasess, garnetss, amphiboless, cpx, opx, olivine, spinel, quartz and an aqueous fluid. The chemography of this system is degenerate due to the co-linearity 2Opx = Ol + Qtz. This co-linearity has its implications both on reaction space and phase equilibria. From a total of 28 reaction systems, reaction space is derived for nine subsystems (phases in parentheses are absent): Case A1: (Cpx,Ol) (Cpx,Opx) and (Cpx,Qtz), Case A2: (Spl,Ol) (Spl,Opx) and (Spl,Qtz), Case B: (Ol,Opx) (Ol,Qtz) and (Opx,Qtz). In the absence of either cpx or spl (case A), three reactions form an invariant point, either [Cpx] or [Spl], where the co-linear phases olivine, opx and quartz coexist on the transformation line 2Opx = Ol + Qtz. Changing mineral compositions force invariant points to move along the line with the different reaction curves changing their relative position according to Schreinemakers’rules. Zero contours, i.e. the location where (a) phase(s) disappear(s) in reaction space correspond to singular points in phase diagrams. Two types are distinguished; singular points of indispensable and of substitutable phases. In the first case the phase disappears from the entire bundle while in the second it disappears from a single reaction. In the specific case where the substitutable phases are also the co-linear ones, two of the three co-linear phases disappear simultaneously. Two of the three reaction curves coincide. In the system including Cpx and Spl (Case B) three reactions, (Ol,Opx) (Ol,Qtz) and (Opx,Qtz), oppose three invariant points, [Ol], [Opx] and [Qtz]. Invariant points no longer move along the line 2Opx = Ol + Qtz. The coincidence of the zero contours of all three co-linear phases in reaction space-the result of the chemographic degeneracy-causes the respective singular points to coincide in the phase diagrams. This is the location where curves must be rearranged in a bundle to conform Schreinemakers’rules. The reaction Grs1Prp2= 2 Ol + An is fourth order degenerate and part of all nine subsystems (cases A and B). It can be used to relate the different phase diagrams to one another.  相似文献   

5.
Experimental and theoretical considerations indicate that the distribution coefficient for iron and magnesium between coexisting garnet and cordierite increases with temperature in the assemblage cordierite-garnet-sillimanite-quartz. This conclusion is confirmed by distribution coefficients from natural garnet and cordierite from geologically well defined settings. The only published calibration which incorporates this feature is that of Currie (1971), and this is the only calibration which can be qualitatively correct although it may be wrong in detail. Other calibrations encounter catastrophes, particularly in andalusite-bearing assemblages.  相似文献   

6.
Eclogite facies mineral assemblages are variably preserved in mafic and ultramafic rocks within the Western Gneiss Region (WGR) of Norway. Mineralogical and microstructural data indicate that some Mg–Cr-rich, Alpine-type peridotites have had a complex metamorphic history. The metamorphic evolution of these rocks has been described in terms of a seven-stage evolutionary model; each stage is characterized by a specific mineral assemblage. Stages II and III both comprise garnet-bearing mineral assemblages. Garnet-bearing assemblages are also present in Fe–Ti-rich peridotites which commonly occur as layers in mafic complexes. Sm–Nd isotopic results are reported for mineral and whole rock samples from both of these types of peridotites and related rocks. The partitioning of Sm and Nd between coexisting garnet and clinopyroxene is used to assess chemical equilibrium. One sample of Mg–Cr-type peridotite shows non-disturbed partitioning of Sm and Nd between Stage II garnet and clinopyroxene pairs and yields a garnet–clinopyroxene–whole-rock date of 1703 ± 29 Ma (I= 0.51069, MSWD = 0.04). This is the best estimate for the age of the Stage II high-P assemblage. Other Stage II garnet–clinopyroxene pairs reflect later disturbance of the Sm–Nd system and yield dates in the range 1303 to 1040 Ma. These dates may not have any geological significance. Stage III garnet–clinopyroxene pairs typically have equilibrated Sm–Nd partitioning and two samples yield dates of 437 ± 58 and 511 ± 18 Ma. This suggests that equilibration of the Stage III high-P assemblage is related to the Caledonian orogeny and is more or less contemporaneous with high-P metamorphism of ‘country-rock’eclogites in the surrounding gneisses. The Sm–Nd mineral data for the Fe–Ti-rich garnet peridotites and for a superferrian eclogite, which occurs as a dyke within the Gurskebotn Mg–Cr-type peridotite, are consistent with a Palaeozoic high-P metamorphism. Finally a synoptic P–T–t path is proposed for the Mg–Cr-type peridotites which is consistent with the petrological and geochronological data.  相似文献   

7.
Garnet peridotites occur in quartzofeldspathic gneisses in the Northern Qaidam Mountains, western China. They are rich in Mg and Cr, with mineral compositions similar to those in mantle peridotites found in other orogenic belts and as xenoliths in kimberlite. Garnet‐bearing lherzolites interlayered with dunite display oriented ilmenite and chromite lamellae in olivine and pyroxene lamellae in garnet that have been interpreted to indicate pressures in excess of 6 GPa. However, some garnet porphyroblasts include hornblende, chlorite and spinel + orthopyroxene symplectite after garnet; some clinopyroxene porphyroblasts include abundant actinolite/edenite, calcite and lizardite in the lherzolite; some olivine porphyroblasts (Fo92) include an earlier generation Mg‐rich olivine (Fo95–99), F‐rich clinohumite, pyroxene, chromite, anthophyllite/cummingtonite, Cl‐rich lizardite, carbonates and a new type of brittle mica, here termed ‘Ca‐phlogopite’, in the associated dunite. The pyrope content of garnet increases from core to rim, reaching the pyrope content (72 mol.%) of garnet typically found in the xenoliths in kimberlite. The simplest interpretation of these observations is that the rock association was formerly mantle peridotite emplaced into the oceanic crust that was subjected to serpentinization by seawater‐derived fluids near the sea floor. Dehydration during subduction to 3.0–3.5 GPa and 700 °C transformed these serpentinites into garnet lherzolite and dunite, depending on their Al and Ca contents. Pseudosection modelling using thermocalc shows that dehydration of the serpentinites is progressive, and involved three stages for Al‐rich and two stages for Al‐poor serpentinites, corresponding to the breakdown of the key hydrous minerals. Static burial and exhumation make olivine a pressure vessel for the pre‐subduction mineral inclusions during ultrahigh‐pressure (UHP) metamorphism. The time span of the UHP event is constrained by the clear interface between the two generations of olivine to be very short, implying rapid subduction and exhumation.  相似文献   

8.
Garnet‐bearing peridotite lenses are minor but significant components of most metamorphic terranes characterized by high‐temperature eclogite facies assemblages. Most peridotite intrudes when slabs of continental crust are subducted deeply (60–120 km) into the mantle, usually by following oceanic lithosphere down an established subduction zone. Peridotite is transferred from the resulting mantle wedge into the crustal footwall through brittle and/or ductile mechanisms. These ‘mantle’ peridotites vary petrographically, chemically, isotopically, chronologically and thermobarometrically from orogen to orogen, within orogens and even within individual terranes. The variations reflect: (1) derivation from different mantle sources (oceanic or continental lithosphere, asthenosphere); (2) perturbations while the mantle wedges were above subducting oceanic lithosphere; and (3) changes within the host crustal slabs during intrusion, subduction and exhumation. Peridotite caught within mantle wedges above oceanic subduction zones will tend to recrystallize and be contaminated by fluids derived from the subducting oceanic crust. These ‘subduction zone peridotites’ intrude during the subsequent subduction of continental crust. Low‐pressure protoliths introduced at shallow (serpentinite, plagioclase peridotite) and intermediate (spinel peridotite) mantle depths (20–50 km) may be carried to deeper levels within the host slab and undergo high‐pressure metamorphism along with the enclosing rocks. If subducted deeply enough, the peridotites will develop garnet‐bearing assemblages that are isofacial with, and give the same recrystallization ages as, the eclogite facies country rocks. Peridotites introduced at deeper levels (50–120 km) may already contain garnet when they intrude and will not necessarily be isofacial or isochronous with the enclosing crustal rocks. Some garnet peridotites recrystallize from spinel peridotite precursors at very high temperatures (c. 1200 °C) and may derive ultimately from the asthenosphere. Other peridotites are from old (>1 Ga), cold (c. 850 °C), subcontinental mantle (‘relict peridotites’) and seem to require the development of major intra‐cratonic faults to effect their intrusion.  相似文献   

9.
A Report on a Biotite-Calcic Hornblende Geothermometer   总被引:1,自引:0,他引:1  
This paper presents a biotite-calcic hornblende geothermometer which was empirically calibrated based on the gamet-biotite geothermometer and the gamet-plagioclase-hornblende-quartz geobarometer, in the ranges of 560-800℃ (T) and 0.26-1.4 GPa (P) using the data of metadolerite, amphibolite, metagabbro, and metapelite collected from the literature. Biotite was treated as symmetric Fe-Mg-AlVI-Ti quaternary solid solution, and calcic hornblende was simplified as symmetric Fe-Mg binary solid solution. The resulting thermometer may rebuild the input garnet-biotite temperatures well within an uncertainty of ±50℃. Errors of ±0.2 GPa for input pressure, along with analytical errors of ?% for the relevant mineral compositions, may lead to a random error of ±16℃ for this thermometer, so that the thermometer is almost independent of pressure estimates. The thermometer may clearly discriminate different rocks of lower amphibolite, upper amphibolite and granulite facies on a high confidence level. It is assume  相似文献   

10.
Garnet peridotites occur as lenses, blocks or layers within granulite–amphibolite facies gneiss in the Dabie-Sulu ultra-high-pressure (UHP) terrane and contain coesite-bearing eclogite. Two distinct types of garnet peridotite were identified based on mode of occurrence and petrochemical characteristics. Type A mantle-derived peridotites originated from either: (1) the mantle wedge above a subduction zone, (2) the footwall mantle of the subducted slab, or (3) were ancient mantle fragments emplaced at crustal depths prior to UHP metamorphism, whereas type B crustal peridotite and pyroxenite are a portion of mafic–ultramafic complexes that were intruded into the continental crust as magmas prior to subduction. Most type A peridotites were derived from a depleted mantle and exhibit petrochemical characteristics of mantle rocks; however, Sr and Nd isotope compositions of some peridotites have been modified by crustal contamination during subduction and/or exhumation. Type B peridotite and pyroxenite show cumulate structure, and some have experienced crustal metasomatism and contamination documented by high 87Sr/86Sr ratios (0.707–0.708), low εNd( t ) values (−6 to −9) and low δ18O values of minerals (+2.92 to +4.52). Garnet peridotites of both types experienced multi-stage recrystallization; some of them record prograde histories. High- P–T  estimates (760–970 °C and 4.0–6.5±0.2 GPa) of peak metamorphism indicate that both mantle-derived and crustal ultramafic rocks were subducted to profound depths >100 km (the deepest may be ≥180–200 km) and experienced UHP metamorphism in a subduction zone with an extremely low geothermal gradient of <5 °C km−1.  相似文献   

11.
Alpine‐type orogenic garnet‐bearing peridotites, associated with quartzo‐feldspathic gneisses of a 140–115 Ma high‐pressure/ultra‐high‐pressure metamorphic (HP‐UHPM) terrane, occur in two regions of the Indonesian island of Sulawesi. Both exposures are located within NW–SE‐trending strike–slip fault zones. Garnet lherzolite occurs as <10 m wide fault slices juxtaposed against Miocene granite in the left‐lateral Palu‐Koro (P‐K) fault valley, and as 10–30 m wide, fault‐bounded outcrops juxtaposed against gabbros and peridotites of the East Sulawesi ophiolite within the right‐lateral Ampana fault in the Bongka river (BR) valley. Six evolutionary stages of recrystallization can be recognized in the peridotites from both localities. Stage I, the precursor spinel lherzolite assemblage, is characterized by Ol+Cpx+Opx±Prg‐Amp ± Spl±Rt±Phl, as inclusions within garnet cores. Stage II, the main garnet lherzolite assemblage, consists of coarse‐grained Ol+Opx+Cpx+Grt; whereas finer‐grained, neoblastic Ol+Opx+Grt+Cpx±Spl±Prg‐Amp±Phl constitutes stage III. Stages IV and V are manifest as kelyphites of fibrous Opx+Cpx+Spl in inner coronas, and Opx+Spl+Prg‐Amp±Ep in outer coronas around garnet, respectively. The final (greenschist facies) retrogressive stage VI is accompanied by recrystallization of Serp+Chl±Mag±Tr±Ni sulphides±Tlc±Cal. P–T conditions of the hydrated precursor spinel lherzolite stage I were probably about 750 °C at 15–20 kbar. P–T determinations of the peak stage IIc (from core compositions) display considerable variation for samples derived from different outcrops, with clustering at 26–38 kbar, 1025–1210 °C (P‐K & BR); 19–21 kbar, 1070–1090 °C (P‐K), and 40–48 kbar, 1205–1290 °C (BR). Stage IIr (derived from rim compositions) generally records decompression of around 4–12 kbar accompanied by cooling of 50–240 °C from the IIc peak stage. Stage III, which post‐dates a phase of ductile deformation, yielded 22±2 kbar at 750±25 °C (P‐K) and 16±2 kbar at 730±40 °C (BR). The granulite–amphibolite–greenschist decompression sequence reflects uplift to upper crustal levels from conditions of 647–862 °C at P=15 kbar (stage IV), through 580–635 °C at P=10–12 kbar (stage V) to 350–400 °C at P=4–7 kbar (stage VI), respectively, and is identical to the sequence recorded in associated granulite, gneiss and eclogite. Sulawesi garnet peridotites are interpreted to represent minor components of the extensive HP‐UHP (peak P >28 kbar, peak T of c. 760 °C) metamorphic basement terrane, which was recrystallized and uplifted in a N‐dipping continental collision zone at the southern Sundaland margin in the mid‐Cretaceous. The low‐T , low‐P and metasomatized spinel lherzolite precursor to the garnet lherzolite probably represents mantle wedge rocks that were dragged down parallel to the slab–wedge interface in a subduction/collision zone by induced corner flow. Ductile tectonic incorporation into the underthrust continental crust from various depths along the interface probably occurred during the exhumation stage, and the garnet peridotites were subsequently uplifted within the HP‐UHPM nappe, suffering a similar decompression history to that experienced by the regional schists and gneisses. Final exhumation from upper crustal levels was clearly facilitated by entrainment in Neogene granitic plutons, and/or Oligocene trans‐tension in deep‐seated strike–slip fault zones.  相似文献   

12.
冯帆  徐仲元  董晓杰  连光辉  贾振杨 《地质学报》2022,96(11):3819-3833
内蒙古乌拉山地区石榴子石花岗岩内发育大量石榴子石,这些石榴子石中保留着寄主岩石的变质演化历程的重要信息,故明确其成因类型至关重要。前人虽提出其为转熔成因,但未能提供充分证据证明。对此,本文对研究区深熔石榴黑云片麻岩以及石榴子石花岗岩内的石榴子石进行了岩相学以及矿物学研究。结果显示,在野外露头上,低度深熔石榴黑云片麻岩→中度深熔石榴黑云片麻岩的脉体/石榴子石花岗岩,石榴子石粒度逐渐增大,并且当岩石内的脉体小而少时不见粗粒石榴子石,脉体大而多时粗粒石榴子石发育,而石榴子石花岗岩内发育大量的粗粒石榴子石,此外脉体内的石榴子石粒度整体大于基体内的石榴子石粒度。在显微特征上,中度深熔石榴黑云片麻岩的脉体内的石榴子石和石榴子石花岗岩内的石榴子石晶形较差,形态各异,边界呈锯齿状,发育筛状变晶结构,并部分具有核部发育边部不发育的特点,基质内还具有逆反应结构以及斜长石堆晶体。矿物化学特征上,中度深熔石榴黑云片麻岩的脉体内的石榴子石和石榴子石花岗岩内的石榴子石以富Fe、Mg贫Mn、Ca为特点,不发育生长环带,与黑云母接触的石榴子石发育扩散环带,表现为TFeO曲线由中心向两边升高,MgO曲线由中心向两边降低...  相似文献   

13.
The equilibrium thermodynamics of the reaction:
And the equilibrium constant is composed of activities formulated using ideal mixing on sites. Consideration is given to the evaluation of uncertainties in pressures calculated using the geobarometer. Preliminary testing suggests that the geobarometer has considerable potential. Much wider testing is now required.  相似文献   

14.
15.
Published experimental data including garnet and clinopyroxene as run products were used to develop a new formulation of the garnet–clinopyroxene geothermometer based on 333 garnet–clinopyroxene pairs. Only experiments with graphite capsules were selected because of difficulty in estimating the Fe3+ content of clinopyroxene. For the calibration, a published subregular‐solution model was adopted to express the non‐ideality of garnet. The magnitude of the Fe–Mg excess interaction parameter for clinopyroxene (WFeMgCpx), and differences in enthalpy and entropy of the Fe–Mg exchange reaction were regressed from the accumulated experimental data set. As a result, a markedly negative value was obtained for the Fe–Mg excess interaction parameter of clinopyroxene (WFeMgCpx = ? 3843 J mol?1). The pressure correction is simply treated as linear, and the difference in volume of the Fe–Mg exchange reaction was calculated from a published thermodynamic data set and fixed to be ?120.72 (J kbar?1 mol?1). The regressed and obtained thermometer formulation is as follows: where T = temperature, P = pressure (kbar), A = 0.5 Xgrs (Xprp ? Xalm ? Xsps), B = 0.5 Xgrs (Xprp ? Xalm + Xsps), C = 0.5 (Xgrs + Xsps) (Xprp ? Xalm), Xprp = Mg/(Fe2+ + Mn + Mg + Ca)Grt, Xalm = Fe/(Fe2+ + Mn + Mg + Ca)Grt, Xsps = Mn/(Fe2+ + Mn + Mg + Ca)Grt, Xgrs = Ca/(Fe2+ + Mn + Mg + Ca)Grt, XMgCpx = Mg/(Al + Fetotal + Mg)Cpx, XFeCpx = Fe2+/(Al + Fetotal + Mg)Cpx, KD = (Fe2+/Mg)Grt/(Fe2+/Mg)Cpx, Grt = garnet, Cpx = clinopyroxene. A test of this new formulation to the accumulated data gave results that are concordant with the experimental temperatures over the whole range of the experimental temperatures (800–1820 °C), with a standard deviation (1 sigma) of 74 °C. Previous formulations of the thermometer are inconsistent with the accumulated data set; they underestimate temperatures by about 100 °C at >1300 °C and overestimate by 100–200 °C at <1300 °C. In addition, they tend to overestimate temperatures for high‐Ca garnet (Xgrs ≈ 0.30–0.50). This new formulation has been tested against previous formulations of the thermometer by application to natural eclogites. This gave temperatures some 20–100 °C lower than previous formulations.  相似文献   

16.
Garnet peridotites from the southern Su‐Lu ultra‐high‐pressure metamorphic (UHPM) terrane, eastern China, contain porphyroblastic garnet with aligned inclusions comprising a low‐P–T mineral assemblage (chlorite, hornblende, Na‐gedrite, Na‐phlogopite, talc, spinel and pyrite). Orthopyroxene porphyroblasts show fine exsolution lamellae of clinopyroxene and minor chromite. A clinopyroxene inclusion in garnet shows some orthopyroxene exsolution lamellae. Both the rims of porphyroblastic pyroxene and garnet and the matrix pyroxene and garnet crystallized at the expense of olivine. This is interpreted as a result of metasomatism of the peridotites by an SiO2‐rich melt at UHP conditions. A chromian garnet further overgrew on the rims of the garnet. The XMg values (Mg/(Mg+Fe)) of porphyroblastic garnet decrease from core to rim and vary in different peridotite samples, while the compositions of both the porphyroblastic and the matrix pyroxene are similar in terms of Ca–Mg–Fe. The Mg‐rich cores of porphyroblastic garnet and orthopyroxene record high temperatures and pressures (c. 1000 °C, ≥5.1 GPa), whereas the matrix minerals, including the rims of porphyroblasts, record much lower P–T (c. 4.2 GPa, c. 760 °C). Sm–Nd data give apparent isochron ages of c. 380 Ma and negative εNd(0) values (c.?9). These dates are considered meaningless due to isotopic disequilibrium between garnet cores and the rest of the rocks. The isotopic disequilibrium was probably caused by metasomatism of the peridotites by melt/fluids derived from the coevally subducted crustal materials. On the other hand, the Rb–Sr isotopic systems of phlogopite and clinopyroxene appear to have reached equilibrium and record a cooling age of c. 205 Ma. It is suggested that the garnet peridotites were originally emplaced into a low‐P–T environment prior to the c. 220 Ma continental collision, during which they were subducted together with crustal rocks to mantle depth and subjected to UHP metamorphism. An important corollary is that at least some of the coevally subducted crustal rocks in the Su‐Lu terrane have been subjected to peak metamorphism at P–T conditions much higher than presently estimated (≥2.7 GPa, ≤800 °C).  相似文献   

17.
周潭群变质岩中石榴石、斜长石和黑云母微区化学成分变化明显,石榴石变斑晶具典型的生长环带,由晶体中心向两侧边缘XMg、XFe值以光滑曲线递增,XCu、XMn值以光滑曲线递减,反映其增温过程;晶体最边缘的化学成分反映变质峰期的温度条件。通过石榴石变斑晶生长环带剖面分析,应用Grt-Bi温度计和GASP压力计,确定本区变质作用PT轨迹为顺时针形式,发生于大陆碰撞造山带环境。  相似文献   

18.
Regularly oriented orthopyroxene (opx) and forsterite (fo) inclusions occur as opx + rutile (rt) or fo + rt inclusion domains in garnet (grt) from Otrøy peridotite. Electron diffraction characterization shows that forsterite inclusions do not have any specific crystallographic orientation relationships (COR) with the garnet host. In contrast, orthopyroxene inclusions have two sets of COR, that is, COR‐I: <111>grt//<001>opx and {110}grt~//~{100}opx (~13° off) and COR‐II: <111>grt//<011>opx and {110}grt~//~{100}opx (~14° off), in four garnet grains analysed. Both variants of orthopyroxene have a blade‐like habit with one pair of broad crystal faces parallel/sub‐parallel to {110}grt plane and the long axis of the crystal, <001>opx for COR‐I and <011>opx for COR‐II, along <111>grt direction. Whereas the lack of specific COR between forsterite and garnet, along with the presence of abundant infiltrating trails/veinlets decorated by fo + rt at garnet edges, provide compelling evidence for the formation of forsterite inclusions in garnet through the sequential cleaving–infiltrating–precipitating–healing process at low temperatures, the origin of the epitaxial orthopyroxene inclusions in garnet is not so obvious. In this connection, the reported COR, the crystal habit and the crystal growth energetics of the exsolved orthopyroxene in relict majoritic garnet were reviewed/clarified. The exsolved orthopyroxene in a relict majoritic garnet follows COR‐III: {112}grt//{100}opx and <111>grt//<001>opx. Based on the detailed trace analysis on published SEM images, these exsolved orthopyroxene inclusions are shown to have the crystal habit with one pair of broad crystal faces parallel to {112}grt//{100}opx and the long crystal axis along <111>grt//<001>opx. Such a crystal habit can be rationalized by the differences in oxygen sub‐lattices of both structures and represents the energetically favoured crystal shape of orthopyroxene inclusions in garnet formed by solid‐state exsolution mechanism. Considering the very different COR, crystal habit, as well as crystal growth direction, the orthopyroxene inclusions in garnet of the present sample most likely had been formed by mechanism(s) other than solid‐state exsolution, regardless of their regularly oriented appearance in garnet and the COR specification between orthopyroxene and garnet. In fact, the crystallographic characteristics of orthopyroxene and the similar chemical compositions of garnet at opx + rt inclusion domains, fo + rt inclusion domains/trails and garnet rim suggest that the orthopyroxene inclusions in the garnet are most likely formed by similar cleaving‐infiltration process as forsterite inclusions, though probably at an earlier stage of metamorphism. This work demonstrates that the oriented inclusions in host minerals, with or without specific COR, can arise from mechanism(s) other than solid‐state exsolution. Caution is thus needed in the interpretation of such COR, so that an erroneous identification of exhumation from UHP depths would not be made.  相似文献   

19.
Abstract Mafic phyllosilicates in metabasites affected by low-grade regional metamorphism from Wales and eastern North Greenland show variations in their structure and chemistry. These variations are related to four mineral zones in these metabasites, which are recognized on the presence/absence of various key calc-silicate minerals and also actinolite. Zones 1 and 2 equate with the zeolite facies, zone 3 with the prehnite–pumpellyite facies (or prehnite–actinolite facies in rocks with appropriate bulk rock composition) and zone 4 with the greenschist facies. Whilst variations in Fe/(Fe + Mg) in chlorite correlate closely with Fe/(Fe + Mg) ratios in the whole-rock, other chemical variations are clearly unrelated to whole-rock compositions. Contents of Aliv are seen to increase systematically in samples from zone 1 through to zone 4, which relate to an increase in temperature. Calibration of alteration temperatures, calculated using the chlorite geothermometer (based on Aliv contents) developed for meta-andesites in the Los Azufres geothermal system (Mexico), against x values (an estimate of the proportion of chlorite to swelling component in the mafic phyllosilicates) shows a decrease in the swelling component in passing from zone 1 to zone 4, i.e. with an increase in temperature. Calculated temperatures compare favourably with published stability estimates for the various key calc-silicates and actinolite. These data indicate that the chlorite geothermometer, although developed for meta-andesites from a hydrothermal system, does show a correlation with temperatures estimated from calc-silicate assemblages in metabasites affected by low-grade metamorphism developed on a regional scale.  相似文献   

20.
浓度是溶液中客观存在的物理性质,活度则指非理想溶液(包括非理想固溶体)中组分的"有效浓度"。本文以石榴子石-黑云母(GB)温度计、石榴子石-Al2SiO5矿物-斜长石-石英(GASP)压力计为例,探讨了矿物活度模型对于温度计与压力计的影响。将石榴子石和黑云母作为理想或非理想固溶体,根据实验数据建立的不同版本的石榴子石-黑云母温度计,都能较好地重现实验温度,还能识别递增变质带、倒转变质带、热接触变质晕中,不同地带变质温度的系统性变化。但是,将石榴子石和黑云母同时作为理想固溶体的温度计,系统误差明显较大,计算温度系统性偏低。同时采用石榴子石和黑云母非理想活度模型,得到的温度计精确度高。将石榴子石和斜长石都作为理想固溶体建立的GASP压力计,计算压力明显偏高,不能准确识别Al2SiO5矿物的稳定域,有明显的系统误差。如果同时采用石榴子石与斜长石的非理想活度模型,即便不同活度模型之间热力学参数有很大差别,得到的GASP压力计准确度都较高,还能准确识别Al2SiO5矿物的稳定域。迄今为止,还严重缺乏适用于多种岩石类型和宽广温度-压力范围的通用型矿物活度模型。此外,虽然矿物温度计、压力计不涉及流体、熔体,但是其计算结果的确能准确反映客观地质事实,并不受流体、熔体的影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号