首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
A simulation study of the sea breeze circulation and thermal internal boundary layer (TIBL) characteristics has been carried out at the tropical site Kalpakkam on the east coast of India, for operational atmospheric dispersion prediction. The community based PSU/NCAR MM5 Meso-scale meteorological model is used for the study. Three cases on typical days in summer (24 May 2003), southwest (SW) monsoon (1 July 2001) winter season (2 February 2003) with different large-scale flow pattern are studied. The MM5 model is used with 3 nested domains with horizontal grid resolutions 18 km, 6 km and 2 km and 26 vertical levels. The model is integrated for 24 hours in the above cases with initial and boundary conditions taken from NCEP-FNL analyses data. Observations of 10 meteorological stations and coastal boundary layer experiments conducted at Kalpakkam are used for comparison and validation of the simulation. The characteristics of simulated sea breeze and TIBL at Kalpakkam are seen to vary in the above cases according to the prevailing large-scale winds and surface fluxes. The sea breeze circulation is seen to develop early with larger strength and inland propagation in the summer case under the influence of moderate synoptic wind and strong heating conditions than in the SW monsoon and winter cases. The horizontal and vertical extents of TIBL are found to be larger in the summer case than in other cases. Although model parameters agree in general with observations, all the fine features are not clearly captured and some slowness in model sea breeze development is also seen. The results indicate the need to improve i) the initial conditions by assimilation of available surface/upper air observations to reduce model bias and ii) surface net radiation parameterisation. The model could predict the essential features of the local circulation and further improvement is expected with better initial condition data and incorporation of more realistic surface data.  相似文献   

2.
Urban effects of Chennai on sea breeze induced convection and precipitation   总被引:2,自引:0,他引:2  
Doppler radar derived wind speed and direction profiles showed a well developed sea breeze circulation over the Chennai, India region on 28 June, 2003. Rainfall totals in excess of 100 mm resulted from convection along the sea breeze front. Inland propagation of the sea breeze front was observed in radar reflectivity imagery. High-resolution MM5 simulations were used to investigate the influence of Chennai urban land use on sea breeze initiated convection and precipitation. A comparison of observed and simulated 10m wind speed and direction over Chennai showed that the model was able to simulate the timing and strength of the sea breeze. Urban effects are shown to increase the near surface air temperature over Chennai by 3.0K during the early morning hours. The larger surface temperature gradient along the coast due to urban effects increased onshore flow by 4.0m s−1. Model sensitivity study revealed that precipitation totals were enhanced by 25mm over a large region 150 km west of Chennai due to urban effects. Deficiency in model physics related to night-time forecasts are addressed.  相似文献   

3.
极端干旱荒漠区典型晴天大气热力边界层结构分析   总被引:4,自引:1,他引:3  
张强  赵映东  王胜  马芳 《地球科学进展》2007,22(11):1150-1159
利用极端干旱区敦煌野外观测试验资料,分析了极端干旱荒漠区夏季典型晴天位温、风速、比湿等主要物理要素的垂直结构特征及其地表热力和近地层大气运动特征的日变化规律。发现在极端干旱地区夏季晴天大气热力边界层结构十分独特。在夜间,贴地逆温层最低在900 m以上,最厚可以达到1 750 m,逆温层上面的残余层一般能达到4 000 m左右的高度。在白天,位温超绝热递减层高达1 000 m,超绝热递减层上面的混合层最高达3 700 m,混合层顶上还有大约450 m甚至更厚的夹卷层。当白天对流层发展达到残余层以后,混合层的发展明显加快。风速和比湿垂直廓线特征很好地印证了大气热力边界层独特的结构特征,地表热力和近地层大气运动特征也为这种独特的大气热力边界层结构提供了较好的物理支持。  相似文献   

4.
Atmospheric boundary layer observations are conducted at a coastal site during a transition phase from winter to summer season over the Indian peninsula. Thermal Internal Boundary Layer (TIBL) characteristics in presence of an off-shore and a weakly influenced on-shore synoptic wind are examined with the help of measurements carried out with a mini-SODAR (SOund Detection And Ranging), tethered balloon, and tower-based micrometeorological measurements. Influence of the changing synoptic scale conditions on turbulent characteristics of TIBL is discussed. Mini-SODAR data showed the development and decay of sea and land breeze. It is seen that the characteristics of TIBL over the coastal land after sea breeze onset are similar to that of a shallow convective boundary layer (CBL) commonly found over plain land. Inside the TIBL, a maximum wind speed was noted close to the surface due to the penetration of sea breeze. In the off-shore case, a distinct sea breeze circulation was observed unlike in the case of on-shore flow. In the presence of weak on-shore case, a ‘minor sea’ breeze is noted before the establishment of sea breeze and a reduction in the momentum fluxes gives rise to decrease in the turbulence intensity. Updraft in the sea breeze front was stronger during weak synoptic conditions. Influence of synoptic changes on the sea breeze-land breeze circulation such as onset, strength and duration of the sea-land breeze are also examined. This work was done while the first author was a visiting scientist at IGCAR, Kalpakkam, India.  相似文献   

5.
The large-scale vegetation fires instigated by the local farmers during the dry period of the major El Niño event in 1997 can be considered as one of the worst environmental disasters that have occurred in southeast Asia in recent history. This study investigated the local meteorology characteristics of an equatorial environment within a domain that includes the northwestern part of Borneo from the 17 to 27 September 1997 during the height of the haze episode by utilizing a limited area three-dimensional meteorological and dispersion model, The Air Pollution Model (TAPM).Daily land and sea breeze conditions near the northwestern coast of Borneo in the state of Sarawak, Malaysia were predicted with moderate success by the index of agreement of less than one between the observed and simulated values for wind speed and a slight overprediction of 2.3 of the skill indicator that evaluates the standard deviation to the observed values. The innermost domain of study comprises an area of 24,193 km2, from approximately 109°E to 111°E, and from 1°N to 2.3°N, which includes a part of the South China Sea. Tracer analysis of air particles that were sourced in the state of Sarawak on the island of Borneo verified the existence of the landward and shoreward movements of the air during the simulation of the low level wind field. Polluted air particles were transported seawards during night-time, and landwards during daytime, highlighting the recirculation features of aged and newer air particles during the length of eleven days throughout the model simulation. Near calm conditions at low levels were simulated by the trajectory analysis from midnight to mid-day on the 22 of September 1997. Low-level turbulence within the planetary boundary layer in terms of the total kinetic energy was weak, congruent with the weak strength of low level winds that reduced the ability of the air to transport the pollutants.Statistical evaluation showed that parameters such as the systematic RMSE and unsystematic RMSE between the observed and simulated values indicated the modest skill of the model in simulating the low level winds. Otherwise, the equatorial meteorological parameters such as wind speed and temperature were successfully simulated by the model with comparatively high correlation coefficients, lower RMSEs and moderately high indices of agreement with observed values.  相似文献   

6.
The characteristic features of the marine boundary layer (MBL) over the Bay of Bengal during the southwest monsoon and the factors influencing it are investigated. The Bay of Bengal and Monsoon Experiment (BOBMEX) carried out during July–August 1999 is the first observational experiment under the Indian Climate Research Programme (ICRP). A very high-resolution data in the vertical was obtained during this experiment, which was used to study the MBL characteristics off the east coast of India in the north and south Bay of Bengal. Spells of active and suppressed convection over the Bay were observed, of which, three representative convective episodes were considered for the study. For this purpose a one-dimensional multi-level PBL model with a TKE-ε closure scheme was used. The soundings, viz., the vertical profiles of temperature, humidity, zonal and meridional component of wind, obtained onboard ORV Sagar Kanya and from coastal stations along the east coast are used for the study. The temporal evolution of turbulent kinetic energy, marine boundary layer height (MBLH), sensible and latent heat fluxes and drag coefficient of momentum are simulated for different epochs of monsoon and monsoon depressions during BOBMEX-99.The model also generates the vertical profiles of potential temperature, specific humidity, zonal and meridional wind. These simulated values compared reasonably well with the observations available from BOBMEX.  相似文献   

7.
中国区域1970-2000年622个气象观测台站资料EOF分析显示,气温的上升导致中国大部分地区饱和水汽压差呈上升趋势,大气热力强度增加,风动力明显减弱.内蒙中部以南至长江中游以北区域是大气热力增强最为敏感的地区.气温升高导致这一区域大气"干燥力"增强,区域蒸发潜力下降速度低于其他地区,气温的上升对低云覆盖产生一定程度...  相似文献   

8.
An attempt has been made to study the marine boundary layer characteristics over Bay of Bengal using BOBMEX (Bay of Bengal and Monsoon Experiment) pilot experiment data sets, which was conducted between 23rd October and 12th November 1998 on board ORV Sagar Kanya. A one-dimensional multilevel atmospheric boundary layer with TKE-ε closure scheme is employed to study the marine boundary layer characteristics. In this study two synoptic situations are chosen: one represents an active convection case and the other a suppressed convection. In the present article the marine boundary layer characteristics such as temporal evolution of turbulent kinetic energy, height of the boundary layer and the airsea exchange processes such as sensible and latent heat fluxes, drag coefficient for momentum are simulated during both active and suppressed convection. Marine boundary layer height is estimated from the vertical profiles of potential temperature using the stability criterion. The model simulations are compared with the available observations.  相似文献   

9.
沙漠公路风蚀破坏规律的数值模拟研究   总被引:1,自引:0,他引:1  
李驰  高瑜  黄浩 《岩土力学》2011,32(Z1):642-0647
通过Fluent软件对沙漠公路的风蚀破坏规律进行数值模拟研究。分析公路不同横断面时风沙流扰动、增速、减速、恢复的过程,确定路基(堑)高度、边坡坡率和路面宽度等公路断面设计参数对风沙流扰动的影响,提出沙漠公路路基(堑)风蚀破坏规律。结果表明:路面宽度的改变对路基沿程风速变化影响较小,各特征点处风速变化小于5%。路基(堑)高度和边坡坡率对风沙流扰动的影响较大。随路基(堑)高度增加,风沙流流场的扰动被增强,路基(堑)风蚀破坏越显著,当边坡坡率为1:1时,路基模型高度250 mm时的迎风路肩风速为模型高度60 mm时的 1.15倍,其背风坡脚风速降低45%;路堑模型高度250 mm时的背风堑顶风速为模型高度60 mm时的1.05倍,迎风堑脚处风速降低高达80%。建议沙漠公路宜采用中低路基(堑),不宜高填深挖。当路基(堑)高度一定,边坡坡率为1:1.75或1:2时,路基(堑)沿程风速变化平缓,沙漠路肩不易被吹蚀破坏;路堑中堑脚位置处不易出现堆积。其结论与室内风蚀风洞试验结果有很好的一致性  相似文献   

10.
The very severe cyclonic storm Nargis of 2008 was a strong tropical cyclone that caused the deadliest natural disaster in the history of Myanmar. The time tested NCAR/PSU MM5 model has been used to simulate the Nargis cyclone, which is designed to have two domains covering the Bay of Bengal with horizontal resolutions of 90 and 30?km. The physics options chosen are Kain?CFritsch 2 for convection, Blackadar (BLA), Burk?CThompson, medium range forecast (MRF), Eta Mellor?CYamada (Eta MY) and Gayno?CSeaman (GS) for Planetary Boundary Layer (PBL) and Simple Ice for explicit cloud physics processes. The experiment was conducted with the model integration starting from April 27, 2008, to May 3, 2008. The performance of the five PBL schemes is evaluated in terms of radius height cross-section of the three component winds, surface heat fluxes of sensible heat and latent heat, equivalent potential temperature (?? e ), precipitation, track and variation of Central Surface Pressure and wind speed with time. The numerical results show a large impact of the PBL schemes on the intensity and movement of the system. The intensity of the storm is examined in terms of pressure drop, strength of the surface wind and rainfall associated with the storm. The results are compared to the India Meteorological Department observations. These experiments indicate that the intensity of the storm is well simulated with the Eta MY and BLA with finer resolution. The simulated track with MRF compared well with the Joint Typhoon Warning Center observation at landfall position both with the 90 and 30?km resolutions.  相似文献   

11.
玉龙雪山白水1号冰川近地层气象要素变化特征   总被引:2,自引:1,他引:1  
利用2011年10月1日至2012年9月30日玉龙雪山白水1号冰川海拔4 500 m气象观测资料,对位于我国最南、亚欧大陆距赤道最近的海洋型冰川区近地层气象要素基本特征进行了分析,并与同海拔大陆型冰川——祁连山老虎沟12号冰川区近地层气象要素进行了对比。研究表明:海洋型与大陆型冰川区气温逐时变化呈单峰单谷型分布,均表现出升温快降温慢的特点,观测点5 m层气温高于2 m层气温,二者差值日变化呈单峰型,峰值出现在北京时间12:00;受季风气候影响,研究区干季相对湿度小,湿季相对湿度大,年均相对湿度为73.3%,与相对湿度相比,研究区水汽压变化更受控于气温;两冰川区冬半年气压低,夏半年气压高,均表现为典型的"高山型"气压;受冰川"冷效应"影响研究区干季风速大,湿季风速小,因冰川规模较小,研究区冰川风不发达,谷风发育强劲;受季风期云雨影响,白水1号冰川区总辐射在季风前期达到最大值,季风期达到极小值,年均总辐射量低于老虎沟12号冰川同海拔地区。  相似文献   

12.
河套干旱地区夏季边界层结构特征观测分析   总被引:2,自引:0,他引:2  
崔洋  常倬林  桑建人  左河疆 《冰川冻土》2015,37(5):1257-1267
利用2013年夏季7月爱尔达K/LLX802J型机动式边界层风廓线雷达获取的三维风场资料和银川站高空气象探测资料,对河套干旱地区夏季边界层日变化特征进行了分析.结果表明:爱尔达K/LLX802J型机动式风廓线雷达能较好的反映并分辨出夏季河套干旱地区边界层内大气湍流和风场的演变过程.夏季7月河套干旱地区边界层高度白天平均为2127.2 m,夜间平均为1760.7 m,白天边界层高度比夜间平均高366.5 m.河套干旱区夏季地表非绝热加热对边界层的影响主要集中在800 m以下,800~2000 m高度边界层则主要受昼夜交替和大尺度天气系统的影响.夏季7月河套干旱地区边界层风速在300 m以下随高度增加而增大,离地500 m以下边界层易在北京时间07:00-11:00和18:00-21:00时段发生风速切变;300 m以下边界层白天盛行西南偏南风、夜间盛行南风,300~2000 m高度边界层白天和夜间均盛行东南风;离地300 m以下边界层易在夜间21:00-23:00时出现风向切变.夏季7月白天河套干旱地区边界层大气垂直速度在300 m高度以下随高度增加而增大,由0.3 m·s-1增大到0.6 m·s-1,夜间边界层大气垂直速度在200 m高度以下随高度增大而增大;300 m高度以上边界层大气垂直速度无论昼夜随高度变化均较小.  相似文献   

13.
李林  李卫林  王振宇  肖建设 《冰川冻土》2009,31(6):1161-1165
利用青藏高原铁路沿线1961-2006年7个气象台站和2003年9月-2004年9月7个野外观测点风资料, 结合地理信息系统分析了青藏高原腹地微地形对极值风速的影响. 通过地形因子的参数化处理, 建立了极值风速随海拔和地形参数变化的拟合模型以精确推算复杂地形的极值风速, 并利用临时观测点风资料对其进行了检验. 结果表明, 利用地理信息系统和地形参数化处理方法研究青藏高原微地形对极值风速的影响具有可操作性.  相似文献   

14.
Time series of soil surface and subsurface temperatures, soil heat flux, net radiation, air temperature and wind speed were measured at two locations in Kalpakkam, coastal southeast India. The data were analysed to estimate soil thermal diffusivity, thermal conductivity, volumetric heat capacity and soil heat flux. This paper describes the results and discusses their implications.  相似文献   

15.
Third-generation wave models have been evolved in 1980s with the state-of-the-art physics of wave generation. Using these models, the real time wave estimation is made possible but, in general, it is found to be underpredicted. This is mainly due to the smoothened wind vectors from the atmospheric model. An accurate prediction of wind is thus necessary to improve the wave prediction further. A better way of overcoming the discrepancies in the wind is by the way of wave data assimilation. In the present study, an operationally efficient yet a versatile assimilation model, optimal interpolation (OI), has been presented. The weighting matrix, so-called gain matrix, has been formulated according to the model physics by which the wind generates waves. The efficiency of the assimilative model using real time buoy observations at the Arabian Sea has been evaluated and described in this article. The root mean square error reduction of wave height is found to be of the order of 30–50% at the validation stations.  相似文献   

16.
This paper analyzes the relationship between meteorological catastrophic factors and gross domestic product (GDP) growth rate of Nanjing city (China). The sample spans the period 1980–2010, including GDP growth rate and meteorological catastrophic factors (extreme precipitation, extreme temperature and extreme wind speed). We utilize econometric methods to take co-integration analysis and Granger causality test among GDP growth rate and the time series of meteorological catastrophic factors of Nanjing city processed by buffer operators. Finally, the paper shows the short-term changes in minimum atmospheric pressure, extreme high temperature, and minimum relative humidity, which has a positive impact on GDP; the cumulative effect of extreme precipitation and GDP affects each other to some extent, they are mutually Granger causes. Moreover, at the 95 % confidence level, we believe that maximum wind speed is the Granger causation of GDP growth rate.  相似文献   

17.
Lu  Yunmeng  Liu  Tiezhong  Wang  Tiantian 《Natural Hazards》2021,106(3):2003-2024

Storm surge induced by hurricane is a major threat to the Gulf Coasts of the United States. A numerical modeling study was conducted to simulate the storm surge during Hurricane Michael, a category 5 hurricane that landed on the Florida Panhandle in 2018. A high-resolution model mesh was used in the ADCIRC hydrodynamic model to simulate storm surge and tides during the hurricane. Two parametric wind models, Holland 1980 model and Holland 2010 model, have been evaluated for their effects on the accuracy of storm surge modeling by comparing simulated and observed maximum water levels along the coast. The wind model parameters are determined by observed hurricane wind and pressure data. Results indicate that both Holland 1980 and Holland 2010 wind models produce reasonable accuracy in predicting maximum water level in Mexico Beach, with errors between 1 and 3.7%. Comparing to the observed peak water level of 4.74 m in Mexico Beach, Holland 1980 wind model with radius of 64-knot wind speed for parameter estimation results in the lowest error of 1%. For a given wind model, the wind profiles are also affected by the wind data used for parameter estimation. Away from hurricane eye wall, using radius of 64-knot wind speed for parameter estimation generally produces weaker wind than those using radius of 34-knot wind speed for parameter estimation. Comparing model simulated storm tides with 17 water marks observed along the coast, Holland 2010 wind model using radius of 34-knot wind speed for parameter estimation leads to the minimum mean absolute error. The results will provide a good reference for researchers to improve storm surge modeling. The validated model can be used to support coastal hazard mitigation planning.

  相似文献   

18.
A theoretical model for wind‐sand flow is developed by considering the coupling between wind flow and sand particle motion, the latter subject to the Magnus effect, under different atmospheric stability conditions. Using this model, the characteristics of the wind‐sand flow are discussed in detail. The results show that the atmospheric stability and the Magnus effect both have a strong influence on wind profiles and on the trajectories of sand particles. This approach produces results with characteristics that differ from those previously reported; the latter only applying to atmospheric conditions of neutral stability. The saltating sand reaches a greater height under non‐neutral stability than under neutral stability, while the maximum horizontal distance is greater under unstable conditions and is smaller under stable conditions than under conditions of neutral stability.  相似文献   

19.
Regional climate model (RCM) outputs are often used in hydrological modeling, in particular for streamflow forecasting. The heterogeneity of the meteorological variables such as precipitation, temperature, wind speed and solar radiation often limits the ability of the hydrological model performance. This paper assessed the sensitivity of RCM outputs from the PRUDENCE project and their performance in reproducing the streamflow. The soil and water assessment tool was used to simulate the streamflow of the Rhone River watershed located in the southwestern part of Switzerland, with the climate variables obtained from four RCMs. We analyzed the difference in magnitude of precipitation, maximum and minimum air temperature, and wind speed with respect to the observed values from the meteorological stations. In addition, we also focused on the impact of the grid resolution on model performance, by analyzing grids with resolutions of 50 × 50 and 25 × 25 km2. The variability of the meteorological inputs from various RCMs is quite severe in the studied watershed. Among the four different RCMs, the Danish Meteorological Institute provided the best performance when simulating runoff. We found that temperature lapse rate is significantly important in the mountainous snow and glacier dominated watershed as compared to other variables like precipitation, and wind speed for hydrological performance. Therefore, emphasis should be given to minimum and maximum temperature in the bias correction studies for downscaling climatic data for impact modeling in the mountainous snow and glacier dominated complex watersheds.  相似文献   

20.
气象驱动数据质量是影响流域水文过程模拟精度的一个重要因素。基于新疆额尔齐斯河流域及周边区域8个气象站记录的数据,对ERA-Interim再分析资料和中国区域地面气象要素驱动数据集(CMFD)在流域的适用性进行了评价,并对比了ERA-Interim和CMFD气象要素年均值在流域的空间分布。结果表明:ERA-Interim和CMFD记录气温、相对湿度、向下短波辐射和向下长波辐射数据与观测数据具有较高的一致性,但降水和风速数据与观测数据的一致性比较差。小时尺度上ERA-Interim记录的气温、相对湿度、降水量、向下短波辐射准确度略高于CMFD数据,而日尺度上CMFD记录的所有气象要素的准确度均高于ERA-Interim数据,结合Noah-MP模型的模拟结果,认为CMFD数据在新疆额尔齐斯河流域的适用性整体优于ERA-Interim数据。从两种驱动数据获取的流域气象要素空间分布来看,ERA-Interim和CMFD获取的年平均气温、风速、相对湿度、降水量、向下长波辐射在流域空间具有高度一致性,但向下短波辐射空间分布差别较大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号