首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
In a diamond-anvil press coupled with YAG laser heating, the spinels of Co2GeO4 and Ni2GeO4 have been found to disproportionate into their isochemical oxide mixtures at about 250 kbar and 1400–1800°C in the same manner as their silicate analogues. At about the same P-T conditions MnGeO3 transforms to the orthorhombic perovskite structure (space group Pbnm); the lattice parameters at room temperature and 1 bar are a0 = 5.084 ± 0.002, b0 = 5.214 ± 0.002, and c0 = 7.323 ± 0.003Å with Z = 4 for the perovskite phase. The zero-pressure volume change associated with the ilmenite-perovskite phase transition in MnGeO3 is ?6.6%. Mn2GeO4 disproportionates into a mixture of the perovskite phase of MnGeO3 plus the rocksalt phase of MnO at P = 250kbar and T = 1400–1800°C. The concept of utilizing germanates as high-pressure models for silicates is valid in general. The results of this study support the previous conclusion that the lower mantle comprises predominantly the orthorhombic perovskite phase of ferromagnesian silicate.  相似文献   

2.
Pyroxene-garnet solid-solution equilibria have been studied in the pressure range 41–200 kbar and over the temperature range 850–1,450°C for the system Mg4Si4O12Mg3Al2Si3O12, and in the pressure range 30–105 kbar and over the temperature range 1,000–1,300°C for the system Fe4Si4O12Fe3Al2Si3O12. At 1,000°C, the solid solubility of enstatite (MgSiO3) in pyrope (Mg3Al2Si3O12) increases gradually to 140 kbar and then increases suddenly in the pressure range 140–175 kbar, resulting in the formation of a homogeneous garnet with composition Mg3(Al0.8Mg0.6Si0.6)Si3O12. In the MgSiO3-rich field, the three-phase assemblage of β- or γ-Mg2SiO4, stishovite and a garnet solid solution is stable at pressures above 175 kbar at 1,000°C. The system Fe4Si4O12Fe3Al2Si3O12 shows a similar trend of high-pressure transformations: the maximum solubility of ferrosilite (FeSiO3) in almandine (Fe3Al2Si3O12) forming a homogeneous garnet solid solution is 40 mol% at 93 kbar and 1,000°C.If a pyrolite mantle is assumed, from the present results, the following transformation scheme is suggested for the pyroxene-garnet assemblage in the mantle. Pyroxenes begin to react with the already present pyrope-rich garnet at depths around 150 km. Although the pyroxene-garnet transformation is spread over more than 400 km in depth, the most effective transition to a complex garnet solid solution takes place at depths between 450 and 540 km. The complex garnet solid solution is expected to be stable at depths between 540 and 590 km. At greater depths, it will decompose to a mixture of modified spinel or spinel, stishovite and garnet solid solutions with smaller amounts of a pyroxene component in solution.  相似文献   

3.
Natural marokite (CaMn2O4) has been studied at high pressures and temperatures using a diamond-anvil press coupled with laser heating in the pressure range 100–250 kbar. A mixture of marokite, CaMnO3 (perovskite) and MnO (rocksalt) has been observed in all runs in the above pressure range by X-ray diffraction study of the quenched samples. It was interpreted that marokite disproportionates into the mixture CaMnO3 (perovskite) + MnO (rocksalt) at pressures below 100 kbar. A general comparison of the molar volume for all known compounds having the marokite-related structures (including CaFe2O4 and CaTi2O4) with those for a mixture of perovskite plus rocksalt structures suggested that the mixture is more stable than the marokite-related structures at high pressures, as confirmed by the present experimental result. The CaFe2O4-modification of common nepheline (NaAlSiO4) is also suggested to be unstable relative to the component oxides of α-NaAlO2 + SiO2 (stishovite) at high pressures.  相似文献   

4.
CO2 has been investigated up to 514 kbar at23 ± 2°C by both optical and in situ X-ray diffraction studies using a diamond-anvil pressure cell. CO2 solidifies in an unknown structure in the pressure range 5 to 23 kbar, and transforms to ordinary dry-ice structure above 23 kbar at room temperature. Isothermal compression data for dry ice have been obtained above about 24 kbar. These appear to be the first data at room temperature known in the literature. The data fitted to the Birch equation of state yieldK0 = 29.3 ± 1.0kbar andK0 = 7.8 assuming the volume of the hypothetical dry ice at zero-pressure and room temperature is 31.4 ± 0.2 cm3/mole. The isothermal bulk modulus(K0) thus derived is consistent with the compression data and compressibilities for dry ice obtained at low temperatures using dilatometry and ultrasonic techniques, respectively, reported in the literature. By comparing shock-wave data for relevant materials, it is suggested that CO2 is not likely to transform to one of the crystalline forms of SiO2 which is otherwise expected from empirical grounds, but may instead decompose into C (diamond) + O2, at high pressures.  相似文献   

5.
Phase behaviour in the system diopside-jadeite (CaMgSi2O6NaAlSi2O6) have been investigated in the pressure region 100–300 kbar at about 1000°C in a diamond-anvil press coupled with laser heating. The omphacite solid solution extends from 30 to at least 200 kbar for the entire system. Omphacites, ranging in composition from pure diopside to more than 40 mole % jadeite, transform to diopside (II) at pressures greater than 230 kbar. Diopside (II), which probably possesses a perovskite-type structure, cannot be preserved when experiments are quenched to ambient conditions. Jadeite-rich omphacites were found to decompose into an assemblage of NaAlSiO4(CaFe2O4-type structure) + stishovite + diopside (II) (?) at pressures greater than about 260 kbar. These results suggest that an eclogitic model mantle would not display the 400-km seismic discontinuity. Moreover, sodium in the transition zone and lower mantle would most likely be accommodated in phases of omphacite and diopside (II).  相似文献   

6.
Synthetic crystalline (wollastonite) and glass forms of CaSiO3 have been compressed to loading pressures above 160 kbar and heated to about 1500° C by a laser in a diamond-anvil cell. After cooling, an X-ray diffraction study carried out whilst the sample was maintained at high pressure revealed that it had transformed to a cubic perovskite-type 3olymorph with a = 3.485 ± 0.008A?. After release of pressure, however, the sample showed a mixture of glass plus a few weak lines corresponding to ε-CaSiO3 which is thus interpreted as a retrogressive transition product. The density of the perovskite polymorph of CaSiO3 is about 9.2% greater than that of an isochemical mixture of CaO + SiO2 (stishovite) at about 160 kbar.  相似文献   

7.
At 30 kbar, calcite melts congruently at 1615°C, and grossularite melts incongruently to liquid + gehlenite (tentative identification) at 1535°C. The assemblage calcite + grossularite melts at 1450°C to produce liquid + vapor, with piercing point at about 49 wt.% CaCO3. Vapor phase is present in all hypersolidus phase fields except for those with less than about 7% CaCO3 or 8% Ca3Al2Si3O12. These results, together with known liquidus data for CaO—SiO2—CO2 and inferred results for CaO—Al2O3—CO2 and Al2O3—SiO2—CO2, permit construction of the position of the CO2- saturated liquidus surface in the quaternary system, and estimation of the positions of liquidus field boundaries separating some of the primary crystallization fields on this surface. The field of calcite is separated from those for grossularite and quartz by a field boundary with about 50% dissolved CaCO3. Crystallization paths of silicate liquids in the range Ca2SiO4—Ca3Al2Si3O12—SiO2, with some dissolved CO2, will terminate at a quaternary eutectic on this field boundary, with the precipitation of calcite together with grossularite and quartz, at a temperature below 1450°C. Addition of Al2O3 to CaO—SiO2—CO2 in amounts sufficient to stabilize garnet thus causes little change in the general liquidus pattern as far as carbonates and silicates are concerned. With addition of MgO, we anticipate that silicate liquids with dissolved CO2 will also follow liquidus paths to fields for the precipitation of carbonates; we conclude that similar paths link kimberlite and some carnbonatite magmas.  相似文献   

8.
Phase assemblages for five selected compositions in the system CaSiO3-Al2O3 have been investigated in the pressure range 100–300 kbar and at about 1000°C in a diamond-anvil press coupled with laser heating. At pressures below about 250 kbar, the assemblage of grossularite plus corundum is stable for compositions containing more than 25 mole% Al2O3. Above about 250 kbar, phase assemblages for the latter compositions are truncated by those in the join CaAl2O4-SiO2. Garnet solid solutions are stable between about 10 and 25 mole% Al2O3. Grossularite transforms to a new tetragonal form at pressures greater than about 250 kbar, but the stability field for the garnet solid solutions extends to pressures up to about 300 kbar. The perovskite modification appears to be stable at pressures above about 150 kbar, but is probably limited to nearly pure CaSiO3 composition. Phase behaviour for calcium-bearing silicates or aluminosilicates in the lower mantle are apparently more complicated than was suggested earlier.  相似文献   

9.
The evolution with pressure of the unit-cell parameters brownmillerite (Ca2Fe2O5), a stoichiometric defect perovskite structure, has been determined to a maximum pressure of 9.46 GPa, by single-crystal X-ray diffraction measurements at room temperature. Brownmillerite does not exhibit any phase transitions in this pressure range. A fit of a third-order Birch–Murnaghan equation-of-state to the PV data yields values of KT0=127.0(5) GPa and K0′=5.99(13). Analysis of the unit-cell parameter data shows that the structure compresses anisotropically. Compressional moduli for the axes are Ka0=141(1) GPa, Kb0=118(3) GPa and Kc0=122.2(2) GPa, with Ka0′=8.9(3), Kb0′=6.2(6) and Kc0′=4. The stiffest direction (i.e. along a) coincides with the direction of the FeO4 tetrahedral chains. Comparison of these data with the elasticity systematics of Ca-perovskites shows that the presence of oxygen vacancies in the brownmillerite structure softens the structure by ∼25% and that the ordering of vacancies in the perovskite structure increases the anisotropy of compression.  相似文献   

10.
Natural ilmenite (Fe,Mg)TiO3 has been found to transform to the perovskite structure and then to disproportionate into its component oxides, (Fe,Mg)O plus a cubic phase of TiO2, at loading pressures of 140 and 250 kbar respectively, and at temperatures of 1,400 to 1,800°C. Samples were compressed in a diamond-anvil press and heated by irradiation with a YAG laser. The lattice parameters of the perovskite phase of (Fe,Mg)TiO3 at room temperature and 1 bar are a0 = 4.471 ± 0.004, b0 = 5.753 ± 0.005, and c0 = 7.429 ± 0.006 A? with 4 molecules per cell. The zero-pressure volume change is 8.0% for the ilmenite-perovskite transition, 13.3% for the perovskite-mixed-oxides transition, and 20.2% for the ilmenite-mixed-oxides transition. The cubic phase of TiO2 can be indexed on the basis of space group Fm3m with Z = 4 and a0 = 4.455 ± 0.008 A? at room temperature and 1 bar, which corresponds to a decrease in zero-pressure volume of 29.2% for the rutile-cubic-phase transition. An isentropic bulk modulus at zero pressure of 5.75 ± 0.30 Mbar and a pressure derivative greater than 8 were calculated for the high-pressure cubic phase. The calculated bulk modulus for the mixture of (Fe,Mg)O and cubic TiO2 is 2.48 ± 0.25 Mbar. All the phase transformations, the calculated lattice parameters, and the bulk moduli observed in this study are in good agreement with published shock-Hugoniot data for ilmenite and rutile.  相似文献   

11.
Tin dioxide (SnO2) in the rutile structure as starting material has been found to transform to the orthorhombic α-PbO2 structure (S.G. Pbcn) at about 155 kbar and 1000–1400°C when compressed in a diamond-anvil cell and heated by irradiation with a YAG laser. The lattice parameters at room temperature and 1 bar are ao = 4.719 ± 0.002, bo = 5.714 ± 0.002, and co = 5.228 ± 0.002 A?with Z = 4 for the orthorhombic form of SnO2, which is 1.5% more dense than the rutile form. Crystal-chemical arguments suggest that stishovite (SiO2) may also transform to the α-PbO2 structure at elevated pressure and temperature with an increase in zero-pressure density of about 2–3%. Mineral assemblages containing the orthorhombic SiO2 are unstable relative to those containing the perovskite MgSiO3 under lower-mantle conditions.  相似文献   

12.
Both amorphous and crystalline (rutile) forms of MnO2 have been subjected to loading pressures of 220 and 250 kbar and heated by a laser to approximately 1000°C in a diamond-anvil press. In all runs, X-ray diffraction study of the quenched sample reveals a mixture of pyrolusite (the rutile form of MnO2) plus an unknown phase. This phase has been tentatively indexed on the basis of a large cubic cell with lattice parameter a0 = 9.868 ± 0.011Å. Shock-wave data for MnO2 up to 1300 kbar indicate that any phase transformation must involve only a small volume change. If the high-pressure phase is the cubic phase of this paper, then the latter has 36 formula units per unit cell, implying a zero-pressure volume change of 3.2% from the rutile to cubic phase. The cubic phase may provide an alternative model for the high-pressure phase of oxides having the rutile structure.  相似文献   

13.
Ultrasonic data for the velocities of a large number of perovskite-structure compounds have been determined as a a function of pressure to 6 kbar at room temperature for polycrystalline specimens hot-pressed at pressures up to 100 kbar in solid-media devices: ScAlO3, GdAlO3, SmAlO3, EuAlO3, YAlO3, CdTiO3, CdSnO3, CaSnO3 and CaGeO3. The elasticity data for these orthorhombic and cubic perovskites define systematic patterns on bulk modulus (KS)-volume (VO) and bulk sound velocity (υφ—mean atomic weight (M) diagrams which are insensitiv to the details of cation chemistry and crystallographic structure. These isostructural trends are used to estimate KS = 2.5 ± 0.3 Mbar and υφ = 7.9 ± 0.4 km/s for the perovskite polymorph of MgSiO3. On a Birch diagram of veloc vs. density, the perovskite data define linear trends which lead to erroneous estimates of velocity for MgSiO3 unless specific account is taken of ionic radius effects in isomorphic substitutions.  相似文献   

14.
The melting curves of the fluorides ZnF2 and NiF2 (rutile structure), CaF2, SrF2 and BaF2 (fluorite structure), and of the fluoroberyllates Na2BeF4 and Li2BeF4 have been studied at pressures ? 40 kbar by differential thermal analysis in a piston-cylinder high-pressure device. The initial slopes (dTm/dP)0 of these melting curves are respectively 7.2, 5.8, 16.7, 15.2, 15.7, 15.1 and <0°C/kbar. A new Li2BeF4 polymorph, apparently of the olivine structure type, is stable at pressures > 10 kbar and its melting curve has an average slope of ~6.7°C/kbar. These new data and those for SiO2, BeF2, GeO2, LiF and MgF2, recently studied by Jackson, are combined with existing data for elements, ionic compounds and silicates to assess the influence of crystal structure, molar volume and the nature of interatomic bonding on the initial slopes of melting curves. It is found that the entropy of fusion (ΔSm) is primarily a function of crystal structure while the volume change on fusion (ΔVm) is controlled by crystal molar volume within each isostructural series. Such systematics have recently facilitated estimation of the initial slopes of the melting curves of periclase and stishovite. New and existing melting data for silicates and their analogues have been analysed and a systematic dependence of (dTm/dP)0 on SiO2 concentration has been demonstrated. Possible implications of this trend for partial melting of upper-mantle garnet lherzolite are illustrated. Finally, the use of the traditional silicate-germanate and oxide-fluoride modelling schemes is reviewed in the light of information from this present study.  相似文献   

15.
Samples of Ni2SiO4 in both olivine and spinel phases have been compressed to pressures above 140 kbar in a diamond-anvil cell and heated to temperatures of 1400–1800°C using a continuous YAG laser. After quenching and releasing pressure, X-ray diffraction examination indicates that the samples disproportionate to a mixture of stishovite (SiO2) and bunsenite (NiO) at pressures between 140 and 190 kbar. The exact disproportionation pressure is not certain due to transient increases in pressure during the local and rapid heating. However, thermodynamic calculations suggest that the transition pressure is about 192 ± 4 kbar at 1545°C and that the equation of the spinel-mixed oxides phase boundary isP(kbar) = 121 + (0.046 ± 0.020) T (°C).  相似文献   

16.
In a diamond-anvil pressure cell coupled with laser heating, the system enstatite (MgSiO3)-pyrope (3 MgSiO3 · Al2O3) has been studied in the pressure region between about 100 and 300 kbar at about 1000°C using glass starting materials. The high-pressure phase behavior of the intermediate compositions of the system contrasts greatly with that of the two end-members. Differences between MgSiO3 and 95% MgSiO3 · 5% Al2O3 are especially remarkable. The phase assemblages β-Mg2SiO4 + stishovite and γ-Mg2SiO4 (spinel) + stishovite displayed by MgSiO3 were not observed in 95% MgSiO3 · 5% Al2O3, and the garnet phase, which was observed in 95% MgSiO3 · 5% Al2O3 at high pressure, was not detected in MgSiO3. These results suggest that the high-pressure phase transformations found in pure MgSiO3 would be inhibited under mantle conditions by the presence even of small amounts of Al2O3 (?4% by weight). On the other hand, pyrope displays a wide stability field, finally transforming at 240–250 kbar directly to an ilmenite-type modification of the same stoichiometry. The two-phase region, within which orthopyroxene and garnet solid solutions coexist, is very broad. The structure of the earth's mantle is discussed in terms of the phase transformations to be expected in a simple mixture of 90% MgSiO3 · 10% Al2O3 and Mg2SiO4. The seismic discontinuity at a depth of 400 km in the earth's mantle is probably due entirely to the olivine → β-phase transition in Mg2SiO4, with the progressive solution of pyroxene in garnet (displayed in 90% MgSiO3 · 10% Al2O3) occurring at shallower depths. The inferred discontinuity at 650 km is due to the combination of the phase changes spinel → perovskite + rocksalt in Mg2SiO4 and garnet → ilmenite in 90% MgSiO3 · 10% Al2O3. The 650-km discontinuity is thus characterized by an increase in the primary coordination of silicon from 4 to 6. A further discontinuity in the density and seismic wave velocities at greater depth associated with the ilmenite-perovskite phase transformation in 90% MgSiO3 · 10% Al2O3 is expected.  相似文献   

17.
The orthorhombic MgSiO3 perovskite has been synthesized with the aid of a double-stage split-sphere-type high-pressure apparatus at about 280 kbar and 1000°C. The unit cell dimensions are: a = 4.7754(3)Å, b = 4.9292(4)Å and c = 6.8969(5)Å with the probable space group Pbnm. Calculated density is 4.108 g cm?3. Crystal structure determination has been carried out by means of both the geometrical simulation (DLS) technique and the ordinary powder X-ray analysis. The results indicate that the MgSiO3 perovskite is closer to the ideal perovskite than ScAlO3 perovskite.  相似文献   

18.
The high-pressure and temperature phase transformations of MgSiO3 have been investigated in a diamond-anvil cell coupled with laser heating from 150 to 300 kbar at 1000–1400°C. X-ray diffraction study of the quenched samples reveals that the sequence of phase transformations for this compound is clinoenstatite → β-Mg2SiO4 plus stishovite → Mg2SiO4(spinel) plus stishovite → ilmenite phase → perovskite phase with increasing pressure. The hexagonal form of MgSiO3 observed by Kawai et al. is demonstrated to have the ilmenite structure and the “hexagonal form” of MgSiO3 observed by Ming and Bassett is shown to be predominantly the orthorhombic perovskite phase plus the ilmenite phase. The mixture of oxides, periclase plus stishovite, reported by Ming and Bassett was not observed in this study. The very wide stability field for the ilmenite phase of MgSiO3 found in this study suggests that this phase is of importance in connection with the observed rapid increase of velocity in the transition zone of the earth's mantle. On the basis of the extremely dense-packed structure of the perovskite phase of MgSiO3, this phase should be the most important component for the lower mantle.  相似文献   

19.
Reversal experiments of the olivine-spinel transition in Mg2GeO4 up to 20 kbar indicate a reaction boundary with the formula P = 35 (T ? 805). Pressure (P) in bars and temperature (T) in degrees centigrade.  相似文献   

20.
Ferromagnesian silicate olivines, pyroxenes and garnets with Mg/(Mg + Fe)?0.3 (molar) have been found to transform to high-pressure phases characterized by the orthorhombic perovskite structure when compressed to pressures above 250 kbar in a diamond-anvil press and heated to temperatures above 1,000°C with a YAG laser. The zero-pressure density of the perovskite phase of (Mg,Fe)SiO3 is about 3–4% greater than that of the close-packed oxides, rocksalt plus stishovite. For (Mg,Fe)2SiO4 compounds, the perovskite plus rocksalt phase assemblage is 2–3% denser than the mixed oxides. The experimental synthesis of such high-density perovskite phases in olivine, pyroxene and garnet compounds suggests that (Mg,Fe)SiO3-perovskite is the dominant mineral phase in the earth's lower mantle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号