首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 61 毫秒
1.
A confirmatory study of soil physiographic units identified through aerial photo interpretation technique, in Yamuna alluvial plain, Haryana is presented here. The area under study is part of Yamuna alluvial plain in Sonepat district, Haryana. Shanwal and Malik (1980) studied and mapped this area (semi-detailed) on 1:25,000 scale through areial photo interpretation technique. The soil profile samples of major soil physiographic units of the area were fractionated into sand, silt and clay. Detail mineralagical studies were carried out through electron microscopic and X-ray diffractometer studies in order to know their nature and origin of the parent material. X-ray diffraction data shows that mineralogy of different fractions (Sand, silt and clay) of soils samples, of different physiographic units were similar except Lavee. In this area mica is the dominant day mineral in the soils followed by Kaolinite, chlorite, vermiculite and smectite in decreasing order of their abundances. The occurance of fibrous minerals in coarse clay and silt fraction of soil samples of Lavee physiographic unit is the interesting feature of this area. The presence of fibrous minerals indicates that this overlain material designated as natural Levee in this area is not the alluvium brought down by the river Yamuna but is aeolian material flown from adjoining deseret of Rajasthan and deposited as stabilized sand dune. The fibrous minerals have been reported earlier in the desert of Rajasthan.  相似文献   

2.
Soil and Soil Conservation surveys for watershed management were conducted using aerial photos of 1:60,000 scale in parts of North Cachar and Karbi-Anglong districts of Assam. The area was divided into different river catchments and sub-watersheds. The erosion, slope, landuse and soils in relation to physiogrphy were studied in each sub-watershed. The different physiographic units identified in the area were high, medium, low and very low hills; pediplains; alluvial plain and the valleys. These units were further subdivided based on slope, landuse and erosion etc. The soils were classified according to Soil Taxonomy. For priority determination, weightage was alloted to each of the sub-watersheds considering their physiography, slope, landuse, erosion,soil texture, depth and delivery ratio and sediment yield was calculated for each subwatershed. It has been found that out of 122875 ha, an area of 1745 ha had very high priority, 30590 ha high, 37290 ha medium, 51957 ha low and 1294 ha very low priority for soil conservation purposes.  相似文献   

3.
Visual Interpretation of Landsat Imagery (TM-FCC) on 1∶250,000 scale covering 2410 sq km in a part of Mahandi Delta, Kataka district, Orissa was carried out for delineating the physiographic units. The major physiographic units identified and delineated were ‘Delta plain’ and ‘Coastal plain’. These units were further subdivided on the basis of image elements. The abstraction level attained was ‘Family’ based on Soil Taxonomy. The soils of the beach were classified as Typic Ustipsamments; old coastal plain as fine, Typic Haplaquept and coarse loamy Aquic Ustifluvent; Tidal flat as fine Typic Haplaquept and fine loamy Aquic Ustifluvent; mud flat as fine Typic Haplaquept; Levee-plain complex as Typic Ustipsamment and fine loamy Typic Ustorthent; old Delta plain as fine Udic Ustochrept and Aeric Haplaquept and recent delta plain as fine loamy and coarse loamy Typic Ustorthent. The soils are mixed in mineralogy and Isohyperthermic in temperature regime.  相似文献   

4.
In the present study, detailed field survey in conjunction with remotely sensed (IRS-1D, LISS-III) data is of immense help in terrain analysis and landscape ecological planning at watershed level. Geomorphologically summit crust, table top summits, isolated mounds. plateau spurs, narrow slopes, plateau side drainage floors, narrow valleys and main valley floor were delineated. The soil depth ranges from extremely shallow in isolated mounds to very deep soils in the lower sectors. Very good, good, moderate, poor and very poor groundwater prospect zones were delineated. By the integrated analysis of slope, geomorphology. soil depth, land use/land cover and groundwater prospect layers in GIS. 29 landscape ecological units were identified. Each landscape ecological unit refers to a natural geographic entity having distinctive properties of slope, geomorphology. soil depth, land use/ land cover and groundwater prospects. The landscape ecological stress zone mapping of the study area has been carried out based on the analysis and reclassification of tandscape ecological units. The units having minimum ecological impact in terms of slope, geomorphology, soil depth and land use/land cover were delineated under very low stress landscape ecological zones. The units having maximum ecological stress in the form of very high slopes, isolated mounds, table top summits and summit crust, extremely shallow soils, waste lands and very poor groundwater prospects were delineated into very high stress landscape ecological zones. The integrated analysis of remotely sensed data and collateral data in GIS environment is of immense help in evaluation of landscape ecological units and landscape ecological stress zones. The delineated landscape ecological stress zones in the watershed have been recommended for landscape ecological planning for better utilization of natural resources without harming the natural geo-ecosystem of the area.  相似文献   

5.
The general tendency of mapping groundwater resource using remote sensing and Geographic Information System (GIS) techniques involve assigning higher weightage to geomorphology. But this cannot be used as a thumb rule everywhere, especially an area where many ductile and brittle zones are prevalent. The influence of texture and structure of sheared rocks might play a control over retaining and permitting groundwater to flow. Attur valley is characterized by the presence of many shear zones and faults and hence the rocks are highly fissile within the shear zones. The present study tries to establish a new ranking and weightage scheme and hence a new spatial model for groundwater resource mapping in shear zone area like Attur Valley. This spatial model can be verified with field data such as water level data, pump test and resistivity data.  相似文献   

6.
To understand the nature of land degradation and factors responsible for it, investigations were carried out in Etah district with an area of 4.45 lakh hectares. For identification of soil/land degradation problems, multidate Landsat, TM spectral bands and FCC were used. It is observed that salt-affected soils are sharply depicted by light and dark gray mixed tone on band 3, while they are not clear on band 4. Flood plain and waterlogged soils are clearly observed on band 4. Band 6 (10.3 – 12.5 µm) helps in separation of broad zones of coarse and fine-textured soils, active flood plain of rivers, and eroded and gullied lands. The confusion between coarse-textured droughty soils and salt-affected areas in TM FCC (2, 3, 4) could be eliminated by use of band-6 data in combination with FCC. For delineation of problematic areas, two approaches were followed viz. (i) physiographic approach, and (ii) direct approach. In the physiographic approach landscape map associated with image characteristics was prepared. Further the image interpretation units were interpreted for land degradation hazards. With this approach physiography and soil relationship and the degradation problems vis-a-vis soil units could be established and ameliorative measures as per soil condition can be suggested. In direct approach, the problematic areas as per predetermined key were demarcated. Out of 4.45 lakh ha of the area, 1.99 lakh ha is affected by various soil degradation problems, like droughty soils, flooding hazard and salinity and alkalinity which cover 22.1%, 50.0% and 27.9%, respectively. To study the distribution of a salt-affected lands, major physiographic boundaries were superimposed over the land degradation map prepared by direct approach. It is observed that 81.5% of the salt-affected areas lie in the old alluvial plain while 18.5% is in recent flood plain.  相似文献   

7.
Soil mapping on the scale 1:50,000 was conducted in Tehri-Garhwal district of Uttar Pradesh using Survey of India Topographic maps and utilising aerial photographs of the area which were interpreted for demarcation of physiographic units, vegetation, drainage and other features relevant to soil development. Resulting soil map and soils and land use information have been helpful in presenting an optimum land use and management plan in the area keeping in view of the soils characteristics, terrain features and existing land use, Soils and physiographic interpretation in the area have highlighted significant soil-landscape relationships relevant to land utilization. The other factors responsible for soil formation which could be significant in the area i.e. climate and parent material were also taken into consideration apart from topography. Of all these factors topography was revealed to be the predominant factor governing soil formation in the area. Soil units mapped coincided with the physiographic units demarcated through aerial photo-interpretation. The area of the district could be divided into three climatic zones viz. (i) Cool temperate, (ii) Sub-tropical warm temperate and (iii) tropical following Kaushic (1962). It was noticed that in each climatic zone with the climate being almost uniform within the zone, irrespe tlve of variations in the parent material, soil development was markedly affected by topographly, variations which led to differences in soil characteristics particulary soil texture and amount of coarse fragments. In about 70 percent of the area of the district where slopes are steep to very steep, topography was revealed to be the dominant factor determining characteristic soil development. In the remaining part where slopes are moderate to gentle, parent material is the dominant factor followed by topography.  相似文献   

8.
In the present study, an attempt has been made to analyse IRS-ID LISS-III satellite data in conjunction with field observations for geomorphological mapping and pedo-geomorphological characterisation in Mohgaon area of Nagpur district, Maharashtra. Analysis of satellite data reveals distint geomorphological units viz., plateau top, isolated mounds, linear ridges, escarpments, plateau spurs, subdued plateau, rolling plains, pediments, narrow valleys and main valley floor. Soil profiles, studied on different identified landforms, showed variation in site and morphological charactaristics. Moderate soil erosion occurs on plateau top, isolated mouds, plateau spurs, rollinmg plains and pediments. Severe erosion was identified on escarpments and subdued plateau and narrow valleys suffer very slight erosional hazards. Moderately well drained soils were found on rolling plains, pediments, narrow valleys and main valley floor. Well drained soils were noticed on plateau top and plateau spurs. Very shallow soils were found on the plateau top and isolated mounds. Shallow soils are found in linear ridges, escarpments, plateau spurs and rolling plains. Moderately deep and deep soils are found on subdued plateau, pediments and main valley floor. The landform-soil relatioinship reveals that the soils on the plateau top and isolated mounds are very shallow, well drained, clay textured. The soils on the narrow valleys and main valley floor are deep, moderatly well drained, and clayey in texture. It also indicates that landform-soil processes are governed by physiographic position, drainage, slope and erosion conditions of the area. The present study reveals that the analysis of remotely sensed data in conjunction with field observations in GIS will be of immense help in geomorphology mapping, analysis of landform-soil relationships and generation of their geo-spatial database.  相似文献   

9.
GIS based land resource inventory (LRI) with fine resolution imagery is considered as most authentic tool for soil resource mapping. Soil resource mapping using the concept of soil series in a smaller scale limits its wide application and also its impact assessment for crop suitability is controversial. In this study, we attempted to develop LRI at large scale (1:10,000 scale) at block level land use planning (LUP) in Dandakaranya and Easternghats physiographic confluence of India. The concept of land management unit was introduced in this endeavour. The impact assessment of LRI based LUP was exercised to develop efficient crop planning with best possible management practices. The study area comprised six landforms with slope gradient ranging from very gentle (1–3%) to steep slopes (15–25%). The very gently sloping young alluvial plains occupied maximum areas (19.95% of TGA). The single cropped (paddy) land appears to dominate the land use systems (40.0% of TGA). Thirty three landscape ecological units were resulted by GIS-overlay. Eighteen soils mapping units were generated. The area was broadly under two soil orders (Inceptisols and Alfisols); three great group (Haplaquepts, Rhodustalfs and Endoaquepts) and ten soil series. Crop suitability based impact assessment of LRI based LUP revealed that average yield of different crops increased by 39.2 and 14.5% in Kharif (rainy season) and Rabi (winter) seasons respectively and annual net returns by 83.4% for the cropping system, compared to traditional practices. Productivity and net returns can be increased several folds if customized recommended practices are adopted by the farmers. Informations generated from the study emphasized the potentiality of LRI towards optimizing LUP and exhibited an ample scope to use the methodology as a tool to assess in other physiographic regions in India and abroad.  相似文献   

10.
Landsat MSS data in the form of BW imagery were used to generate Soil Map of Punjab convering an area of about 5 million ha. MSS bands 2 and 4 (L4) were interpreted singly and combined to form a compostie interpretetion map with which field check, was translated in terms of soils. The abstraction level attained was Great Groups of Soil Taxonomy. The distribution of soils of Punjab, with Aridisols in the SW through Inceptisols in the Central zone, to Alfisols in the NE sectors suggested a strong geographic bias in their evolution. The major soils of the aridic zone (SW sectors of the state) are: Camborthids, Calciorthids, Torripsamments and Torrifluvents and of the Ustic zone (Central Punjab) are Ustochrepts and Haplustalfs (the most productive soils of the State), Ustipsamments and Ustifluvents. The salt affected soils are found interspersed with these soils. In the udic zone (NE fringe), Hapludalfs, Eutrochrepts, Udifluvents, Udorthents and Hapludolls are the major soil formations. The soil map reveals that about one-third of the total area of the state suffers from various soil problems, such as soil salinity and sodicity, water logging, and soil erosion. For increasing agricultural production, these soils need to be brought under the plough. The study leads to conclude that for quick and precise macro level land use planning, the use of Landsat imagery is imperative.  相似文献   

11.
Landsat imagery have been interpreted visually and under Additive Colour Viewer to interpret the regional geology and geomorphology in parts of Subarnarekha-Baitarani basin. The area lies south of Singhbhum shear zone and represents Precamrain shield. Important Simlipal ultrabasic volcanic complex of Orissa is included in the area. Although detailed map of the area is available, yet an attempt has been made to interpret the imagery for evaluating the results provided in comparison to the existing maps. Delineation of main lithological groups is possible. Having some data from the existing maps, lithoiogical boundary delineation of Mica Schist-Phyllite-Quartzite, Granites and Gneisses, Dhanjori Lava, Anorthosite-Gabbro Complex and Dolerite dykes, all of Precambrian age, has been done. Laterite and Quaternary sediments are also picked up. Lineament mapping has been carried out from imagery, which is difficult to map in the field. N--S and NNW-SSE lineament system is very prominent in Simlipal complex whereas in other parts NNW-SSE and NNE-SSW trends are common. The major fault plane running NNE-SSW in the area is responsible for the present-day configuration of Subarnarekha river. Identification of different geomorphological units is perhaps best done on imagery. Several geomorphic units like structural Hill, Denudational Hill, Pediment, Buried Pediment, Lateritic Clay Plain, Laterite upland, Terrace Plain etc have been mapped. Valley fills are wellpicked up from imagery. Hydrogeological potentiality of the different geologic and geomorphic units have been evaluated qualitatively. Ground water occurrence, movement and potentiality are mainly controlled by structural, geological and geomorphological set-up of the area. Buried Pediment, Laterite upland, Laterite clay plain and alluvial fills are the potential zones from the view point of ground water occurrences. Comparative study of the different Landsat bands and band-filter combinations under Additive Colour Viewer has been undertaken to find out the enhancement capability in delineating features. It is found that small scale geological and geomorphological maps can be prepared from Landsat imagery.  相似文献   

12.
Wasteland map (1∶100,000) of Rewasa catchment (Sikar district) has been prepared using aerial photographs and Landsat TM imagery. Thematic Mapper data were helpful in identifying the types of wastelands and details could be derived from the aerial photographs. The types of wastelands identified are sands, gullied land, salt affected areas, and barren rocky area. Depending upon the nature of wasteland, suitable rehabilitation measures like plantations, afforestation have been proposed.  相似文献   

13.
Contrast enhancement, one of the image processing techiques, is developed on the Multispectral Data Analysis System (MDAS) for enhancing the LANDSAT data. The purpose of image processing for enhancement is to improve the obscure objects data in the image to stand out more readily for good sensing to the human eye. It is observed on MDAS that some of the LANDSAT scenes when examined on the color display, give inadequate information for the required objective of interpretation. This is due to poor tonal contrast in the scene because of prevailing climatological conditions at the time of satellite pass over that area. Also, the LANDSAT data usually occupy a small subset of the total brightness range 0–127. To provide optimal contrast and variation for color compositing, contrast enhancement may by performed on the data before going to trie information processing (categolization) on the landsat scene. This paper describes the algorithms of parametric linear and non linear contrast enhancement techniques. A typical example to differentiate the degree of salinity in the soils was tested with the suggested algorithms and the results are tabulated in the form of photographs. The test area is selected from Haryana (frame no. 158-040 dated 2nd May, 1977) for testing the algorithms. The enhancement software developed on the MDAS stretches all the four Landsat bands and generates an output tape with the format similar to LANDSAT computer compatible tape (CCT). The stretched results of 5 and 7 bands are displayed in this paper. A false color composite which appears as on the color displya could also be generated from 4, 5 and 7 bands. The enhanced output was found to be useful for easily categorizing the data into various categories on MDAS.  相似文献   

14.
Land use on earth's landscape primarly indicates the degree of human interferance. Though landuse is controlled by several factors like soil, hydrologic, climatic, socio-economic and political yet geology and geomorphology play an important role in shaping landforms. The landforms processes mainly depend upon inherent lithology and structure of the earth. In the present paper an attempt has been made to study a sample area by air photo-interpretation technique using stereo-models and then evolve a methodology of land use mapping like photogeological and photopedological aspects. Also in brief, environmental aspects have been discussed. A sample area of 15 sq kms has been studied. The study opens up a new dimension for appreciation of resource and landuse management  相似文献   

15.
Based on field monitoring and remote sensing extraction, this paper analyzed the landscape evolution, reclamation process and transformation characteristics in north Jiangsu coastal region since 1980 through landscape transfer analysis, landscape spatial conversion model, and landscape dynamicity model. Results indicated that natural wetland decreased while in contrast the artificial wetland increased. Natural wetland was mostly converted into mudflats, and large proportion of mudflats were subsequently exploited into aquaculture waters, and other man-made construction projects. Significant transformation ranking ahead were mudflat to aquaculture waters, Suaeda glauca to dry land, Suaeda glauca to aquaculture waters, Couch grass to aquaculture waters, respectively. The proportion of transformation caused by anthropogenic activities was up to 82%, much higher than natural succession. Coastal ecological systems were severely disturbed and destroyed largely due to wetland reclamation and resources exploitation. The results suggest that the impact of human activity on wetland ecology needs more attention.  相似文献   

16.
Target discrimination is the key step of automatic target detection in synthetic aperture radar (SAR) images. In this paper, a new algorithm, effective and robust feature sets for target discrimination in high resolution SAR images has been proposed. Two main steps in target discrimination of SAR images have been developed, the feature extraction based on Zernike moments (ZMs) having linear transformation invariance properties and the PSO based feature selection to select the optimal feature subset of Zernike moments for decreasing computational complexity of feature extraction step. The input regions of interest (ROIs) have been segmented and passed to a number of preprocessing stages such as histogram equalization, position and size normalization. Two groups of Zernike moments (shape and margin (intensity) characteristic) have been extracted from the preprocessed images and they have been applied to the feature selection step. Each group includes 34 moments with different orders and iterations. The selected moments have been applied to a SVM classifier. The proposed scheme has been tested on the MSTAR database. The Receiver Operational Characteristics (ROC) curve and the performance of proposed method using some measured data have been analyzed. Experimental results demonstrate the efficiency of the proposed approach in target discrimination of SAR imagery.  相似文献   

17.
Usefulness of Landsat imagery in discerning major arid zone soils has been studied. Results are based on analysis of Band 7 coverage and Band 5 and 7 for a limited area followed by a comparison of these with the known soil distribution as seen in Bikaner, Jodhpur and part of Jalore, Pali and Nagaur districts. Results show that at Band 7 the dominant course loamy Typic Camborthids in association with dunes could be recognised. Vegetation was found non-interfering though surface soil moisture variation of the period immediately following monsoon months (Sept.–Dec.) appeared to do so. Hardpan soils were identifiable largely by their associated features than by soil characteristics proper. Fine loamy typic Camborthids could not be recognised at series level and as a group also these could be identified only in post-monsoon period when the land is devoid of much of its vegetation cover. Saline areas could be recognised but those occurring in South-eastern tract were largely inseparable from adjoining shallow soils. For these, Band 5 image of monsoon months was quite satisfactory. For all other soils, Band 7 was better than Band 5. Though light brown sandy soils in association with dunes are the dominant formations, past evolutionary history and source rock variability have given considerable heterogeniety to the soil cover of the arid zone. Natural resource survey activity over the years has provided ground information for nearly 30 percent of Westren Rajasthan and this incidentally covers major soils of the area albeit with few exceptions. With the Landsat imagery now becoming accessible, it was thought befitting to see how far soil variations as recognised in the course of above surveys could be discerned from the Landsat. Some encouraging reports on the use of the Landsat or similar data in small cale soil mapping are available in literature (Kristof and Zachary, 1970; El-Baz, 1978; Everitt and Gerbermann 1977). In our own country also usefulness of this tool has been demonstrated by Krishnamurthy and Srinivanan (1973) and Hilwig (1975). Recently Bhandariet al; (1976) while working in northern part of arid zone have shown that soil salinity mapping could be attempted with the help of Landsat data.  相似文献   

18.
Utilising aerial photographs as the chief source of information an attempt has been made to study the land units, land use, land capability and limitations in relation to geomorphology of an area of about 350 sq. kms. in Krishna district of Andhra Pradesh. Besides identifying major individual landforms, the area is divided into four geomorphic environments each characterised by dominant landform pattern and relief. Each form and unit is described. Nine types of land units based on amount of slope and six land use classes were chosen after preliminary interpretation and a reconnaissance field check. The estimated range in slope is given for each land unit. The land’s capability and limitations are brought out from consideration of landforms, land units (slopes), nature of soil and water resources. Soil samples were collected from each geomorphic unit and analysed. The results are presented in the form of 3 maps and 2 tables, which may be of use for planning and development of the area.  相似文献   

19.
Landsat RBV imagery on 1:500,000 was interpreted to prepare small scale physiography map of the part of the Tons basin. Aerial photographs on 1:60,000 to 1:80,000 scale were interpreted to prepare medium scale physiography map of the basin. The basin has been sub-divided into three physiographic regions viz. High to very high mountains constituting of glaciated and temperate high mountains; Low to moderately high mountains and very low maountains. The physiographic regions have been further sub-divided based on landforms, slope and dissection index. The major physiographic units are summits, repose slopes, serrated ridges with horn/arates; mountain and valley glaciers, morains, solufluction terraces, intrenched incised river valleys, engrown valleys, alluvial terraces, rocky slopes/cliffs and debris.  相似文献   

20.
Aerial photographs are invaluable for study of terrain characteristics which are reflected in the morphology-form and association of different physiographic units in any area. Based on environmental controls of geology, relief, dominant geomorphic process and climate, a system of landscape classification has been evolved. Characteristic physiographic units in any area are identified and defined based on their form, slope variations, orientation, spacing, surficial deposits and water regime. Only two units i.e. landscape pattern and facet are adopted in the classification system. The dominant aeolian process evolves a variety of forms and associations. The most important forms evolved are long sandy ridges with variation in spacing and directions, shifting sand dunes-both scattered and in clusters and various combinations of short sandy ridges. The paper describes the form, assocation and characteristics of one of the landscape patterns classified in the desert area. The norms established on the basis of aerial photo-interpretation thus help to infer terrain characteristics at different places where the pattern occurs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号