首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Asna river basin is located in Hingoli and Nanded districts of Marathwada region of Maharashtra. A geomorphometric analysis is an important method for the investigation and management of natural resources of watershed. The geomorphometric analysis of Asna river basin classifies three sub-basins that have been delineated using GIS and remote sensing through measurements of linear, aerial, and relief aspects. The Asna river basin comprises an area of 1187 km2 with seventh-order drainage pattern. As per Strahler classification, the upper part of the basin shows dendritic to sub-dendritic and the lower part exhibits parallel to sub-parallel drainage pattern. The total numbers of stream segments are 2422 and length of streams is 2187.92 km. The bifurcation value ranges from 1.26 to 5.58 indicating that there are no structural disturbances. The form factor value (0.49) indicates that the shape of the basin is moderately circular. The high values of drainage density, stream frequency, and low infiltration number indicate the high runoff due to impermeable lithology. The slope of the basin varies from 1 to 32.2%, terrain elevation ranges from 333 to 551 m, and overall relief of the basin is 218 m amsl. River sub-basin prioritization has an immense importance in natural resource management, especially in semi-arid regions. The present study is an attempt to prioritize the sub-basins of Asna river based on geomorphometric parameters. The weightage is assigned to different morphometric parameters of sub-basins based on erosion potential. The Asna river sub-basins have been classified into three categories as high, medium, and low on the basis of priorities for soil and water conservation. It is confirmed that sub-basin I is characterized as highly vulnerable to erosion and has high sedimentation load; sub-basin II has low priority, i.e., very low erodibility; and sub-basin III is of moderate type. The morphometric analysis and prioritization methods can be applied to hydrological studies in surface as well as subsurface water, climatic studies, rainwater harvesting, groundwater recharging sites, and watershed management.  相似文献   

2.
2001-2018年石羊河流域植被变化及其对流域管理的启示   总被引:1,自引:0,他引:1  
植被是流域生态系统的重要指标,植被景观管理也是流域综合管理的重要内容。综合利用长时间序列MODIS反射率和归一化差值植被指数(NDVI)产品及Landsat卫星遥感影像,基于谷歌地球引擎(GEE)平台,利用计算机自动分类的方法,监测了2001-2018年间石羊河流域的植被(包括灌溉土地)的逐年变化,结合降水、径流量和地下水位地面监测数据,分析了全流域植被指数、植被面积、灌溉土地范围的变化特征及其与水循环之间的互馈关系。研究发现,2001-2018年间,石羊河流域的植被面积以每年约135 km2的速率增加,其中,自然植被和灌溉土地分别以每年60.5 km2和74.6 km2的速率增加。除了金昌区的植被增加以灌溉土地为主外,其他区域都以自然植被的增加为主。特别是民勤地区,由于十多年的持续调水和有效退耕,地下水位近年来开始抬升,自然植被开始恢复。但与此同时,中游凉州区和永昌县的生态风险加大。未来可从灌溉规模控制、地表与地下水统一调度、景观分级和配置技术发展、优化产业结构、强化与流域外的连通性等方面加强流域综合管理,提高流域社会系统弹性,增强可持续发展能力。  相似文献   

3.
干旱区植被生长与地下水的关系是生态水文地质学研究的热点之一。西北干旱地区,由于降水稀少,绿洲是当地人类生存和发展的主要依托。近年来,随着黑河流域中游地区用水量的逐年加大,下游来水量减少,使得下游额济纳绿洲的面积不断减小,湖泊干涸,沙漠化严重,生态环境恶化。由于绿洲植被的生长与水有极为密切的关系,因此,研究河流流量与绿洲植被生长之间的定量关系,对改善黑河流域生态环境、协调用水矛盾和合理配置水资源具有重要意义。将遥感数据与黑河径流量数据相结合,在区域尺度上定量研究额济纳绿洲植被生长与河流径流量的关系。结果表明,绿洲植被对黑河径流以及地下水有很强的依赖关系,而且黑河径流对额济纳绿洲的影响存在一年的滞后期,而地下水则通过这种滞后作用将两者联系起来。  相似文献   

4.
流域水资源系统由降水产流,以及通过水文下垫面的转换,形成的地表径流和地下水流流组成。本文将复杂的沽河流域水 资源系统分解成多个子系统,利用频谱分析方法对各个水资源子系统的转换功能进行定量的分析刻画,并利用地下含水介质子系统的转换特征函数-频率响应函数求取水文地质参数,丰富了水文地质参数的获取途径。  相似文献   

5.
Hydrogeological mapping and drainage analysis can form an important tool for groundwater development. Assessment of drainage and their relative parameters have been quantitatively carried out for the Morar River Basin, which has made positive scientific contribution for the local people of area for the sustainable water resource development and management. Geographical Information System has been used for the calculation and delineation of the morphometric characteristics of the basin. The dendritic type drainage network of the basin exhibits the homogeneity in texture and lack of structural control. The stream order ranges from first to sixth order. The drainage density in the area has been found to be low which indicates that the area possesses highly permeable soils and low relief. The bifurcation ratio varies from 2.00 to 5.50 and the elongation ratio (0.327) reveals that the basin belongs to the elongated shaped basin category. The results of this analysis would be useful in determining the effect of catchment characteristics such as size, shape, slope of the catchment and distribution of stream net work within the catchment.  相似文献   

6.
Suketi river basin is located in the Mandi district of Himachal Pradesh, India. It encompasses a central inter-montane valley and surrounding mountainous terrain in the Lower Himachal Himalaya. Morphometric analysis of the Suketi river basin was carried out to study its drainage characteristics and overall groundwater resource potential. The entire Suketi river basin has been divided into five sub-basins based on the catchment areas of Suketi trunk stream and its major tributaries. Quantitative assessment of each sub-basin was carried out for its linear, areal, and relief aspects. The analysis reveals that the drainage network of the entire Suketi river basin constitutes a 7th order basin. Out of five sub-basins, Kansa khad sub-basin (KKSB), Gangli khad sub-basin (GKSB) and Ratti khad sub-basin (RKSB) are 5th order sub-basins. The Dadour khad sub-basin (DKSB) is 6th order sub-basin, while Suketi trunk stream sub-basin (STSSB) is a 7th order sub-basin. The entire drainage basin area reflects late youth to early mature stage of development of the fluvial geomorphic cycle, which is dominated by rain and snow fed lower order streams. It has low stream frequency (Fs) and moderate drainage density (Dd) of 2.69 km/km 2. Bifurcation ratios (Rb) of various stream orders indicate that streams up to 3rd order are surging through highly dissected mountainous terrain, which facilitates high overland flow and less recharge into the sub-surface resulting in low groundwater potential in the zones of 1st, 2nd, and 3rd order streams of the Suketi river basin. The circulatory ratio (Rc) of 0.65 and elongation ratio (Re) of 0.80 show elongated nature of the Suketi river basin, while infiltration number (If) of 10.66 indicates dominance of relief features and low groundwater potential in the high altitude mountainous terrain. The asymmetry factor (Af) of Suketi river basin indicates that the palaeo-tectonic tilting, at drainage basin scale, was towards the downstream right side of the drainage basin. The slope map of Suketi river basin has been classified into three main zones, which delineate the runoff zone in the mountains, recharge zone in the transition zone between mountains and valley plane, and discharge zone in the plane areas of Balh valley.  相似文献   

7.
选择漓江流域及其典型岩溶小流域为研究对象,通过遥感数据综合分析和地面路线验证调查与定点监测相结合的方法,对漓江流域岩溶区和非岩溶区的水土流失特征进行了研究,并重点分析岩溶区内典型小流域——寨底小流域侵蚀影响因子对水土流失的影响。研究结果表明:漓江流域水土流失以中度和轻度等级为主,约占流域面积的29.9%;流域内岩溶区与非岩溶区的水土流失表现出一定的差异性,岩溶区以中度、极强烈和轻度等级水土流失为主,水土流失面积约占岩溶面积的53%;非岩溶区中度和轻度等级水土流失分别占非岩溶区面积的12.4%和10.4%。高程、坡度、植被覆盖、土地利用等因子对岩溶小流域土壤侵蚀面积和侵蚀量比例的影响表现出明显的差异性和独特性,这四种影响因子中的高程(300,500] m,坡度[15°,25°]、植被覆盖度≤20%、土地利用为工矿用地等对岩溶小流域土壤侵蚀的影响最大,是寨底岩溶小流域水土流失治理中应重点考虑的因素。   相似文献   

8.
Morphometric analysis using remote sensing (RS) and geographical information system (GIS), in the recent study, has become an efficient method in the assessment of groundwater potential of a river basin. The present study focused on the morphometric analysis of Araniar river basin using RS and GIS techniques in the identification of groundwater potential zones for effective planning and management of groundwater resources of the basin. The study area was divided into six subbasins for the purpose of micro-level morphometric analysis. The main stream of the basin is of fifth order and drainage patterns of subbasins are mostly of dendritic and parallel type. Based on the linear, areal and relief parameters of subbasins, the groundwater potential zones of the basin were identified and the results substantiated with geomorphology map derived from RS data. The elongated shape, favourable drainage network, permeable geologic formation and low relief of the subbasins WS3, WS5 and WS6 make them the promising groundwater potential zones of Araniar river basin. The statistical analysis and overlay analysis of the morphometric parameters also indicated the subbasins WS3, WS5 and WS6 as high groundwater potential zones. The groundwater potential zone map when overlaid with groundwater fluctuation map indicated the suitable sites for artificial recharge structures.  相似文献   

9.
Improvement in modern water resource management has become increasingly reliant on better characterizing of the spatial variability of groundwater recharge mechanisms. Due to the flexibility and reliability of GIS-based index models, they have become an alternative for mapping and interpreting recharge systems. For this reason, an index model by integrating water balance parameters (surface runoff, actual evapotranspiration, and percolation) calculated by Thornthwaite and Mather’s method, with maps of soil texture, land cover, and terrain slope, was developed for a sustainable use of the groundwater resources. The Serra de Santa Helena Environmental Protection Area, next to the urbanized area of Sete Lagoas (MG), Brazil, was selected as the study area. Rapid economic growth has led to the subsequent expansion of the nearby urban area. Large variability in soil type, land use, and slope in this region resulted in spatially complex relationships between recharge areas. Due to these conditions, the study area was divided into four zones, according to the amount of recharge: high (>?100 mm/year), moderate (50–100 mm/year), low (25–50 mm/year), and incipient (>?25 mm/year). The technique proved to be a viable method to estimate the spatial variability of recharge, especially in areas with little to no in situ data. The success of the tool indicates it can be used for a variety of groundwater resource management applications.  相似文献   

10.
Remote Sensing and GIS techniques have been proved to be efficient tools in the delineation, updating and morphometric analysis of drainage basin. The present study incorporates a morphometric analysis of three sub-basins of Fatehabad area of Agra district using remote sensing and GIS techniques. The morphometric parameters of the sub-basins are classified under linear, areal and relief aspects. The drainage pattern exhibited by the main river Yamuna and its tributaries shows a dendritic pattern indicating homogenously underlain material while the mean bifurcation ratio values suggest that the geological structures are not disturbing the drainage pattern. The form factor value of sub-basins suggests that the main basin is more or less elongated. Circularity ratio values of the three sub-basins fall within range of elongated basin and low discharge. The area has low density indicating that the region has high permeable sub-soil material and dense vegetation. The values of drainage texture, drainage density and infiltration number indicate that sub-basin-III has the highest infiltration rate and low runoff, hence contributing most to the underground water resources. This study also indicates porous and permeable sub-soil condition in sub-basin-III. The values of sub-basin-I indicate low permeable subsoil material owning to high infiltration number value, hence low infiltration and high runoff.  相似文献   

11.
柴达木盆地格尔木河流域生态需水量初步估算探讨   总被引:9,自引:1,他引:8  
格尔木河流域是柴达木盆地工农业较发达地区之一。近年来,随着流域水资源开发利用程度不断加大,用水结构欠合理,生态环境趋于恶化。本文从流域主要植物生长状态分析了地下水位埋深对植物生长的影响,确定了不同植物对地下水位埋深、地层岩性和不同盖度下的植物蒸发蒸腾强度。从研究流域生态需水量出发,分别对河道内、河道外天然植被和东达布逊湖生态需水量进行了初步估算,分析了水资源开发利用对生态环境的影响,从而为今后研究流域水资源开发利用和生态环境保护提供理论参考。  相似文献   

12.
GIS for the assessment of the groundwater recharge potential zone   总被引:4,自引:0,他引:4  
Water resources in Taiwan are unevenly distributed in spatial and temporal domains. Effectively utilizing the water resources is an imperative task due to climate change. At present, groundwater contributes 34% of the total annual water supply and is an important fresh water resource. However, over-exploitation has decreased groundwater availability and has led to land subsidence. Assessing the potential zone of groundwater recharge is extremely important for the protection of water quality and the management of groundwater systems. The Chih-Pen Creek basin in eastern Taiwan is examined in this study to assess its groundwater resources potential. Remote sensing and the geographical information system (GIS) are used to integrate five contributing factors: lithology, land cover/land use, lineaments, drainage, and slope. The weights of factors contributing to the groundwater recharge are derived using aerial photos, geology maps, a land use database, and field verification. The resultant map of the groundwater potential zone demonstrates that the highest recharge potential area is located towards the downstream regions in the basin because of the high infiltration rates caused by gravelly sand and agricultural land use in these regions. In contrast, the least effective recharge potential area is in upstream regions due to the low infiltration of limestone.  相似文献   

13.
Watershed development and management plans are more important for harnessing surface water and groundwater resources in arid and semi-arid regions. To prepare a comprehensive watershed development plan, it becomes necessary to understand the topography, erosion status and drainage patterns of the region. This study was undertaken to determine the drainage characteristics of Pageru River basin using topographical maps on a scale of 1:50,000. The total area of the Pageru River basin is 480 km2. It was divided into X sub-basins for analysis. The drainage patterns of the basin are dendritic and include a sixth order stream. The quantitative analysis of various aspects of a river basin drainage network characteristics reveals complex morphometric attributes. The streams of lower orders mostly dominate the basin. The development of stream segments in the basin area is more or less affected by rainfall. The elongated shape of the basin is mainly due to the guiding effect of thrusting and faulting. The erosional processes of fluvial origin have been predominately influenced by the subsurface lithology of the basin.  相似文献   

14.
主要从水文地球化学的角度,以鄂尔多斯盆地白于山以南地区白垩系地下水的水化学水平分带和地表水基流水化学特征为主要依据,结合地质构造格局及岩相古地理条件,分析研究了该区白垩系地下水的补、径、排条件.认为该区白垩系地下水水化学场存在一个由东、北、西南向中部的水平分带,愈向盆地中部水质愈复杂、TDS愈高.马莲河基流水质的沿途变化规律反映出其接受东西两侧地下水的补给.说明鄂尔多斯盆地南区的东部地区和西南部地区为地下水补给区,而中心地带为地下水排泄区,最终经马莲河排出区外.天环向斜轴部和马莲河谷是南区汇集东西两侧地下水的排泄通道.  相似文献   

15.
This paper mainly deals with the integrated approach of remote sensing and Geographical Information System (GIS) to delineate groundwater prospective zones in Narava basin, Visakhapatnam region. The various thematic maps generated for delineating groundwater potential zones are geomorphology, geology, lineament density, drainage density, slope and land use/land cover (LULC). Weighted index overlay (WIO) technique is used to investigate a number of choice possibilities and evaluate suitability according to the associated weight of each unit. The integrated map of the area shows different zones of groundwater prospects, viz. very good (18.9% of the area), good (26.4% of the area), moderate (17.1% of the area) and poor (37.6% of the area). The categorization of groundwater potential was in good agreement with the available water column in the basin area.  相似文献   

16.
During the last three decades, remotely sensed data (both satellite images and aerial photographs) have been increasingly used in groundwater exploration and management exercises. An integrated approach has been adopted in the present study to delineate groundwater recharge potential zones using RS and GIS techniques. IRS-1C satellite imageries and Survey of India toposheets are used to prepare various thematic layers viz. geology, soil, land-use, slope, lineament and drainage. These layers were then transformed in to raster data using feature to raster converter tool in ArcGIS 9.3 software. The raster maps of these factors are allocated a fixed score and weight computed from Influencing Factor (IF) technique. The weights of factors contributing to the groundwater recharge are derived using aerial photos, geology maps, a land use database, and field verification. Subjective weights are assigned to the respective thematic layers and overlaid in GIS platform for the identification of potential groundwater recharge zones within the study area. Then these potential zones were categories as ‘high’, ‘moderate’, ‘low’, ‘poor’. The resulted map shows that 19 % of the area has highest recharge potential, mainly confined to buried pediplain, agriculture land-use and river terraces (considerable amount of precipitated water percolates into subsurface), 28 % of the area has moderate groundwater recharge potentiality and rest of the area has low to poor recharge potentiality. The residual hills and linear ridges with steep slopes are not suitable for artificial recharge sites. Finally, 13 % of total average annual precipitated water (840 mm) percolates downward and ultimately contributes to recharge the aquifers in the Kovilpatti Municipality area. The paper is an attempt to suggest for maintaining the proper balance between the groundwater quantity and its exploitation.  相似文献   

17.
Natural runoff observation fields with different vegetation coverage were established in the Zuomaoxikongqu River basin in the headwater area of the Yangtze River, and in the Natong River basin and the Kuarewaerma River basin in the headwater area of the Yellow River, China. The experiments were conducted using natural precipitation and artificially simulated precipitation between July and August to study the runoff and sediment-producing effects of precipitation under the conditions of the same slope and different alpine meadow land with coverage in the headwater areas. The results show that, in the three small river basins in the headwater areas of the Yangtze and the Yellow Rivers, the surface runoff yield on the 30° slope surface of the alpine meadow land with a vegetation cover of 30% is markedly larger than that of the fields with a vegetation cover of 95, 92, and 68%. Furthermore, the sediment yield is also obviously larger than the latter three; on an average, the sediment yield caused by a single precipitation event is 2–4 times as large as the latter three. Several typical precipitation forms affecting the runoff yield on the slope surface also influence the process. No matter how the surface conditions are; the rainfall is still the main precipitation form causing soil erosion. In some forms of precipitation, such as the greatest snow melting as water runoff, the sediment yield is minimal. Under the condition of the same precipitation amount, snowfall can obviously increase the runoff yield, roughly 2.1–3.5 times as compared to the combined runoff yield of the Sleet or that of rainfall alone; but meanwhile, the sediment yield and soil erosion rate decrease, roughly decreasing by 45.4–80.3%. High vegetation cover can effectively decrease the runoff-induced erosion. This experimental result is consistent in the three river basins in the headwater areas of the Yangtze and Yellow Rivers.  相似文献   

18.
文章概述了西北内陆干旱区黑河流域地下水系统的构成及第四纪含水层分布,在系统收集整理1986~2009年间黑河流域河道径流、地下水位、灌溉引水资料及补充调查成果的基础上,重点分析了径流变化和人类活动对流域地下水动态的影响。根据高程梯度、地貌类型和径流对平原地下水系统的补给作用,流域地下水动态类型可分为3个典型区:1)山前潜水含水层强入渗补给区,河道过水量控制着年地下水位变幅;2)冲积扇边缘细土平原承压含水层区,人类活动干预下的地表-地下水复杂交互过程使地下水位多年变化呈动态平衡状态;3)下游荒漠平原入渗生态补给区,政策性分水计划强烈影响地下水动态变化和空间分布。地表-地下水交互过程强烈影响地下水系统的动态平衡,且在不同区域呈现的时间尺度不同。中游绿洲农业区的人类活动通过政策性的水量再分配及土地利用空间格局变化影响地下水的循环路径及补径排条件。通过建立地表-地下水-生态水文过程耦合模型是量化动态水循环过程、合理管理地表-地下水资源的迫切需求,是未来干旱区水资源可持续利用研究的方向。  相似文献   

19.
The temporal and spatial distributions of precipitation are extremely uneven; so, careful management of water resources in Taiwan is crucial. The long-term overexploitation of groundwater resources poses a challenge to water resource management in Taiwan. However, assessing groundwater resources in mountainous basins is challenging due to limited information. In this study, a geographic information system (GIS) and stable base-flow (SBF) techniques were used to assess the characteristics of groundwater recharge considering the Wu River watershed in central Taiwan as a study area. First, a GIS approach was used to integrate five contributing factors: lithology, land cover/land use, lineaments, drainage, and slope. The weights of factors contributing to the groundwater recharge were obtained from aerial photos, geological maps, a land use database, and field verification. Second, the SBF was used to estimate the groundwater recharge in a mountainous basin scale. The concept of the SBF technique was to separate the base-flow from the total streamflow discharge in order to obtain a measure of groundwater recharge. The SBF technique has the advantage of integrating groundwater recharge across an entire basin without complex hydro-geologic modelling and detailed knowledge of the soil characteristics. In this study, our approach for estimating recharge provides not only an estimate of how much water becomes groundwater, but also explains the characteristics of a potential groundwater recharge zone.  相似文献   

20.
黑河流域典型景观植被带陆面过程同步观测研究   总被引:6,自引:4,他引:6  
为了解内陆河流域不同尺度内与水循环及生态过程有关的水分、热量分布规律,在黑河流域上中下游选取3个典型植被景观带建立观测场,并布设环境观测系统(ENVIS)进行环境要素的同步观测.结果表明,山区森林草地灌丛复合生态区陆面是冷性湿润的下垫面,中游绿洲荒漠接触带是干性、较湿润的下垫面,下游荒漠河岸林景观带是干热性的下垫面.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号