首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An empirical model of thermospheric temperature (TT120, and s) and composition (H, He, N, O, N2, O2, and Ar) was derived from measurements of 8 satellites (AE-C, AE-E, AEROS-A, AEROS-B, ARIEL-3, ESRO-4, OGO-6, and SAN MARCO-3) and 4 incoherent scatter stations (Arecibo, Jicamarca, Millstone Hill, and St Santin). The altitude covered extends from 120 km up to about 600 km over the time period 1967 to 1976. The analytical framework used in the model resembles closely the MSIS setup: time independent terms, solar flux terms, geomagnetic activity (Kp) effect, annual (semiannual) and diurnal (semidiurnal, terdiurnal) variations, longitudinal terms, the U.T. effect, and corrections compensating for deviations from diffusive equilibrium at altitudes below 200 km. The model describes quiet to medium disturbed geomagnetic conditions (Kp ? 4) at solar fluxes (10.7cm) ranging from 60 to 180 × 10?22 Wm?2Hz?1. To get an impression of the accuracy presently obtained, the model is compared with MSIS, Jacchia (1977), and the models of Thuillier (T and Engebretson (N). The best agreement is found for the temperature and the constituents He, O, and N2 with increasing deviations in the order of H, N, Ar, and O2.  相似文献   

2.
A numerical model of current F-region theory is use to calculate the diurnal variation of the mid-latitude ionospheric F-region over Millstone Hill on 23–24 March 1970, during quiet geomagnetic conditions. From the solar EUV flux, the model calculates at each altitude and time step primary photoelectron spectra and ionization rates of various ion species. The photoelectron transport equation is solved for the secondary ionization rates, photoelectron spectra, and various airglow excitation rates. Five ion continuity equations that include the effects of transport by diffusion, magnetospheric-ionospheric plasma transport, electric fields, and neutral winds are solved for the ion composition and electron density. The electron and ion temperatures are also calculated using the heating rates determined from chemical reactions, photoelectron collisions, and magnetospheric-ionospheric energy transport. The calculations are performed for a diurnal cycle considering a stationary field tube co-rotating with the Earth; only the vertical plasma drift caused by electric fields perpendicular to the geomagnetic field line is allowed but not the horizontal drift. The boundary conditions used in the model are determined from the incoherent scatter radar measurements of Te, Ti and O+ flux at 800km over Millstone Hill (Evans, 1971a). The component of the neutral thermospheric winds along the geomagnetic field has an important influence on the overall ionospheric structure. It is determined from a separate dynamic model of the neutral thermosphere, using incoherent scatter radar measurements.The calculated diurnal variation of the ionospheric structure agrees well with the values measured by the incoherent scatter radar when certain restrictions are placed on the solar EUV flux and model neutral atmospheric compositions. Namely, the solar EUV fluxes of Hinteregger (1970) are doubled and an atomic oxygen concentration of at least 1011cm3 at 120 km is required for the neutral model atmosphere. Calculations also show that the topside thermal structure of the ionosphere is primarily maintained by a flow of heat from the magnetosphere and the night-time F2-region is maintained in part by neutral winds, diffusion, electric fields, and plasma flow from the magnetosphere. The problem of maintaining the calculated night-time ionosphere at the observed values is also discussed.  相似文献   

3.
We have solved the coupled momentum and continuity equations for NO+, O2+, and O+ions in the E- and F-regions of the ionosphere. This theoretical model has enabled us to examine the relative importance of various processes that affect molecular ion densities. We find that transport processes are not important during the day; the molecular ions are in chemical equilibrium at all altitudes. At night, however, both diffusion and vertical drifts induced by winds or electric fields are important in determining molecular ion densities below about 200 km. Molecular ion densities are insensitive to the O+ density distribution and so are little affected by decay of the nocturnal F-region or by processes, such as a protonospheric flux, that retard this decay. The O+ density profile, on the other hand, is insensitive to molecular ion densities, although the O+ diffusion equation is formally coupled to molecular ion densities by the polarization electrostatic field. Nitric oxide plays an important role in determining the NO+ to O2+ ratio in the E-region, particularly at night. Nocturnal sources of ionization are required to maintain the E-region through the night. Vertical velocities induced by expansion and contraction of the neutral atmosphere are too small to affect ion densities at any altitude.  相似文献   

4.
A one-dimensional model of the Venus thermosphere has been constructed which includes computation of the heating efficiency of solar ultraviolet radiation, heat loss by radiation to space of infrared-active species, thermal transport by molecular and eddy conduction, and viscous dissipation. By comparing model predictions with results obtained from the Pioneer Venus Orbiter space-craft, the results indicate that energy transport parameterized by eddy heat conduction plays a dominant role in determining thermospheric temperature T. It is suggested that there exists a feedback mechanism linking heating and thermospheric circulation such that eddy cooling maintains an asymptotic temperature T~300°K for both solar-maximum and solar-minimum conditions. We also study the variation in thermospheric temperature with solar zenith angle, atomic oxygen-mixing ratio, rate of vibrational excitation of CO2 by ground-state O atoms, and the assumed transfer of O(1D) electronic energy to CO2 vibrational energy.  相似文献   

5.
An expression for the vertical velocity of the neutral atmosphere in the F-region is derived for Joule heating by the electric field that drives the auroral electrojet. When only vertical expansion is allowed, it is found that the vertical wind must always increase monotonically with altitude. The heating rate is proportional to the F-region ion density, so that appreciable heating, even during high electric fields, requires some production mechanism of ionization such as auroral secondary ionization or solar photoionization, in the lower F-region. Once started at night, when an ionizing source is present in the lower F-region, the expansion of the atmosphere transports ionization upward, thereby increasing the heating rate, and hence the expansion rate, i.e. positive feedback. Electric field strengths and F-region ion densities of 50 mV/m and 2 × 1011e/m3, respectively, will produce vertal neutral wind speeds of several tens of m/sec in the 300–500 km altitude range. During periods of high magnetic activity, i.e. high electric field, Joule heating can produce large increases in the relative N2 concentration in the upper F-region; computations made with a simple model suggest that tenfold increases can occur at 400 km altitude 12?1 hr after the onset of magnetic activity, a result in agreement with satellite observations. When the Joule heating theory is applied to incoherent scatter data taken during one period of high heating, the horizontal electric field in the F-region is found to decrease markedly, possibly approaching zero as the field penetrates a weak, discrete auroral arc; the decrease began 10–20 km from the arc.  相似文献   

6.
T.Y. Kong  M.B. McElroy 《Icarus》1977,32(2):168-189
A variety of models are explored to study the photochemistry of CO2 in the Martian atmosphere with emphasis on reactions involving compounds of carbon, hydrogen, and oxygen. Acceptable models are constrained to account for measured concentrations of CO and O above 90 km, with an additional requirement that they should be in accord with observations of CO, O2, and O3 in the lower atmosphere. Dynamical mixing must be exceedingly rapid at altitudes above 90 km, with effective eddy diffusion coefficients in excess of 107 cm2 sec?1. If recombination of CO2 is to occur mainly by gas phase chemistry, catalyzed by trace quantities of H, OH, and HO2, mixing must be rapid over the altitude interval 30 to 40 km. The value implied for the diffusion coefficient in this region is a function of assumptions made regarding the rates for reaction of OH with HO2 to form H2O and of the rate for reaction of HO2 with itself to form H2O2. If rates for these reactions are taken to have values similar to rates used in current models for the Earth's stratosphere, the eddy diffusion coefficient at 40 km on Mars should be about 5 × 107 cm2 sec?1, consistent with Zurek's (1976) estimate for this parameter inferred from tidal theory. Surface chemistry could have an influence on the abundances of atmospheric CO and O2, but a major effect would imply sluggish mixing at all altitudes below 50 km and in addition would carry implications for the magnitude of the rates for reaction of OH with HO2 and HO2 with itself.  相似文献   

7.
Altitude dependences of [CO2] and [CO2+] are deduced from Mariner 6 and 7 CO2+ airglow measurements. CO2 densities are also obtained from ne radio occultation measurements. Both [CO2] profiles are similar and correspond to the model atmosphere of Barth et al. (1972) at 120 km, but at higher altitudes they diverge and at 200–220 km the obtained [CO2] values are three times less the model. Both the airglow and radio occultation observations show that a correction factor of 2.5 should be included into the values for solar ionization flux given by Hinteregger (1970). The ratio of [CO2+]/ne is 0.15–0.2 and, hence, [O]/[CO2] is ~3% at 135 km. An atmospheric and ionospheric model is developed for 120–220 km. The calculated temperature profile is characterized by a value of T ≈ 370°K at h ? 220 km, a steep gradient (~2°/km) at 200-160 km, a bend in the profile at 160 km, a small gradient (~0.7°/km) below and a value of T ≈ 250°K at 120 km. The upper point agrees well with the results of the Lyman-α measurements; the steep gradient may be explained by molecular viscosity dissipation of gravity and acoustical waves (the corresponding energy flux is 4 × 10?2 erg cm?2sec?1 at 180 km). The bend at 160 km may be caused by a sharp decrease of the eddy diffusion coefficient and defines K ≈ 2 × 108cm2sec?1; and the low gradient gives an estimate of the efficiency of the atmosphere heating by the solar radiation as ? ≈ 0.1.  相似文献   

8.
The ultraviolet spectra of the star RU Lup obtained with the Hubble Space Telescope are analyzed. Emission lines are identified. The presence of absorption components with a nearly zero residual intensity in the Mg II resonance doublet lines is indicative of mass outflow with a velocity V ?300 km s?1. These lines also exhibit a broad (?1400 km s?1 at the base) component originating in the star itself. The profiles of the (optically thin) Si II] and Si III]1892 Å lines for the first time unequivocally prove that these lines originate in an accretion shock wave rather than in the chromosphere, with the gas infall velocity being V 0?400 km s?1. The intensity ratio of the C IV 1550 Å and Si IV 1400 Å resonance doublet components was found to be close to unity, suggesting a high accreted-gas density, logN 0>12.5. Molecular H2 Lyman lines formed in the stellar wind were detected. The H I Lα luminosity of RU Lup was found from their intensities to exceed 10% of L bol. Radiation pressure in the Lα line on atomic hydrogen may play a significant role in the initial acceleration of stellar-wind matter, but the effect of Lα emission on the dynamics of molecular gas is negligible.  相似文献   

9.
Long-term MGS drag density observations at 390 km reveal variations of the density with season LS (by a factor of 2) and solar activity index F10.7 (by a factor of 3 for F10.7 = 40-100). According to Forbes et al. (Forbes, J.M., Lemoine, F.G., Bruinsma, S.L., Smith, M.D., Zhang, X. [2008]. Geophys. Res. Lett. 35, L01201, doi:10.1029/2007GL031904), the variation with F10.7 reflects variations of the exospheric temperature from 192 to 284 K. However, the derived temperature range corresponds to variation of the density at 390 km by a factor of 8, far above the observed factor of 3. The recent thermospheric GCMs agree with the derived temperatures but do not prove their adequacy to the MGS densities at 390 km. A model used by Forbes et al. neglects effects of eddy diffusion, chemistry and escape on species densities above 138 km. We have made a 1D-model of neutral and ion composition at 80-400 km that treats selfconsistently chemistry and transport of species with F10.7, T, and [CO2]80 km as input parameters. Applying this model to the MGS densities at 390 km, we find variation of T from 240 to 280 K for F10.7 = 40 and 100, respectively. The results are compared with other observations and models. Temperatures from some observations and the latest models disagree with the MGS densities at low and mean solar activity. Linear fits to the exospheric temperatures are T = 122 + 2.17F10.7 for the observations, T = 131 + 1.46F10.7 for the latest models, and T = 233 + 0.54F10.7 for the MGS densities at 390 km. Maybe the observed MGS densities are overestimated near solar minimum when they are low and difficult to measure. Seasonal variations of Mars’ thermosphere corrected for the varying heliocentric distance are mostly due to the density variations in the lower and middle atmosphere and weakly affect thermospheric temperature. Nonthermal escape processes for H, D, H2, HD, and He are calculated for the solar minimum and maximum conditions.Another problem considered here refers to Mars global photochemistry in the lower and middle atmosphere. The models gave too low abundances of CO, smaller by an order of magnitude than those observed. Our current work shows that modifications in the boundary conditions proposed by Zahnle et al. (Zahnle, K., Haberle, R.M., Catling, D.C., Kasting, J.F. [2008]. J. Geophys. Res. 113, E11004, doi:10.1029/2008JE003160) are reasonable but do not help to solve the problem.  相似文献   

10.
A numerical model is utilized to investigate the temperature (T) and solar zenith angle (χ) control of D-region positive ion chemistry between 75 and 90 km. It is assumed that NO? is the precursor ion in a chain which involves three-body formation of the intermediary cluster ions NO+(H2O)m?1(X) (m = 1–3), where X can be N2,O2, H2O, or CO2, switching reactions which convert these weakly bound clusters to hydrates of NO+ and reaction of the third hydrate of NO+ with H2O to initiate the chain to form H+(H2O)n (n = 1–7). Zonal mean and tidal temperatures from rocket observations and theory are synthesized to obtain the best available estimate of mean latitudinal, seasonal and local time variations of temperature in this height region. Relative compositions of NO+(H2O)m and H+(H2O)n are found to vary widely over the complete range of realistic conditions; however, the relative ion populations are entirely explicable in terms of the effects of χ and T on the relative life-times of the intermediary ion clusters with respect to recombination, switching and thermal decomposition. For instance, as χ increases (and electron production decreases) beyond 60° for a given temperature, the recombination times of the intermediate ion cluster species lengthen with respect to the formation time of the H+ water clusters, causing the relative H+ water cluster population to increase and thus raise the level where the cluster ion and NO+ concentrations are equal from about 85 km (normal midday) to 90 km. For a given χ the concentrations of NO+H2O and H+(H2O)4 increase (decrease) for temperatures less than (greater than) 190 and 205 K, respectively. The transition occurs when the temperature becomes sufficiently high that the lifetimes of intermediary ion clusters with respect to thermal decomposition become less than their lifetimes with respect to H2O switching (which ultimately leads to the third hydrate of NO+ and entry into the water chain). At this point, the formation time of H+(H2O)4 becomes long compared with its lifetime with respect to thermal decomposition and its relative concentration decreases also. Implications of these results with respect to studies of the D-region are discussed.  相似文献   

11.
The rates and altitudes for the dissociation of atmospheric constituents of Titan are calculated for solar UV, solar wind protons, interplanetary electrons, Saturn magnetospheric particles, and cosmic rays. The resulting integrated synthesis rates of organic products range from 102–103 g cm?2 over 4.5 × 109 years for high-energy particle sources to 1.3 × 104 g cm?2 for UV at λ < 1550 A?, and to 5.0 × 105 g cm?2 if λ > 1550 A? (acting primarily on C2H2, C2H4, and C4H2) is included. The production rate curves show no localized maxima corresponding to observed altitudes of Titan's hazes and clouds. For simple to moderately complex organic gases in the Titanian atmosphere, condensation occurs below the top of the main cloud deck at 2825 km. Such condensates comprise the principal cloud mass, with molecules of greater complexity condensing at higher altitudes. The scattering optical depths of the condensates of molecules produced in the Titanian mesosphere are as great as ~ 102/(particulate radius, μm) if column densities of condensed and gas phases are comparable. Visible condensation hazes of more complex organic compounds may occur at altitudes up to ~ 3060 km provided only that the abundance of organic products declines with molecular mass no faster than laboratory experiments indicate. Typical organics condensing at 2900 km have molecular masses = 100–150 Da. At current rates of production the integrated depth of precipitated organic liquids, ices, and tholins produced over 4.5 × 109 years ranges from a minimum ~ 100 m to kilometers if UV at λ > 1550 A? is important. The organic nitrogen content of this layer is expected to be ~ 10?1?10?3 by mass.  相似文献   

12.
A survey of metallic ions detected by the Bennett Ion Mass Spectrometers flown on the Atmosphere Explorer satellites, including both circular and eccentric orbital configurations, shows that patches of these ions of meteoric origin are frequently present during magnetically active periods on the bottomside of the F-layer at middle and high latitudes. In particular the F-region metals statistically tend to appear at night in the vicinity of the main ionospheric trough (in a band of invariant latitudes approx. 10 degrees wide) and on the day side of the polar cap. These distributions were previously associated with the expected dynamics of ions in the F-region above 140 km where meridional neutral wind drag and convection electric fields are the dominant ion transport mechanisms. However, the main meteor deposition layer—the presumed source region of the metals—is located below 100 km where these transport mechanisms do not prevail. It is demonstrated that the Pedersen ion drifts driven by intense electric fields such as those associated with sub-auroral ion drifts (SAID) are sufficient to transport the long-lived metallic ions upward from the main meteor layer to altitudes where the drag of equatorial directed neutral winds and electric field convection can support them against the downward pull of gravity and transport them to other locations. The spatial and temporal distribution of the middle and high latitude F-region metals are consistent with the known characteristics of the electric fields and with the expected F-region ion dynamics.  相似文献   

13.
We summarize recent results of quantitative spectral analyses using NLTE and metal line-blanketed LTE model atmospheres. Temperatures and gravities derived for hundreds of sdB stars are now available and allow us to investigate systematic uncertainties of T e ff, log g scales and to test the theory of stellar evolution and pulsations. Surface abundance patterns of about two dozen sdB stars are surprisingly homogenous. In particular the iron abundance is almost solar for most sdBs. We highlight one iron-deficient and three super metal-rich sdBs, a challenge to diffusion theory. sdB stars are slowly rotating stars unless they are in close binary systems, which is hard to understand if the sdB stars were formed in merger events. The only exception is the pulsator PG 1605+072 rotating at vsin i= 39 km/s. Signatures of stellar winds from sdB stars may have been found.  相似文献   

14.
A gridded spherical electrostatic analyzer aboard Injun 5 has been used to measure fluxes of thermal and hyperthermal electrons at subauroral latitudes in the midnight sector of the northern ionosphere between altitudes of 2500 and 850 km. Due to the offset between the geomagnetic and geographic poles hyperthermal fluxes, consisting of energetic photoelectrons that have escaped from the sunlit southern hemisphere are observed along orbits over the Atlantic Ocean and North America but not over Asia. The ambient electron temperatures (Te) near 2500 km have their highest values at trough latitudes for all longitudes. At altitudes near 1000 km elevated electron temperatures in the trough were not a consistent feature of the data. Equatorward of the trough, in the longitude sector to which conjugate photoelectrons have access, Te ~ 4000 K at 2500 km and ~ 3000 K at 1000 km. For regions with the conjugate point in darkness Te ? 2300 K over the 1000–2500 km altitude range. The effective thermal characteristics of conjugate photoelectrons are studied as functions of altitude and latitude. The observations indicate that (1) at trough latitudes elevated electron temperatures in the topside ionosphere are mostly produced by sources other than conjugate photoelectrons, and (2) at subtrough latitudes, in the Alantic Ocean-North American longitude sector, conjugate photoelectrons contribute significantly to the heating of topside electrons. Much of the conjugate photoelectron energy is deposited at altitudes >2500 km then conducted along magnetic field lines into the ionosphere.  相似文献   

15.
Density profiles for CO, O, and O2 in the Cytherean atmosphere above 90 km are plotted with eddy diffusion coefficient (K) as a parameter, subject to the constraint that the mixing ratios of CO and O2 approach their observed value or values under the observed upper limit at the lower boundary. It is then shown that the value of K puts upper limits on the amount of hydrogen (in the form of H2O, HCl, and H2) the atmosphere near 90km can contain. This value is a function of the density and temperature of hydrogen at the critical level and the magnitude of the total escape flux, where unspecified flux mechanisms other than thermal are postulated ad hoc. In general these constraints call for large values of K to accomodate the atomic hydrogen produced by measured mixing ratios of HCl and H2O. Hence they constrain thee amount of O in the upper atmosphere to values well under 1% at 130 km unless there are very large hydrogen escape fluxes, 107 cm?2sec?1 or larger. The freedom to assume arbitrary amounts of H2 in the atmosphere is also restricted. We suggest either very effective escape mechanisms—despite low exospheric hydrogen densities—or novel excitation mechanisms for O(33S) and O(35S) in the upper atmosphere.  相似文献   

16.
Solar wind interaction with neutral interstellar helium focused by the Sun's gravity in the downwind solar cavity is discussed in a hydrodynamical approach. Upon ionization the helium atoms “picked up” by the (single fluid) solar wind plasma cause a slight decrease in the wind speed and a corresponding marked temperature increase. For neutral helium density outside the cavity nHe = 0.01 atoms cm?3 and for interstellar kinetic temperature THe= 10,000 K, the reduction is speed of the solar wind on the downwind axis at 10 AU from the Sun amounts to about 2kms?1; the solar wind temperature excess attains 7000 K. The resulting pressure excess leads to a non-radial flow of the order of 0.25 km s?1. The possibility of experimental confirmation is discussed.  相似文献   

17.
Discovery by Cassini's plasma instrument of heavy positive and negative ions within Titan's upper atmosphere and ionosphere has advanced our understanding of ion neutral chemistry within Titan's upper atmosphere, primarily composed of molecular nitrogen, with ~2.5% methane. The external energy flux transforms Titan's upper atmosphere and ionosphere into a medium rich in complex hydrocarbons, nitriles and haze particles extending from the surface to 1200 km altitudes. The energy sources are solar UV, solar X-rays, Saturn's magnetospheric ions and electrons, solar wind and shocked magnetosheath ions and electrons, galactic cosmic rays (GCR) and the ablation of incident meteoritic dust from Enceladus’ E-ring and interplanetary medium. Here it is proposed that the heavy atmospheric ions detected in situ by Cassini for heights >950 km, are the likely seed particles for aerosols detected by the Huygens probe for altitudes <100 km. These seed particles may be in the form of polycyclic aromatic hydrocarbons (PAH) containing both carbon and hydrogen atoms CnHx. There could also be hollow shells of carbon atoms, such as C60, called fullerenes which contain no hydrogen. The fullerenes may compose a significant fraction of the seed particles with PAHs contributing the rest. As shown by Cassini, the upper atmosphere is bombarded by magnetospheric plasma composed of protons, H2+ and water group ions. The latter provide keV oxygen, hydroxyl and water ions to Titan's upper atmosphere and can become trapped within the fullerene molecules and ions. Pickup keV N2+, N+ and CH4+ can also be implanted inside of fullerenes. Attachment of oxygen ions to PAH molecules is uncertain, but following thermalization O+ can interact with abundant CH4 contributing to the CO and CO2 observed in Titan's atmosphere. If an exogenic keV O+ ion is implanted into the haze particles, it could become free oxygen within those aerosols that eventually fall onto Titan's surface. The process of freeing oxygen within aerosols could be driven by cosmic ray interactions with aerosols at all heights. This process could drive pre-biotic chemistry within the descending aerosols. Cosmic ray interactions with grains at the surface, including water frost depositing on grains from cryovolcanism, would further add to abundance of trapped free oxygen. Pre-biotic chemistry could arise within surface microcosms of the composite organic-ice grains, in part driven by free oxygen in the presence of organics and any heat sources, thereby raising the astrobiological potential for microscopic equivalents of Darwin's “warm ponds” on Titan.  相似文献   

18.
Mm-wave spectra of HDO in the Venus mesosphere (65-100 km) were obtained over the period March 1998 to June 2004. Each spectrum is a measurement of the hemispheric-average H2O vapor mixing ratio in the Venus mesosphere. Observations were conducted for wide ranges of Venus solar elongations (46° W to 47° E), and fractional disk illuminations (f=0% to 99%), yielding water vapor abundances on 17 dates and over a full range of local solar time (LST) at the sub-Earth point on Venus. Our mesopheric H2O values are more numerous and far more precise than the earliest mm-derived H2O measurements [Encrenaz, Th., Lellouch, E., Paubert, G., Gulkis, S., 1991. First detection of HDO in the atmosphere of Venus at radio wavelengths: An estimate of the H2O vertical distribution. Astron. Astrophys. 246, L63-L66; Encrenaz, Th., Lellouch, E., Cernicharo, J., Paubert, G., Gulkis, S., Spilker, T., 1995. The thermal profile and water abundance in the Venus mesosphere from H2O and HDO millimeter observations. Icarus 117, 162-172], allowing an analysis of variability that was previously impossible. Measured 65-100 km H2O ranged from 0.0±0.06 to 3.5±0.3 ppmv, with significantly different variability than found in previous infrared (lower altitude, cloudtop) studies. Strong global variability on a 1-2 month timescale is clear and unambiguous. A limited number of excellent s/n measurements tentatively indicate the 1-2 month variability manifests most rapidly as change in the lower mesosphere, and more slowly as change in the upper mesosphere. Neither long term (1998-2004) nor diurnal variability in 65-100 km H2O is evident. While six-year and/or diurnal variabilities are not ruled out, they are weaker than the 1-2 month timescale variation. These conclusions are supported by initial (2004) sub-mm measurements.  相似文献   

19.
D. Stauffer  C.S. Kiang 《Icarus》1974,21(2):129-146
For purified binary gas mixtures like NH3H2O or HClH2O, partial pressures appreciably greater than the two saturation partial pressures are needed to condense the gas mixture into small solution droplets (“homogeneous hetero-molecular nucleation”). Thus without foreign nuclei, clouds are not as easily formed as in the theories of Lewis; the latter should be valid only if large condensation nuclei are available. We calculate here from classical homogeneous heteromolecular nucleation theory the threshold partial pressures necessary to achieve droplet nucleation for the gas mixtures NH3H2O (Jupiter,…), HClH2O (Venus), H2SO4H2O (Venus), and C2H5OHH2O (laboratory). In the last case, theory and experiment agree satisfactorily. If no “dust” particles are available as condensation nuclei, then we expect in Jupiter's atmosphere the cloud base level to be around 40 km above the 400K level instead of 10–25 km in Lewis' models (1969) (similar upward shifts for the outer Jovian planets). For Venus, our corrections make the formation of HClH2O clouds less probable for the 60-km layer at 0°C. If H2SO4 is formed by (photo-)chemical oxidation of SO2 and if clouds are formed at that level where the H2SO4 production is largest, then the cloud base levels for H2SO4H2O mixture clouds will not be shifted by our nucleation effects. For more reliable predictions, one needs more accurate data on the water vapor content of the planetary atmospheres and laboratory experiments testing the theoretically predicted nucleation behavior of these gaseous mixtures.  相似文献   

20.
Generation of auroral kilometric radiation (AKR) in the auroral acceleration region is studied. It is shown that auroral kilometric radiation can be generated by the backscattered electrons trapped in the acceleration region via a cyclotron maser process. The parallel electric field in the acceleration region is required to be distributed over 1–2 RE. The observed AKR frequency spectrum can be used to estimate the altitude range of the auroral acceleration region. The altitudes of the lower and upper boundaries of the acceleration region determined from the AKR data are respectively ~2000 and ~9000 km.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号