首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Data from a line of magnetometers stretching along a corrected geomagnetic meridian ~ 302°E through western Canada are used to study the relationship between the convection westward electrojet and Pc 5 micropulsations in the morning sector. It was found that the dominant spectral bands in the Pc 5 range occur within the same latitudinal range occupied by the electrojet. The intensity contours and the character of the polarization parameters clearly show that the Pc 5 activity tracks the westward convection electrojet. The Pc 5 activity is found to be enhanced in conjunction with rapid reconfigurations of the electrojet. Evidence of spatial oscillations of the borders of the electrojet and variations in the intensity of the electrojet is presented. It is concluded from our study that the Pc 5 activity in the morning sector is closely related to the convection westward electrojet and its associated three-dimensional current system.  相似文献   

2.
In the companion paper (Lam and Rostoker, 1978) we have shown that Pc 5 micropulsations are intimately related to the behaviour and character of the westward auroral electrojet in the morning sector. In this paper we show that Pc 5 micropulsations can be regarded as LC-oscillations of a three-dimensional current loop involving downward field-aligned current flow near noon, which diverges in part to form the ionospheric westward electrojet and returns back along magnetic field lines into the magnetosphere in the vicinity of the ionosphere conductivity discontinuity at the dawn meridian. The current system is driven through the extraction of energy from the magnetospheric plasma drifting sunwards past the flanks of the magnetosphere in a manner discussed by Rostoker and Boström (1976). The polarization characteristics of the pulsations on the ground can be understood in terms of the effects of displacement currents of significant intensity which flow near the F-region peak in the ionosphere and induced currents which flow in the earth. These currents significantly influence the magnetic perturbation pattern at the Earth's surface. Model current system calculations show that the relative phase of the pulsations along a constant meridian can be explained by the composite effect of oscillations of the borders of the electrojet and variations in the intensity of current flow in the electrojet.  相似文献   

3.
For many years it has been known the that most intense and continuous Pc5 micropulsation activity occurs in the local time quadrant between dawn and noon. Recently, Lam and Rostoker (1978) have shown that Pc5 pulsations occur in the latitudinal regime occupied by the westward auroral electrojet and have suggested that part of the oscillating current system responsible for the pulsations involves upward field-aligned current at the boundary between the sunlit and dark ionosphere at local dawn. In this paper, we show that power in the Pc5 micropulsation range is markedly enhanced as one moves across the dawn terminator at 100 km from the nightside to the dayside. It is further shown that there is a significant increase in pulsation strength at ~0730 L.T.. The increase in Pc5 pulsation strength across the dawn terminator favors the concept that Pc5 micropulsations can be viewed as oscillations of a three-dimensional current loop involving downward current in the pre-noon sector diverging to flow in the ionosphere as part of the westward auroral electrojet and returning to the magnetosphere along field lines penetrating the ionosphere across the region separating the dark and sunlit ionosphere. We further suggest that the region of enhanced high energy electron precipitation shown by Hartz and Brice (1967) to maximize in the pre-noon quadrant is associated with the marked enhancement of Pc5 activity near 0730 L.T.  相似文献   

4.
Many previous researchers have shown that convection in the magnetosphere is reflected in the ionosphere by an eastward electrojet in the evening sector and a westward electrojet in the post-midnight sector. In this paper we shall demonstrate the existence of eastward electrojet flow in the dawn sector in the latitude regime normally occupied by the westward convection electrojet. It will be shown that the convection westward electrojet near dawn may co-exist with the eastward electrojet while lying poleward of it. It is suggested that this eastward electrojet consists of Pedersen current flow driven by an eastward electric field and it is shown that the field lines which penetrate the eastward electrojet are populated by energetic electrons normally associated with the plasma sheet as well as high energy electrons normally associated with the trapped particle population. The high conductivity channel is generated by processes associated with the precipitation of high energy (E > 20 keV) electrons drifting eastwards from midnight in the trapping region. It is further shown that antiparallel current sheets may flow on the magnetic lines of force penetrating the electrojet, and that this flow is closed in the ionosphere by Hall currents flowing equatorward in the high conductivity channel.  相似文献   

5.
The magnitude of the equatorial electrojet signature, S, is a measure of its magnetic field at the location of the satellite recording the signature. The general features of the large quantity of the magnetic field data of the electrojet observed by the series of POGO satellites from 1967 to 1970 have been studied here. We have compared the position of the axis of the electrojet as indicated by the position of the minimum of the electrojet signature with the position of the dip equator on the Earth's surface, and we find no significant latitudinal shift of the electrojet axis from the dip equator on the Earth. Apart from the expected decrease of the magnetic field of the electrojet with altitude above the electrojet, we have found unexpected cases in which the field increases with altitude. More surprisingly, we have discovered that the magnitude of S oscillates with altitude having maxima at about 460km and 635km and minima at about 580km and 725km, with a mean wavelength of 160 ± 29 km. It is suggested that this could be caused by additional weak current layers flowing above the main electrojet at about 110 km altitude. It is also pointed out that Onwumechili's model based on a single current system of the equatorial electrojet predicts field oscillation with altitude. The model therefore shows that a field oscillating with altitude can also result from a single complicated system of current unaided by additional current layers.  相似文献   

6.
Autospectra in the 2–13 month range, computed from mean monthly horizontal intensity on quiet days at Trivandrum, situated close to the dip equator, suggest an exceedingly large semi-annual modulation of the field confined to an interval of about 5 hr centred at 1000 LT. The amplitude of the semi-annual oscillation at this station, derived from power density, is greater than 19 γ at 1000 LT. Between 1900 and 0500 LT, spectral lines, corresponding to a period of six months, are not observed above the continuum. Spectral densities from observations at two other electrojet stations in India, Kodaikanal and Annamalainagar, and at Alibag, outside the electrojet, establish the existence of an appreciable enhancement of the semi-annual oscillation of the field in the equatorial electrojet belt. Similar computations of spectra using observations on all days, however, suggest a secondary component in the evening sector. This component is not enhanced in the equatorial electrojet belt. It is concluded that while in low latitudes the daytime component is largely associated with the modulation of Sq currents, in the electrojet belt it appears to be due entirely to a semi-annual modulation of the equatorial electrojet. It is also concluded that the secondary component, observed in the evening sector in low latitude and equatorial stations, is associated purely with the modulation of the ring current by disturbance. The two components of the semi-annual variation observed at the Indian stations have also been noticed at several stations between geomagnetic latitudes N54.6° and S41.8°. It is also observed that the association of the semi-annual component with geomagnetic latitude is confined to the evening-night component.  相似文献   

7.
A method of analysis has been developed making it possible to obtain electrojet parameters from vertical profiles of the POGO electrojet data. This has provided an unprecedented quantity of electrojet parameters—about 500 each of its peak eastward current intensity J0, its total eastward current I+, and its half width w—spanning through 360° longitude round the Earth, 5 h of daytime and September equinoctial months of the years 1967, 1968 and 1969. The daytime all-longitude averages of the parameters for the 3 years are 235 ± 14 km for w, 232 ± 63A km?1 for J0 and (54 ± 11) × 103A for I+. This first coverage round the globe shows that J0 and I+ vary considerably with longitude unlike w. While confirming the expected maximum of J0 and I+ at about 280°E longitude, we find that each of them also has an unexpected major maximum at about 100°E and a subsidiary maximum at 190°E longitude. The major maxima are found to be prominent only at hours near local noon. It is argued that the surprising longitudinal variations of J0 and I+ cannot be explained satisfactorily by variations in the upper mantle conductivity along the dip equator but possibly by longitudinal variations of wind systems and gradients at electrojet altitudes.  相似文献   

8.
In order to investigate Pc3-4 geomagnetic pulsations at very low and equatorial latitudes, L=1.0 to 1.2, we analyzed simultaneous geomagnetic data from Brazilian stations for 26 days during October-November 1994. The multitaper spectral method based on Fourier transform and singular value decomposition was used to obtain pulsation power spectra, polarization parameters and phase. Eighty-one (81) simultaneous highly polarized Pc3-4 events occurring mainly during daytime were selected for the study. The diurnal events showed enhancement in the polarized power density of about 3.2 times for pulsations observed at stations close to the magnetic equator in comparison to the more distant ones. The phase of pulsation observed at stations near the magnetic equator showed a delay of 48-62° in relation to the most distant one. The peculiarities shown by these Pc3-4 pulsations close to the dip equator are attributed to the increase of the ionospheric conductivity and the intensification of the equatorial electrojet during daytime that regulates the propagation of compressional waves generated in the foreshock region and transmitted to the magnetosphere and ionosphere at low latitudes. The source mechanism of these compressional Pc3-4 modes may be the compressional global mode or the trapped fast mode in the plasmasphere driving forced field line oscillations at very low and equatorial latitudes.  相似文献   

9.
The location of field-aligned currents in the evening sector with respect to the auroral electrojets is examined. The tri-axial TRIAD satellite data and the simultaneous ground magnetometer data from along the Alaska meridian are analysed. It is shown that an intense upward fieldaligned current flows out from the region of the westward electrojet where discrete auroras are located. The downward flowing current exists in the region further equatorward, namely in the region of the eastward electrojet. However, the downward current is present even when there is no eastward electrojet. The boundary between the upward and the downward currents coincides, in most cases, with the boundary between the westward and the eastward auroral electrojets. Thus, the Harang discontinuity, a narrow area separating the positive and negative H bays, is the region where there is no field-aligned current.  相似文献   

10.
Based on magnetic data from the IMS Alaska meridian chain of observatories, the total current of the westward auroral electrojet flowing across the meridian is estimated by using two independent methods. The first one is a simple integration of the north-south component of magnetic perturbations along the meridian, providing the quantity F in units of nT·km. The other is to use the forward method, providing the total current I in units of A. It is shown that F and I have nearly identical time variations. Thus, by normalizing the two quantities and taking the numerical value of F in units of nT·km, it is possible to estimate the total electrojet current flowing across a magnetic meridian, with an accuracy of 90%, by using the latitudinal profile of the H component, namely I (A) = 2.0 F (nT·km).  相似文献   

11.
On moderately disturbed days when substorms occur frequently, the quiet day daily variation in the polar region (Sqp) is enhanced. On such days, however, the quiet day variation along the dip equator appears to be suppressed, as well as being superposed with ‘fluctuations’.It is suggested that the enhancement of Sqp is related to a partial suppression of the equatorial electrojet. The asymmetric ring current also causes an apparent suppression of the electrojet.On the other hand, the substorm-associated electric field which drives the eastward current in the auroral and subauroral zone (causing positive bays) in the afternoon sector appears to enhance the equatorial electrojet.Thus, magnetic variations along the dip equator are influenced by a number of processes in the magnetosphere.  相似文献   

12.
Using magnetic data from the North American IMS network at high latitudes, Pi 3 pulsations are analysed for a period of 412 continuously-disturbed days. The data were obtained from 13 stations in the Alaska and Fort Churchill meridional chains and in the east-west chain along the auroral zone. In the past, Pi 3 pulsations associated with substorms have been classified into two sub-categories, Pi p and Ps 6. However, we find that Pi 3's which have longer periods than Pi p and which are different from Ps 6 are more commonly observed than these two special types. Power spectra, coherence and phase differences are compared among the stations. Results show that noticeable differences for latitudinal dependence of period and amplitude exist among midnight, morning and late-evening Pi 3 pulsations. Results for Pi 3 occurring near midnight indicate that the periods at which the power spectral density is a maximum are longest, and the amplitude largest, near the center of the westward auroral electrojet. On the other hand, for Pi 3 pulsations occurring in the morning, the periods at which the power spectral density is a maximum are longest, and the amplitude largest, near the poleward edge of the westward electrojet. Furthermore, for Pi 3 pulsations occurring in the late evening, their periods are longer and their amplitudes larger near both the Harang discontinuity and the poleward edge of the westward electrojet than near its center. Correlations between pairs of adjoining stations are better in the polar cap than at auroral latitudes. It is also found from hodograms that the sense of polarization often varies from one station to another for the same event, and that the time duration in which the same rotational sense is maintained is shorter near midnight than in the morning and late evening. It is suggested that the source regions of the morning and late-evening Pi 3's lie on the electrojet boundaries; that is at the Harang discontinuity (in the evening) and at the poleward edge of the westward electrojet (in the morning and evening). The generation of midnight Pi 3 pulsations, centered at a location within the westward auroral electrojet appears to be associated directly with the generation of that electrojet.  相似文献   

13.
We report an observation of the radial profile of a Pc5 magnetic pulsation and the associated energetic electron flux oscillations from 10 to 18 Re, recorded by the IMP-5 satellite at 19.00 M.L.T. on 21 March 1970. The Pc5 pulsation was mainly compressional and occurred during extremely quiet geomagnetic conditions. Fluxes of energetic electrons detected above three energy thresholds (18, 45, and 80 keV) were found to oscillate out of phase with magnetic field intensity. One new result is that both the wave amplitude and the wave period increased with radial distance. Second, the electron flux oscillation amplitude was roughly proportional to magnetic field fluctuation amplitude and wave period. The wave event is found to be interpreted better as an ion drift wave because of lack of polarization reversal. The characteristics of energetic electron flux oscillations are shown to agree qualitatively with theoretical calculations of the kinetic perturbation of distribution functions by compressional waves.  相似文献   

14.
A quiet-time Pc 5 event (designated Spacequake) of March 18, 1974, first noted on the Fort Churchill magnetopram, was studied using global data. Its amplitude was found to be largest in the northern part of the auroral zone and its period seemed to increase with latitude. The clockwise polarization of the event noted at Baker Lake and higher latitudes changed to counterclockwise at Fort Churchill in X-Y, X-Z and Y-Z planes. The resonance of a field line (L ? 10) excited due to an instability of the Kelvin-Helmholtz type may have given rise to the observed event. It is conjectured that the cause of instability at this high altitude was internal convection of the magnetosphere. Similar quiet-time events from four Canadian observatories were selected from approximately 11 years of magnetograms and their statistical analysis revealed that (i) occurrences maximized near dawn and dusk (ii) the amplitude-latitude profile peaked at Great Whale River (L ? 6.67), (iii) periods increased with increasing geomagnetic latitudes, (iv) a large number of events occurred in January, February and March every year, and (v) frequency of occurrence increased with increasing sunspot numbers. Comparison of these results with those available in the literature from analyses of satellite data clearly indicate that quiet-time Pc 5 events (Spacequakes) originate in the outer magnetosphere.  相似文献   

15.
Flapping motions of the magnetotail with an amplitude of several earth radii are studied by analysing the observations made in the near (x = ?25 ~ ?30 RE and the distant (x? ?60 RE) tail regions. It is found that the flapping motions result from fluctuations in the interplanetary magnetic field, especially Alfvénic fluctuations, when the magnitude of the interplanetary magnetic field is larger than ~10 γ and they propagate behind the Earth with the solar wind flow. Flappings tend to be observed in early phases of the magnetospheric substorm, and they have two fundamental modes with periods of ~200 and ~500 sec. In some limited cases a good correspondence with the long period micropulsations (Pc5) in the polar cap region is observed. These observational results are explained by the model in which the Alfvénic fluctuations in the solar wind penetrate into the magnetosphere along the connected interplanetary-magnetospheric field lines. The characteristics of the flapping reveal that the geomagnetic tail is a good resonator for the hydromagnetic disturbances in the solar wind.  相似文献   

16.
A comparison of the variations in the count of electrons E > 36 keV on the satellite Vela 4A, and in the Macquarie Island magnetometer H trace, shows for a time lag of 22-8 min a correlation, r = 0.95, over a 90 min period of the recovery phase of a magnetospheric substorm on 17 August 1968. All-sky camera data suggest that during the correlation period the auroral electrojet showed very little latitudinal movement. Each peak in electron count relates to a current surge in the electrojet as shown by a deepening of the negative bay at Macquarie Island.Using the Fairfield (1968) model of the location of auroral shells in the solar magnetic equatorial plane, and the known location of the satellite, an estimate of the velocity of tail to Earth plasma convection in the plasma sheet of about 0·33 Re/min is obtained for the recovery phase.The relationship is discussed between plasma sheet thinning and subsequent broadening, and the extension of the magnetic field lines into the tail region and their subsequent return. This discussion makes use of the estimated time lags between electron count at the satellite and the time of arrival of auroral particles at the antisolar meridian.From a somewhat speculative explanation, but one largely supported from the literature, of the magnetospheric processes involved in this auroral substorm, a plasma velocity estimate of 0·42 Re/min for the initial phase of the substorm is obtained. These velocities are of the same order as the 0·5 Re/min obtained by Lezniak and Winkler (1970) at 6·6 Re.  相似文献   

17.
In this paper we study a possible existence of surface wave (SW) global modes of the outer magnetosphere. The SW modes are supported by two plasma discontinuities: the plasmapause and the boundary between the open and closed field lines of the magnetosphere. Conditions under which the SW global modes can propagate azimuthally and along the magnetic field lines are examined. The ionosphere at the ends of the field lines is considered as reflecting boundaries of these SW modes. As a result SW standing wave structures along the magnetic field fluxes can be formed. Two branches of SW modes are derived. The low frequency branch, fs,1 falls in the Pc5 range, while the high frequency branch, fs,2—in the Pc4 range, where fs,1(2) is the fundamental SW global mode frequency. Their frequencies possess quantized properties in the following way: f≡(1,2,3, …)fs,1(2). The high frequency SW branch, fs,2 exists only for relatively great azimuthal wavenumbers k. It is pointed out that most of the SW global mode characteristics are similar to those of the FLR. These results are applied to 1.8 mHz global mode observations on 11 January 1997. Spectral, phase and polarization properties of this Pc5 pulsation event under northward IMF conditions are examined as we see them from ground-based (L’Aquila and TNB observatories) and satellite (POLAR and INTERBALL) observations.  相似文献   

18.
The existence of the dynamo region is identified in the atmosphere of Jupiter. It is found that the dynamo region extends from an altitude of 130 km (0.153 mbar) to 330 km (0.027 μbar) reckoned from zero altitude corresponding to 43.8 mbar pressure level. Physical features of the equatorial electrojet in the ionosphere of Jupiter are modelled in detail. The Jovian equatorial electrojet has a maximum eastward current density of about 1.5 Akm?2 at an altitude of 270km (0.33 μbar) with a latitudinal half width of about ±11°. The thickness of the equatorial half width is 100 km in altitude range. The type I instability in the electrojet can exist only if the electron streaming velocity exceeds the value of about 250 m s?1.  相似文献   

19.
Structured Pc 1 signals propagate in the ionospheric F2 region duct from their secondary sources at high latitudes to lower latitudes. Propagation directions to low latitude stations can be inferred from measurements of polarization parameters. The analysis of five events recorded at two low latitude stations (L = 1.9) are presented. Direction of arrival measurements are used to investigate the spatial and temporal structure of Pc 1 sources. Results show a close relationship between the structure of events identified in the frequency-time representation and direction of arrival measurement patterns. Multiple sources are sometimes indicated.  相似文献   

20.
The wave characteristics of Pc5 magnetic pulsations are analyzed with data of OGO-5, ISEE-1 and -2 satellites. The toroidal modes (δBD >δBH) of Pc5 pulsations are observed at a higher magnetic latitude in the dawnside outer magnetosphere. The compressional and poloidal modes (δBz.dfnc;δBH >δBD) of Pc5 pulsations are mostly observed near the magnetic equator in the duskside outer magnetosphere. This L.T. asymmetry in the occurrence of dominant modes of Pc5's in space can be explained by the velocity shear instability (Yumoto and Saito, 1980) in the magnetospheric boundary layer, where Alfvénic signals in the IMF medium are assumed to penetrate into the magnetospheric boundary layer along the Archimedean spiral. The asymmetrical behaviour of Pc5 pulsation activity on the ground across the noon meridian can be also explained by the ionospheric screening effect on the compressional Pc5 magnetic pulsations. The compressional modes with a large horizontal wave number in the duskside magnetosphere are expected to be suppressed on the ground throughout the ionosphere and atmosphere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号