首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
An analysis of micropulsation data, recorded at Borok during upstream wave events observed by the HEOS satellite in the solar wind, clearly demonstrates that pulsation activity was present at Borok only when the solar wind velocity was sufficiently large compared with the sunward component of the Alfvén velocity along the interplanetary magnetic field. We show that the form of this relationship is consistent with the generation of the Borok pulsations by the Kelvin-Helmholtz mechanism at the magnetopause. The experimentally determined threshold for this wave excitation agrees best with theory when the latter represents a magnetosheath flow of finite thickness and nonlinear effects of the interaction are included. The modified theoretical treatment is given in the appendix.  相似文献   

2.
It has been established for some time that there is a correlation between the frequency of Pc 3–4 geomagnetic pulsations observed on the ground and the strength of the interplanetary magnetic field (IMF). The recent discovery of an apparently similar relationship between pulsations in the same frequency band in the solar wind and the strength of the IMF led to the suggestion that some magnetospheric Pc 3–4 pulsations have an exogenic source.In this paper we offer a statistical reappraisal of some of the earlier results, and an analysis of newly available ground and solar wind pulsation data sets, which suggest that on the basis of a frequency-field strength relationship alone, the case for an exogenic source is still unproven.We do, however, find support for the frequency-field strength relationship (for ground pulsations), which was the original basis for the Borok B index for prediction of the strength of the IMF. We also confirm that pulsation frequency is, at best, an imprecise predictor and show that any derived relationship is strongly dependent on the data sets used.  相似文献   

3.
Ulysses plasma electron observations of bidirectional and enhanced unidirectional electron heat fluxes within 4500 RJ (0.8 a.u. or 3 months on either side of closest approach) of Jupiter are presented as evidence for the magnetic connection of the spacecraft to the Jovian bow shock. These bursts of suprathermal electrons (> 30 eV) are observed when the interplanetary magnetic field points roughly parallel or antiparallel to the Jupiter-spacecraft line. Ninety-eight possible connection events were found over the 6 month period centered on the closest approach to Jupiter. The frequency of occurrence peaked with proximity to the bow shock, with most events occurring post-encounter. These are the first observations of backstreaming suprathermal electrons made in the vicinity of the Jovian bow shock.  相似文献   

4.
We report an observation of the radial profile of a Pc5 magnetic pulsation and the associated energetic electron flux oscillations from 10 to 18 Re, recorded by the IMP-5 satellite at 19.00 M.L.T. on 21 March 1970. The Pc5 pulsation was mainly compressional and occurred during extremely quiet geomagnetic conditions. Fluxes of energetic electrons detected above three energy thresholds (18, 45, and 80 keV) were found to oscillate out of phase with magnetic field intensity. One new result is that both the wave amplitude and the wave period increased with radial distance. Second, the electron flux oscillation amplitude was roughly proportional to magnetic field fluctuation amplitude and wave period. The wave event is found to be interpreted better as an ion drift wave because of lack of polarization reversal. The characteristics of energetic electron flux oscillations are shown to agree qualitatively with theoretical calculations of the kinetic perturbation of distribution functions by compressional waves.  相似文献   

5.
Data from the two HEOS satellites obtained during the period December 1968 to August 1974 are used to investigate the large-scale properties of the interplanetary magnetic field.The sector structure has been deduced from the observed times of sector boundary crossings which are tabulated. A two-sector pattern existed throughout most of the period with occasional intervals of 2–3 months duration in which four sectors appeared. The variation of the dominant sector polarity with heliographic latitude showed a reversal in sense during 1971 at the time of the reported reversal in the Sun's polar field. A statistical analysis of the change in polarity distribution with latitude suggests that at Earth's orbit the sector boundaries are inclined to the solar equator on average at an angle of 12 deg.No evidence was found in the HEOS measurements of the north-south field component to confirm the systematic latitude-dependent deviation of the plasma flow away from the solar equatorial plane suggested by several analyses of data from previous spacecraft. The mean field magnitude and the average amplitude of the directional fluctuations appeared to be independent of heliographic latitude within the ±7.3° range explored.  相似文献   

6.
The generation of low-frequency waves in the solar wind by the flux of protons accelerated in the magnetosheath is considered. It is shown that pulsations are produced in two partly overlapping frequency ranges. The growth rate of waves is maximal when the angle θ between the direction of the interplanetary magnetic field and the front of the bow shock is not equal π2. The dependence of the increment of perturbation on the solar wind velocity is analysed. A satisfactory agreement between theory and experimental results on the connection of Pc3–4 properties and parameters of the solar wind is obtained.  相似文献   

7.
The Cassini spacecraft, en route to Saturn, passed close to Jupiter while the Galileo spacecraft was completing its 28th and 29th orbits of Jupiter, thus offering a unique opportunity for direct study of the solar wind-Jovian interaction. Here evidence is given of response of the Jovian magnetopause and bow shock positions to changes of the north-south component of the solar wind magnetic field, a phenomenon long known to occur in equivalent circumstances at Earth. The period analyzed starts with the passage over Cassini of an interplanetary shock far upstream of Jupiter. The shock's arrival at Galileo on the dusk-flank of the magnetosphere caused Galileo to exit into the solar wind. Using inter-spacecraft timing based on the time delay established from the shock arrival at each spacecraft, we point out that Galileo's position with respect to the Jovian bow shock appears to correlate with changes in the disturbed north-south reversing field seen behind the shock. We specifically rule out the alternative of changes in the shape of the bow shock with rotations of the interplanetary magnetic field as the cause.  相似文献   

8.
The measurements of the amplitudes envelope of Pc 3–4 geomagnetic micropulsations obtained at the Borok Geophysical Observatory were analysed by the cosinor method to search for magnetospheric pulsations with a period of about 160 m. 216 days of observations in 1974–1978 were used. It was found that Pc 3–4 amplitudes are modulated by the period 160.010 m with a stable phase. The maximum of the Pc 3–4 amplitudes follows approximately 20 m after the maximum of the solar expansion velocity (for the center of the disk) in the optical observations of Severny et al. This modulation of the Pc 3–4 amplitudes could be caused by the presence of an oscillating component in solar UV radiation over the wavelength range 100–900 Å. The amplitude of the UV flux variation may be as large as 2–4%.  相似文献   

9.
Magnetic field measurements from 133 low-latitude transits of the HEOS-1 satellite through the magnetosphere have been used to analyse the low-frequency pulsation activity in the outer regions of the geomagnetic field. Providing full longitude coverage in the sunward hemisphere at geocentric distances larger than ~7.5 Re, this survey complements previous low-frequency pulsation data from satellites at smaller geocentric distances. Several giant PC5 events, each being mainly compressional and lasting 1–2 hr, are described in detail and it is shown that this phenomenon is relatively common in the 8–12 Re, geocentric distance range near dusk. A depression of the ambient field magnitude always accompanied the events, suggesting that they are associated with a region of enhanced plasma pressure. The properties of these wave events are compared with the predictions of current micropulsation theories involving a Kelvin-Helmholtz generation mechanism and field-line resonance. Unlike the PC5 events observed nearer Earth, these events were not obviously related to periods of enhanced geomagnetic activity.  相似文献   

10.
A new method to calculate the mean free paths of energetic particles propagating parallel and anti-parallel to the interplanetary magnetic field, based on quasi-linear theory and the complex spectral polarization analysis of the field, is developed and presented. Applications of the method using HEOS 2 (1 AU), Pioneer 10 (5 AU), Pioneer 11 (20 AU), ICE (Giacobini-Zinner's comet) data have been made, showing that: (a) The mean free paths parallel and anti-parallel to the field can be completely different in various regions of the interplanetary medium and different time periods. (b) Particles are preferentially scattered in one direction. (c) The parallel and anti-parallel mean free paths become equal at certain energy. Comparisons with the results from another computational method are made.  相似文献   

11.
Magnetohydrodynamic resonance theory is used to model the structure of the magnetospheric and ionospheric electric and magnetic fields associated with Pc5 geomagnetic pulsations. In this paper the variation of the fields across the invariant latitude of the resonance are computed. The results are combined with calculations of the variation along a field line to map the fields down to the ionosphere. In one case the results are compared with measurements obtained by the STARE auroral radar and show good agreement. The relationship between the width of the resonance region and ionospheric height-integrated Pedersen conductivity is computed and it is shown how auroral radar measurements of Pc5 oscillations could be used to determine ionospheric height-integrated Pedersen conductivity. It is pointed out that from these calculations it would be possible to identify the field line on which a satellite was located by comparing a Pc5 pulsation observed by the satellite, and the same pulsation observed by STARE.  相似文献   

12.
It has been shown previously that the number of very-large-fluence solar proton events inferred for the period since 1561 were more frequent at times of low solar activity (e.g., following the recovery from the Maunder minimum), than in the present epoch of high solar activity. An inverse dependence is demonstrated between the probability of observation of the very large-fluence solar proton events and the strength of the interplanetary magnetic field derived from empirical predictions. Using the observed dependence, it is predicted and demonstrated that large-fluence solar proton events have been observed at Earth more frequently near the recurrent minima of the solar activity cycle in the past than during the present epoch. We show that these results are explicable in terms of the linear dependence of the Alfvén velocity upon the strength of the interplanetary magnetic field, leading to higher shock compression ratios in the past. These results indicate that this aspect of “solar weather” will be significantly influenced by the prevailing strength of the interplanetary magnetic field, and that recurrence of solar conditions similar to those of the solar activity minimum of solar cycles 12–14 (1878.9–1913.6) would be accompanied by a factor of ∼4 increase in the occurrence of large-fluence solar proton events.  相似文献   

13.
Based on cosmic ray data obtained by neutron monitors at the Earth's surface, and data on near-relativistic electrons measured by the WIND satellite, as well as on solar X-ray and radio burst data, the solar energetic particle (SEP) event of 2005 January 20 is studied. The results show that this event is a mixed event where the flare is dominant in the acceleration of the SEPs, the interplanetary shock accelerates mainly solar protons with energies below 130 MeV, while the relativistic protons are only accelerated by the solar flare. The interplanetary shock had an obvious acceleration effect on relativistic electrons with energies greater than 2 MeV. It was found that the solar release time for the relativistic protons was about 06:41 UT, while that for the near-relativistic electrons was about 06:39 UT. The latter turned out to be about 2 min later than the onset time of the interplanetary type III burst.  相似文献   

14.
Geomagnetic pulsations recorded on the ground are the signatures of the integrated signals from the magnetosphere. Pc3 geomagnetic pulsations are quasi-sinusoidal variations in the earth’s magnetic field in the period range 10–45 seconds. The magnitude of these pulsations ranges from fraction of a nT (nano Tesla) to several nT. These pulsations can be observed in a number of ways. However, the application of ground-based magnetometer arrays has proven to be one of the most successful methods of studying the spatial structure of hydromagnetic waves in the earth’s magnetosphere. The solar wind provides the energy for the earth’s magnetospheric processes. Pc3–5 geomagnetic pulsations can be generated either externally or internally with respect to the magnetosphere. The Pc3 studies undertaken in the past have been confined to middle and high latitudes. The spatial and temporal variations observed in Pc3 occurrence are of vital importance because they provide evidence which can be directly related to wave generation mechanisms both inside and external to the magnetosphere. At low latitudes (L < 3) wave energy predominates in the Pc3 band and the spatial characteristics of these pulsations have received little attention in the past. An array of four low latitude induction coil magnetometers were established in south-east Australia over a longitudinal range of 17 degrees at L = 1.8 to 2.7 for carrying out the study of the effect of the solar wind velocity on these pulsations. Digital dynamic spectra showing Pc3 pulsation activity over a period of about six months have been used to evaluate Pc3 pulsation occurrence. Pc3 occurrence probability at low latitudes has been found to be dominant for the solar wind velocity in the range 400–700 km/s. The results suggest that solar wind controls Pc3 occurrence through a mechanism in which Pc3 wave energy is convected through the magnetosheath and coupled to the standing oscillations of magnetospheric field lines.  相似文献   

15.
A high-speed, halo-type coronal mass ejection (CME), associated with a GOES M4.6 soft X-ray flare in NOAA AR 0180 at S12W29 and an EIT wave and dimming, occurred on 9 November 2002. A complex radio event was observed during the same period. It included narrow-band fluctuations and frequency-drifting features in the metric wavelength range, type III burst groups at metric – hectometric wavelengths, and an interplanetary type II radio burst, which was visible in the dynamic radio spectrum below 14 MHz. To study the association of the recorded solar energetic particle (SEP) populations with the propagating CME and flaring, we perform a multi-wavelength analysis using radio spectral and imaging observations combined with white-light, EUV, hard X-ray, and magnetogram data. Velocity dispersion analysis of the particle distributions (SOHO and Wind in situ observations) provides estimates for the release times of electrons and protons. Our analysis indicates that proton acceleration was delayed compared to the electrons. The dynamics of the interplanetary type II burst identify the burst source as a bow shock created by the fast CME. The type III burst groups, with start times close to the estimated electron-release times, trace electron beams travelling along open field lines into the interplanetary space. The type III bursts seem to encounter a steep density gradient as they overtake the type II shock front, resulting in an abrupt change in the frequency drift rate of the type III burst emission. Our study presents evidence in support of a scenario in which electrons are accelerated low in the corona behind the CME shock front, while protons are accelerated later, possibly at the CME bow shock high in the corona.  相似文献   

16.
Based on the data of the high-apogee satellite Prognoz-3, the April 29–30, 1973 solar particle event is analysed. The event's complex energetic particle, interplanetary magnetic field and solar wind plasma properties are discussed. The unusual behaviour of solar particles up to energies 100 MeV can well be explained in terms of the interaction with an interplanetary shock wave system passing the Earth. Assuming that the structure of the interplanetary shock wave system is similar to that considered first by Parker (1961) and Gold (1959) and reviewed later by Hundhausen (1972) and Dryer (1974, 1975), the main characteristics of the energetic particle fluxes, solar wind and interplanetary magnetic field can be understood.  相似文献   

17.
Several attempts have been made to predict the strength of the interplanetary magnetic field (IMF) from the frequency of Pc 3, 4 pulsations measured on the ground. The predictive capability of the ground pulsations depends on the relationship which exists between their frequency and the IMF magnitude. It has been suggested that the relationship improves considerably when coincident frequencies between two stations are used.In this paper we show the correlation between the IMF magnitude and the frequency of coincident pulsation events in a network of five stations in the IGS magnetometer array. We do find that the frequency-field strength relationship is very good for the coincident events at the stations with large longitudinal separation ( > 3 h). We also confirm that the frequency taken from a network of ground stations is a better predictor of IMF magnitude than that from a single station.  相似文献   

18.
A quiet-time Pc 5 event (designated Spacequake) of March 18, 1974, first noted on the Fort Churchill magnetopram, was studied using global data. Its amplitude was found to be largest in the northern part of the auroral zone and its period seemed to increase with latitude. The clockwise polarization of the event noted at Baker Lake and higher latitudes changed to counterclockwise at Fort Churchill in X-Y, X-Z and Y-Z planes. The resonance of a field line (L ? 10) excited due to an instability of the Kelvin-Helmholtz type may have given rise to the observed event. It is conjectured that the cause of instability at this high altitude was internal convection of the magnetosphere. Similar quiet-time events from four Canadian observatories were selected from approximately 11 years of magnetograms and their statistical analysis revealed that (i) occurrences maximized near dawn and dusk (ii) the amplitude-latitude profile peaked at Great Whale River (L ? 6.67), (iii) periods increased with increasing geomagnetic latitudes, (iv) a large number of events occurred in January, February and March every year, and (v) frequency of occurrence increased with increasing sunspot numbers. Comparison of these results with those available in the literature from analyses of satellite data clearly indicate that quiet-time Pc 5 events (Spacequakes) originate in the outer magnetosphere.  相似文献   

19.
The Rankine-Hugoniot relations are applied to shock-like discontinuities measured by both magnetic field and plasma instruments on the satellite Explorer 34 between May 30, 1967 and Jan. 11, 1968.Shock normals were either determined from the magnetic field observations, or from the times of occurrence of the discontinuity at Explorers 33, 34 and 35. The Rankine-Hugoniot relations are obeyed to the accuracy of the observations, and the values of shock velocities, density ratios, and Mach numbers indicate that at 1 AU the typical interplanetary shock is not strong, although all the events studied caused geomagnetic impulses.  相似文献   

20.
Several substorms were observed at Explorer 45 in November and December 1971, and January and February 1972, while the satellite was in the evening quadrant near L = 5. These same substorms were identified in ground level magnetograms from auroral zone and low latitude stations. The satellite vector magnetic field records and rapid run ground magnetograms were examined for evidence of simultaneous occurrence of Pi2 magnetic pulsations. Pulsations which began abruptly were observed at the satellite during 7 of the 13 substorms studied and the pulsations occurred near the estimated time of substorm onset. These 7 pulsation events were also observed on the ground and 6 were identified in station comments as Pi2. All of the events observed were principally compressional waves, that is, pulsations in field magnitude. There were also transverse components elliptically polarized counter-clockwise looking along the field line. Periods observed ranged from 40 to 200 sec with 80 sec often the dominant period.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号