首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Long-enduring bursts in the Sun at microwaves can occur in a succession, and rare examples of 41-min periodic structure are shown. The experimental difficulties for identifying such phenomena are discussed; their possible association with oscillations in quiescent prominences is suggested.  相似文献   

2.
Solar mappings with moderate angular resolution at 7 GHz seem to support the hemispherical dependence of the sense of circular polarization being right-handed for the southern hemisphere, and left-handed for the northern hemisphere. One explanation of the effect can be found by taking into account the missing fields from active centers, emerging from one hemisphere and immersing into the other.  相似文献   

3.
We present two-dimensional observations of the quiet Sun at 73.8, 50.0, and 38.5 MHz obtained with the Clark Lake Radioheliograph during the sunspot minimum period of September 1986. The observed peak brightness temperatures during the entire period of sunspot minimum are found to be extremely low, lying in the range (0.6 × 105 K – 2.5 × 105 K). It is shown that these low values cannot be explained by the generally adopted models for N e and T e in a homogeneous corona. The effect of scattering by random density fluctuations is introduced in order to decrease the values of predicted T b . The value of peak T b is computed as a function of relative r.m.s. density fluctuations = <N e >/N e ; and it is found that should be in the range from 0.07 to 0.19, 0.1 to 0.25, and 0.15 to 0.35, respectively, at 38.5, 50.0, and 73.8 MHz, respectively, to explain the observed low brightness temperatures.On leave from Indian Institute of Astrophysics, Bangalore, India.  相似文献   

4.
A crossed Yagi antenna array at 35 MHz was employed in conjunction with a polarization switch so as to enable spectral observations of solar noise storm activity in R and L polarizations. Intense decametric solar noise storms were recorded during the third week of November 1975 and fourth week of March 1976 with the help of a high resolution spectroscope operating near 35 MHz.The paper describes some of the new microscopic spectral features observed during these two noise storms. Three sets of high resolution dynamic spectra of decametric solar bursts, two of which are explained in terms of induced scattering of Langmuir waves by thermal ions and the third in terms of additional propagation effects through dense coronal irregularities, are presented. The microscopic bursts, classified as inverted U U and dots, represent small-scale (104 km) phenomena with durations of less than a second.Some burst spectra appear as chain of dots with individual bandwidths 40 kHz and durations 0.3 sec. It is suggested that the bandwidth of such dot emissions (40 kHz) provides an evidence that they might indeed be generated by the process of induced scattering of plasma waves which predicts emission bandwidth f × 10–3, where f is the center frequency.Some bursts are observed as a chain of striations showing curvature along the frequency axis which is attributed to dispersion in propagation delays through the dense coronal irregularities.  相似文献   

5.
A. Hood  U. Anzer 《Solar physics》1988,115(1):61-80
Conditions under which cool condensations can form in the solar corona are investigated using the powerful phase plane method to analyse the energy and hydrostatic balance equations. The importance of the phase plane approach is that the conclusions deduced are not sensitive to the actual choice of boundary conditions adopted which only determine the actual contour. The importance of heating variations and area divergence are studied as well as the influence of gravity for their effect on the formation of cool condensations. The cool temperature at which optically thin radiation and heating balance is important and the links with other cool solutions are mentioned.  相似文献   

6.
An investigation is made to determine the relationship between a coronal mass ejection (CME) and the characteristics of associated metre-wave activity. It is found that (1) the CME width and leading edge velocity can be highly influential in determining the intensity, spectral complexity and frequency coverage of both type II and continuum bursts; (2) the presence of a CME is possibly a necessary condition for the production of a metric continuum event and (3) metric continuum bursts as well as intense, complex type II events are preferentially associated with strong, long lasting soft X-ray events.  相似文献   

7.
P. A. Robinson 《Solar physics》1991,134(2):299-314
A new model is developed for electron-cyclotron maser emission from flaring loops, which incorporates competition between driving of the instability and maser-induced relaxation, together with interactions between small neighboring regions of unstable plasma. This results in a picture in which radiation is emitted in bursts from regions whose length scale is determined self-consistently by previous bursts, while the unstable plasma fluctuates about the point, close to marginal stability, at which driving of the instability is balanced by relaxation due to maser-induced electron diffusion. Under the conditions applicable to flaring loops, time scales of fundamental x-mode (x1) driving and saturation are approximately equal at 1 ms, resolving a (104–106)-fold discrepancy in previous models and agreeing with the observed time scales of microwave spike bursts. Saturation effects are found to be especially effective in suppressing amplification of the most strongly growing modes. This suppression enables fundamental o-mode (o1) and second-harmonic x-mode (x2) emission to compete more effectively against x1 emission for the available free energy than has previously been estimated. Consideration of mode competition, burst time scales, suppression of growth due to overlap between amplification and absorption bands, and escape of radiation through absorption layers to the observer, implies that the observed radiation probably escapes from the corona principally in the o-mode, either emitted directly as o1 radiation or mode converted from x1 emission.  相似文献   

8.
I find that a one-dimensional strong coronal shock (M s 3) will grow outward until the Mach number (M s ) ceases to increase with height (dM s /dh = 0). The shock is driven by the pressure gradient and it is damped by gravity and by energy losses (radiative and conductive). The driving and damping terms reach equilibrium for M s - 4.Standard shock jump conditions for M s - 4 lead to post-shock temperatures in the corona in the range 107 to 1.8 × 107K and emission measures from 3.8 × 1047 to 3.8 × 1048 cm-3. For isolated simple events, I predict an exponential decay of the emission measure with decay times in the range 1 6.5 min.In a detailed study of over 4000 X-ray bursts, Drake (1970) compares 1 to 6 keV X-ray data with 7.7 to 12.5 keV X-ray data (the thermal component) and finds ranges for the temperatures of 1.2 × 107 to 1.8 × 107K, for the emission measures of 5.1 × 1047 to 3.8 x 1048 cm-3 and for the decay times 0.5 20 min. He also finds that the emission measure varies ... both from event to event and within the event, by more than a factor of two.The agreement between the predictions and the observations makes it appear that a strong shock in the corona will produce a post-shock state that yields the observed characteristics of the soft component of X-ray bursts (the thermal X-rays).I give several examples where sprays and fast eruptive prominences 1} \right)$$ " align="middle" border="0"> , that are not associated with solar flares, are associated with thermal X-ray bursts. There were two slow eruptive prominences (M 1) in the sample, and neither of them yielded a detectable X-ray burst.Now at the Dept. of Physics and Astronomy (NASA), Univ. of New Mexico; Albuquerque, N.M. 87106.  相似文献   

9.
It is shown that the existing theory of type II bursts, based on a model of the emission from the shock wave front, has difficulties when compared with observational data. We suggests a new model for type II bursts. According to this model, in an expanding magnetic loop a cluster of energetic electrons acts to excite the cyclotron instability of plasma waves. The waves are excited on surfaces where the cyclotron resonance condition is satisfied, and are then transformed into electromagnetic emission by merging. Our proposed model may be useful to explain some observational facts, such as the narrow-band character of the emission and the space-time relationship between the harmonics. Some tests to check the validity are proposed.  相似文献   

10.
K X-ray line emission from S, Ar, Ca and Fe is calculated for conditions likely to exist in solar flares. We consider both the non-thermal and thermal phases of flares as indicated by X-ray observations. Impulsive non-thermal events seen at the onset of a flare at photon energies > 20 keV generally give rise to small K line fluxes (<250 photons cm-2 s-1) on the basis of data presented by Kane and Anderson. The amount of S K radiation in particular depends sensitively on the lower-energy bound of the non-thermal electron distribution giving rise to the impulsive burst, offering a possible means of determining this. Thermal K emission is significant for only Fe ions. For S, Ar and Ca, the temperatures required for a sizeable number of electrons with energies greater than the K-ionization potential will also strip these elements to ionization stages too high for K transitions to be possible. Comparison of thermal K emission from iron during an intense solar flare leads to a very high emission measure on the basis of these calculations, but such a value seems to be compatible with an analysis of the 1–3 Å continuum during the same event.NAS/NRC Resident Research Associate.Visiting Scientist, High Altitude Observatory, NCAR, Boulder, Colo. 80302.  相似文献   

11.
A sample of 48 observations of coronal mm-wave (off-limb) sources (CMMSs) has been analysed in order to check relationships to cm-wave bursts and to study the emission process. CMMSs appear to be related to gradual and/or stronger microwave bursts with post-burst increase which start up to a few hours prior to the time of the mm-wave observations. The lifetime of CMMSs is much larger than that of these bursts. The interpretation of the mm-wave emission by optically thick bremsstrahlung at the temperature Tb,o ≈ 104 K (which also corresponds to observations in Hα) requires emission measures N2e Δs ≧ 2 · 1028 cm−5 at 37 GHz. On the other hand, optically thin bremsstrahlung at temperatures of Te ≈ 5 · 106–107 K (which are observed in X-rays) can apply to cm-waves. Application of this mechanism to mm-waves, too, would require source sizes much smaller than the half-power beam width (HPBW) of the radio telescopes (so that in this case the presently observed brightness temperatures Tb,o would be underestimated).  相似文献   

12.
We report detailed observations of the herringbone (HB) fine structure on type II solar radio bursts. Data from the Culgoora radiospectrograph, radiometer and radioheliograph are analyzed. We determine the characteristic spectral profiles, frequency drift rates and exciter velocities, fluxes, source sizes, brightness temperatures, and polarizations of individual HB bursts. Correlations between individual bursts within the characteristic groups of bursts and the properties of the associated type II bursts are examined. Our data are compatible with HB bursts being radiation at multiples of the plasma frequency generated by electron streams accelerated by the type II shock. We conclude that HB bursts are physically distinct phenomena from type II and type III bursts, differing significantly in emission processes and/or source conditions; this conclusion indicates that many of the presently available theoretical ideas for HB bursts are incorrect.Now at: Department of Physics and Astronomy, University of Iowa, U.S.A.Now at Anglo-Australian Observatory, Sydney, Australia.  相似文献   

13.
The results of the spectrophotometrical measurements of the polarization in the coronal lines Fe xiv 5303 Å and Fe × 6374 Å are given. Polarization spectrograms were obtained by two spectrographs (prism and echelle types) during the solar eclipse in Mexico on 7 March, 1970 near the region of the second contact at the heights 0.06 to 0.12 R above the limb. The polarization in the green line is about 30% (for averaged height 1.08 R ). The polarization in the red line is close to the errors of the measurement and does not exceed 6%. A brief discussion of the results is also given.  相似文献   

14.
An investigation is made to determine the positional relation between the leading edge of the coronal mass ejection (CME) and the source region of associated solar type II radio bursts. A preliminary relation between the optical and radio activity was first established for each event using projected starting times and positional data. Height - time plots were then deduced for the radio activity using radiospectrograph observations in conjunction with a variety of coronal density models. These plots were then compared with height - time plots for the leading edge of the associated CME events, which has been observed with the SOLWIND experiment aboard the P78-1 satellite. In 31 well-observed events a total of 13 (42%) had type II bursts which could confidently be placed near the leading edge of the CME. In these events the density model which gave the best agreement between CME and type II positions was five times the Saito (1970) quiet Sun model. The existence of these closely related events was further confirmed by direct positional comparisons for the event of 1979, May 4. In a further nine events the type II burst was seen within the CME but was located well behind the leading edge, suggesting that they were created by a blast wave. The remaining nine events had height - time plots which could not be accurately compared. The observations are discussed in relation to models for the CME and type II activity. We suggest that the type II is generated when the shock wave is formed within the closed field structure near the leading edge of the CME or, in the case of a blast wave, interacts with closed fields in the body of the transient.  相似文献   

15.
During the time period of November 1968 to March 1970, 259 15.4 GHz impulsive microwave bursts have been identified of which 147 had associated 2–12 Å soft X-ray bursts. Average durations, rise times, and decay times for the microwave bursts are 2.9 ± 2.4 min, 0.9 ± 0.8 min, and 2.2 ± 2.1 min, respectively.Total durations and decay times for the X-ray events display a wide range of values from a few minutes to several hours. Rise times for 50 % of the events fell in the range of 2 to 7 min. A significant fraction (32 %) of the X-ray events may exhibit a flux enhancement prior to the main outburst.For 85 % of the flare cases, the X-ray event begins simultaneously with or before the microwave event. In 91 % of the cases the X-ray event peaks later than the microwave event. The average delay is 3.0 ± 1.9 min with 50 % of cases in the range of 0 to 4 min.The X-ray flux increases are significantly correlated with the microwave flux, increases, having a correlation coefficient of 0.43 (> 99.9 % confident).This work was supported in part by the Office of Naval Research under contract NOOO14-68-A-0196-0009 and the National Aeronautics and Space Administration through grant NGL-16-001-002.  相似文献   

16.
We present statistics relating shock-associated (SA) kilometric bursts (Cane et al., 1981) to solar metric type II bursts. An SA burst is defined here to be any 1980 kHz emission temporally associated with a reported metric type II burst and not temporally associated with a reported metric type III burst. In this way we extend to lower flux densities and shorter durations the original SA concept of Cane et al. About one quarter of 316 metric type II bursts were not accompanied by any 1980 kHz emission, another quarter were accompanied by emission attributable to preceding or simultaneous type III bursts, and nearly half were associated with SA bursts. We have compared the time profiles of 32 SA bursts with Culgoora Observatory dynamic spectral records of metric type II bursts and find that the SA emission is associated with the most intense and structured part of the metric type II burst. On the other hand, the generally poor correlation found between SA burst profiles and Sagamore Hill Observatory 606 and 2695 MHz flux density profiles suggests that most SA emission is not due to energetic electrons escaping from the microwave emission region. These results support the interpretation that SA bursts are the long wavelength extension of type II burst herringbone emission, which is presumed due to the shock acceleration of electrons.Also: Department of Physics and Astronomy, University of Maryland, College Park, MD 20742, U.S.A.  相似文献   

17.
An attempt is made to account for the decimetre portion of the Type-IV solar radio bursts by plasma emission. Non-thermal electrons (E ~ 500 keV) trapped in a magnetic mirror (IVdm, burst source) having loss-cone gap distribution excite plasma waves which are transformed into transverse waves through non-linear scattering by ions. A good agreement was reached between the calculated spectrum and the observed fluxes for the event of 1972 August 2. A distribution of the number of non-thermal electrons with height, and a total number of 1032, were obtained. Also it was found that the Langmuir waves can accelerate some background thermal electrons to the MeV range.  相似文献   

18.
19.
A statistical analysis is used to determine the properties of metre-wavelength events which are associated with interplanetary type II bursts. It is found that the likelihood of an interplanetary type II burst is greatly increased if: (a) an associated metre-wavelength type II has a starting frequency less than 45 MHz; (b) a strong metre-wavelength continuum is present; (c) the type II contains herringbone fine structure; and (d) the metre-wavelength activity is accompanied by strong, long-lasting H and soft X-ray events.Visiting scientist at Division of Radiophysics, January 1983; previous address - NASA/Goddard Space Flight Center, Greenbelt, Maryland.  相似文献   

20.
The circular polarization of complex solar bursts was measured at short microwaves (22 GHz, × 1.35 cm) with high sensitivity (0.03 s.f.u. r.m.s.) and high time resolution (5 ms). The polarization shows up as soon as an excess burst emission is measured. Two components are found in the time development of the degree of circular polarization: (1) a steady level, sometime changing smoothly with time; (2) superimposed faster polarization time structures, small compared to the basic steady degree of polarization, and often not clearly related to the burst flux time structures. The observed degrees may range from 10% to more than 85%.In memoriam (1942–1981).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号