首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Our Chandra observation of the FR I radio galaxy 3C 66B has resulted in the first detection of an X-ray counterpart to the previously known radio, infrared and optical jet. The X-ray jet is detected up to 7 arcsec from the core and has a steep X-ray spectrum, α ≈1.3±0.1 . The overall X-ray flux density and spectrum of the jet are consistent with a synchrotron origin for the X-ray emission. However, the inner knot in the jet has a higher ratio of X-ray to radio emission than the others. This suggests that either two distinct emission processes are present or differences in the acceleration mechanism are required; there may be a contribution to the emission from the inner knot from an inverse Compton process or it may be the site of an early strong shock in the jet. The peak of the brightest radio and X-ray knot is significantly closer to the nucleus in the X-ray than in the radio, which may suggest that the knots are privileged sites for high-energy particle acceleration. 3C 66B's jet is similar both in overall spectral shape and in structural detail to those in more nearby sources such as M87 and Centaurus A.  相似文献   

2.
Diffuse γ-rays probe the highest-energy processes at the largest scales. Here we derive model-independent constraints on the hadronic contribution to the Galactic and extragalactic γ-ray spectra at in the energy range 50 MeVEγ10 GeV. The hadronic component is dominated by emission from neutral pions, with a characteristic spectrum symmetric about mπ0/2. We exploit the well-defined properties of the pion decay spectrum to quantify the maximum pionic fraction of the observed γ-ray intensity. We find that the Galactic spectrum above 30 MeV can be atmost about 50% pionic. The maximum pionic contribution to the extragalactic spectrum is energy dependent; it also depends on the redshift range over which the sources are distributed, ranging from as low as about 20% for pions generated very recently, to as much as 90% if the pions are generated around redshift 10. The implications of these constraints for models of γ-ray and neutrino emission are briefly discussed.  相似文献   

3.
The blazar 3C 345 is quite similar to the γ-ray blazar 3C 279 in respect of redshift, spectral energy distribution from the radio to the X-ray wave band, and so on. However, it was not detected by EGRET. We compared the differences and similarities between 3C 345 and the γ-ray sources 3C 279 and 3C 273 in respect of variation amplitudes (in the 8 GHz, 22 GHz, 37 GHz and B band), the smallest variation time scales in the optical and the time lags between different bands to search possible reason for the lack of the γ-ray radiation in 3C 345. From our analyses it is found that the variation amplitudes in the radio band for 3C 345 and 3C 279 are quite similar; the variation amplitudes in the optical wave band gradually decrease in the order 3C 279, 3C 345 and 3C 273, and variations on the order of days are found in these three sources. It is also found that the time lag in 3C 345 is much longer than that in 3C 279 and is approximately the same as that in 3C 273. Based on the similarity of other observational properties between 3C 345 and 3C 273, such as the presence of the big blue bump and their comparable infrared luminosities, it is proposed that the spectral energy distribution and the luminosity in the γ-ray band for 3C 345 are similar to those for 3C 273. It is indicated by our simple calculations that if 3C 273 has a similar redshift to that of 3C 345, then even at the burst state, EGRET could not detect any radiations from 3C 273. This might be the reason why 3C 345 had never been detected by EGRET.  相似文献   

4.
We apply an inverse Compton   e ±  pair cascade model for γ-ray production in the massive binary system LSI +61° 303 assuming that electrons are accelerated already inside the inner part of the jet launched by the compact object. γ-ray spectra, affected by the cascade process, and lower energy spectra, from the synchrotron cooling of the highest energy electrons in the jet, are calculated as a function of the phase of this binary system. γ-ray spectra expected in such a model have different shape than those ones produced by electrons in the jet directly to observer. Moreover, the model predicts clear anticorrelation between γ-ray fluxes in the GeV (1–10 GeV) and TeV (>200 GeV) energy ranges with the peak of the TeV emission at the phase ∼0.5 (the peak half-width ranges between the phases ∼0.4–0.9, for the inclination of the binary system equal to 60°, and ∼0.4–0.1 for 30°). The fine features of TeV γ-ray emission (fluxes and spectral shapes) as a function of the phase of the binary system are consistent with recent observations reported by the MAGIC collaboration. Future simultaneous observations in the GeV energies (by the GLAST and AGILE telescopes) and in the TeV energies (by the MAGIC and VERITAS telescopes) should test other predictions of the considered model supporting or disproving the hypothesis of acceleration of electrons already in the inner part of the microquasar jets.  相似文献   

5.
The bright quasar 3C 273   总被引:1,自引:0,他引:1  
We review the observed properties of the bright quasar 3C 273 and discuss the implications of these observations for the emission processes and in view of gaining a more global understanding of the object. Continuum and line emission are discussed. The emission from the radio domain to gamma rays are reviewed. Emphasis is given to variability studies across the spectrum as a means to gain some understanding on the relationships between the emission components. 3C 273 has a small scale jet and a large scale jet. The properties of these jets are described. It is also attempted to relate the activity in the small scale jet to that observed in the radio and infrared continuum. Received: 5 June 1998  相似文献   

6.
We study the contribution of young pulsars, with characteristic ages of less than 106 yr, to the diffuse γ-ray emission from the Large Magellanic Cloud (LMC). Based on the outer gap model for γ-ray emission proposed by Zhang & Cheng and pulsar properties in the LMC given by Hartmann, Brown & Schnepf, we simulate the properties of the young pulsars in the LMC. We show that γ-rays produced by the pulsars in the LMC may make an important contribution to the diffuse γ-rays in the LMC, especially in the high-energy range. We calculate the γ-ray energy spectrum of the pulsars in the LMC and show that the γ-ray component contributed by the pulsars to the diffuse γ-rays in the high-energy range (above ∼1 GeV) becomes dominant. We expect that none of the young pulsars should be detectable as an individual point source of γ-ray emission by EGRET. We also expect that pulsar contribution above ∼1 GeV in the SMC is very important.  相似文献   

7.
During the period of 1991–1993 two strong high energy γ-ray flares were observed by the Compton Gamma Ray Observatory in the flat spectrum radio source PKS 0528+134. They were associated with strong mm-radio outbursts with a few months time-delays. In this paper the spectral energy distributions (SED) of the radiations in the γ-hand X-ray and the IR-optical bands are analysed. It is shown that the high energy γ-ray radiation may be due to the inverse Compton scattering of the ambient UV and soft X-ray photons by the relativistic electrons in the jet. Basing on the comparison between the properties of the synchrotron radiation of the γ-ray source and the spectral evolution of the mm-radio outbursts, the evolutional relationship between the γ-ray emitting blobs and the mm-radio emitting blobs is discussed.  相似文献   

8.
Data on X-,γ-ray, optical and radio emission from the 1991 June 15 solar flare are considered. We have calculated the spectrum of protons that producesγ-rays during the gradual phase of the flare. The primary proton spectrum can be described as a Bessel-function-type up to 0.8 GeV and a power law with the spectral index ≈3 from 0.8 up to 10 GeV or above. We have also analyzed data on energetic particles near the Earth. Their spectrum differed from that of primary protons producingγ-ray line emission. In the gradual phase of the flare additional pulses of energy release occurred and the time profiles of cm-radio emission andγ-rays in the 0.8–10 MeV energy band and above 50 MeV coincided. A continuous and simultaneous stochastic acceleration of the protons and relativistic electrons at the gradual phase of the flare is considered as a natural explanation of the data.  相似文献   

9.
Using a multi-component model to describe the γ-ray emission, we investigate the flares of December 16, 1988 and March 6, 1989 which exhibited unambiguous evidence of neutral pion decay. The observations are then combined with theoretical calculations of pion production to constrain the accelerated proton spectra. The detection of π0 emisson alone can indicate much about the energy distribution and spectral variation of the protons accelerated to pion producing energies. Here both the intensity and detailed spectral shape of the Doppler-broadened π0 decay feature are used to determine the spectral form of the accelerated proton energy distribution. The Doppler width of this γ-ray emission provides a unique diagnostic of the spectral shape at high energies, independent of any normalisation. To our knowledge, this is the first time that this diagnostic has been used to constrain the proton spectra. The form of the energetic proton distribution is found to be severely limited by the observed intensity and Doppler width of the π0 decay emission, demonstrating effectively the diagnostic capabilities of the π0 decay γ-rays. The spectral index derived from the γ-ray intensity is found to be much harder than that derived from the Doppler width. To reconcile this apparent discrepancy we investigate the effects of introducing a high-energy cut-off in the accelerated proton distribution. With cut-off energies of around 0.5–0.8 GeV and relatively hard spectra, the observed intensities and broadening can be reproduced with a single energetic proton distribution above the pion production threshold.  相似文献   

10.
In the inner regions of an accretion disc around a black hole, relativistic protons can interact with ambient matter to produce electrons, positrons and γ-rays. The resultant steady-state electron and positron particle distributions are self-consistently computed taking into account Coulomb and Compton cooling,  e e+  pair production (due to γ–γ annihilation) and pair annihilation. While earlier works used the diffusion approximation to obtain the particle distributions, here we solve a more general integro-differential equation that correctly takes into account the large change in particle energy that occurs when the leptons Compton scatter off hard X-rays. Thus this formalism can also be applied to the hard state of black hole systems, where the dominant ambient photons are hard X-rays. The corresponding photon energy spectrum is calculated and compared with broad-band data of black hole binaries in different spectral states. The results indicate that the γ-ray spectra  ( E > 0.8 MeV)  of both the soft and hard spectral states and the entire hard X-ray/γ-ray spectrum of the ultrasoft state could be due to p–p interactions. These results are consistent with the hypothesis that there always exists in these systems a γ-ray spectral component due to p–p interactions that can contribute between 0.5 and 10 per cent of the total bolometric luminosity. The model predicts that GLAST would be able to detect black hole binaries and provide evidence for the presence of non-thermal protons, which in turn would give insight into the energy dissipation process and jet formation in these systems.  相似文献   

11.
射电星系M87的大尺度喷流在射电、光学和X波段都已经具备高分辨率的成像观测和频谱观测。其各个节点的宽波段连续谱目前被认为是同步辐射主导的。文章采用相对论性电子同步辐射的Kardashev-Pacholczyk模型,对各节点的多波段连续谱进行了独立的最佳拟和,从而得到相应的多普勒因子。此外进一步结合各节点的视超光速运动的观测数据,导出了不同节点整体运动的Lorentz因子和对观测者的视角。计算结果表明,M87的大尺度喷流具有一定程度的弯曲,其整体动力学行为是减速的。  相似文献   

12.
We present the Wide-field Infrared Survey Explorer (WISE) photometric data of 158 Fermi-detected BL Lacs and investigate the nature of their mid-infrared (MIR) continuum emission. In the [3.4]-[4.6]-[12] μm color–color diagram, nearly all their colors lie within the WISE Blazar strip (WBS), which is an effective diagnostic tool to separate sources dominated by non-thermal radiation from those dominated by thermal radiation. This feature indicates that their MIR emission is predominantly non-thermal. This argument is further supported by the strong radio-MIR flux correlation. We derive their MIR spectral indices and compare them with the near-infrared (NIR) spectral indices. We find that there is a prevalent steepening from MIR spectrum to NIR spectrum. The low-frequency-peaked BL Lacs (LBLs) have on average a larger MIR spectral index and a higher MIR luminosity than the high-frequency-peaked BL Lacs (HBLs), and the intermediate-frequency-peaked BL Lacs (IBLs) appear to bridge them. The MIR-γ-ray flux correlation is highly significant. A strong positive correlation is also found between the MIR and γ-ray spectral indices. The γ-ray-MIR loudness is significantly correlated with the synchrotron peak frequency. Finally we propose that the γ-rays are highly associated with the MIR emission from the jet, and the γ-ray emission is likely from the synchrotron self-Compton process for the Fermi-detected BL Lacs in our sample.  相似文献   

13.
The detection of very high energy γ-ray emission from the Galactic center has been reported by four independent groups. One of these γ-ray sources, the 10TeV γ-ray radiation reported by HESS, has been suggested as having a hadronic origin when relativistic protons are injected into and interact with the dense ambient gas. Assuming that such relativistic protons required by the hadronic model come from the tidal disruption of a star by the massive black hole of Sgr A*, we explore the spectrum of the relativistic protons. In the calculations, we investigate cases where different types of stars are tidally disrupted by the black hole of Sgr A*, and we consider that different diffusion mechanisms are used for the propagation of protons. The initial energy distribution of the injected spectrum of protons is assumed to follow a power-law with an exponential cut-off, and we derive the different indices of the injected spectra for the tidal disruption of different types of stars. For the best fit to the spectrum of photons detected by HESS, the spectral index of the injected relativistic protons is about 2.05 when a red giant is tidally disrupted by the black hole of Sgr A* and the diffusion mechanism is the Effective Confinement of Protons.  相似文献   

14.
We consider the contribution to the Galactic diffuse γ-ray emission from unresolved γ-ray pulsars. Based on the thick outer gap model, Monte Carlo methods are used to simulate the properties (period, distance, magnetic field, etc.) of the Galactic population of rotation-powered pulsars the gamma-ray flux of which is lower than the threshold sensitivity of the EGRET detector on the Compton Gamma-Ray Observatory . Furthermore, the contribution to the Galactic diffuse γ-ray spectrum from the unresolved γ-ray pulsars is calculated. Our results indicate that the unresolved γ-ray pulsars contribute ∼5 to ∼10 per cent to the measured Galactic diffuse γ-ray emission if the birth rate of neutron stars in the Galaxy is 1 to 2 per century, and that these pulsars contribute significantly to the observed Galactic diffuse γ-ray emission above 1 GeV. Comparing the model spectrum with the observed spectrum, we show that the unresolved γ-ray pulsars contribute very little to the diffuse emission at lower energies but can account for ∼50 per cent of the observed spectrum above 1 GeV if the product of the birth rate of neutron stars and the γ-ray beaming fraction is about unity. Such a large pulsar contribution can explain the difference (∼60 per cent) between the intensity of the Galactic diffuse emission as measured by EGRET above 1 GeV and model predictions based on cosmic ray–matter interaction only.  相似文献   

15.
We present ten years optical/UV/X-ray observations of 3C 273 performed using XMM–Newton between 2000 and 2009. The short-time scale variability behaviour of the soft and hard X-ray light curves may suggest different origins of the soft/hard X-ray emissions. We fit well the 0.2–10 keV X-ray spectrum with a hard power-law component plus a soft Comptonization component. The lack of Γ???F correlation of the hard power-law component and the weakness of iron K α lines may support dominance of the jet component. The soft X-ray excess correlates much better with ultraviolet than with the hard power-law component, strongly suggesting that soft excess emission originates from inverse Comptonization of UV photons.  相似文献   

16.
We present a Chandra image of the quasar, jet, and lobes of PKS 1354+195 (=4C 19.44). The radio jet is 18 arcsec long, and appears to be very straight. The length gives many independent spatial resolution elements in the Chandra image while the straightness implies that the geometrical factors are constant along the jet although their values are uncertain. We also have 4 frequency radio images with half to one arcsecond angular resolution, and use HST and Spitzer data to study the broad band spectral energy distributions. The X-ray and radio spectra are both consistent with a spectrum f ν ν −0.7 for the integrated jet. Using that spectral index, the model of inverse Compton scattering of electrons on the cosmic microwave background (IC/CMB) gives magnetic field strengths and Doppler factors that are relatively constant along the jet. Extended X-ray emission is evident in the direction of the otherwise unseen counter-jet. X-ray emission continues past the radio jet to the South, and is detected within both the southern and northern radio lobes.  相似文献   

17.
In this work, we study the physical properties of the high-energy (HE) emission region by modeling the quasi-simultaneous multi-wavelength(MWL) spectral energy distributions (SEDs) of 27 Fermi-LAT detected low-synchrotron-peaked (LSP) blazars. We model the jets MWL SEDs in framework of a well accepted single-zone leptonic model including synchrotron self-Compton and external Compton (EC) processes for the jets in a state of equipartition between particle and magnetic field energy densities. In the model the GeV γ-ray spectrum is modeled by a combination of two different external Compton-scattered components: (i) EC scattering of photons coming from disk and broad line region (BLR), and (ii) EC scattering of photons originating from the dust tours (DT) and BLR. We find that the SEDs can be well reproduced by the equipartition model for the most majority of the sources, and the results are in agreement with many recent studies. Our results suggest that the SEDs modelling alone may not provide a significant constraint on the location of the HE emission region if we do not know enough about the physical properties of the external environment.  相似文献   

18.
A theoretical unifying scheme for gamma-ray bright blazars   总被引:1,自引:0,他引:1  
The phenomenology of γ-ray bright blazars can be accounted for by a sequence in the source power and intensity of the diffuse radiation field surrounding the relativistic jet. Correspondingly, the equilibrium particle distribution peaks at different energies. This leads to a trend in the observed properties: an increase of the observed power corresponds to: (i) a decrease in the frequencies of the synchrotron and inverse Compton peaks, and (ii) an increase in the ratio of the powers of the high- and low-energy spectral components. Objects along this sequence would be observationally classified respectively as high-frequency BL Lac objects, low-frequency BL Lac objects, high-polarization quasars and low-polarization quasars.   The proposed scheme is based on the correlations among the physical parameters derived in the present paper by applying to 51 γ-ray loud blazars two of the most accepted scenarios for the broad-band emission of blazars, namely the synchrotron self-Compton and external Compton models. This also explains the observational trends presented by Fossati et al., dealing with the spectral energy distributions of all blazars. This gives us confidence that our scheme applies to all blazars as a class.  相似文献   

19.
Blazars are the subclass of active galactic nuclei (AGNs) which includes the Flat Spectrum Radio Quasars (FSRQ) and BL Lacertae (BL Lac) objects. Variability on the short- and long-time scale in all the wide energy ranges from radio up to gamma-ray emission is a special characteristic of blazars. Multi-wavelength studies of the flaring activity and variability of blazars can serve as a tool to probe the physical properties of the near the core regions and processes responsible for the observed features. 3C 454.3 is a bright FSRQ that is intensively studied through the wide range of electromagnetic spectrum. It has shown remarkably high activity since 2000. The long-term observations of 3C 454.3 at 800 GeV–100 TeV energies with the SHALON telescope were started in 1998 year. A number of activity periods were found. The most significant flaring state of 3C 454.3 at TeV energies was detected in the SHALON observational period of November–December 2010. This increase is correlated with the flares at a lower energy range in observations of Fermi-LAT. The direct association of the significant changes of gamma-ray flux with strong core radio flares are not clear but observed correlations and lags in multi-wavelength activity may point to the complexity of the emission processes in blazars connected with disturbance propagating in the jet.  相似文献   

20.
The EGRET observations have confirmed and proposed the new isotropically distributed γ-ray background, but the known objects radiating γ-rays can not supply so much radiation. Meanwhile, EGRET also reveals a population of γ-ray sources with no radio counterparts which are isotropically distributed in the sky, indicating their possible cosmological origins. Wang et al.[13] proposed a new γ-ray radiation process driven by the radiation feedback of AGNs. The energy of the radiation peaks around 1 GeV—0.1 TeV with the typical luminosity of 1042—1043 ergs · s?1. This kind of radiation process in the radio quiet quasars make them the potential γ-ray radiation sources as well as the contributors to the γ-ray background. We consider two cases in which the seed photons in the inverse-Compton processes are from the accretion disks of quasars and cosmic microwave background (CMB), respectively. We find that the former contributes 78%—92% of the background radiation around 1 GeV, while the contribution from the latter is negligible. The radio quiet quasars are highly likely to become the objects which contribute the most energy to the γ-ray background around 1 GeV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号