首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
The morphology of the Wadati-Benioff zone in the Hellenic arc was established on the basis of the distribution of 1058 earthquake foci. The subduction zone appears to be composed of two separated parts (western and eastern) terminated by seismically active fracture zones. The existence of an intermediate depth aseismic gap, closely connected with active calc-alkaline volcanism, was confirmed in both parts. The age and the average subduction rate of the present subduction cycle were estimated.  相似文献   

2.
Summary The discovery of paleoplates buried in the upper mantle leads to an interpretation of the subduction as a discontinuous process running in cycles and shifting the place of its operation in or against the direction of ocean floor spreading. This mechanism explains the distribution of calc-alkaline volcanism of different age in fossil convergent plate boundaries. The establishment of regular spatial correlation of the aseismic gap in the Wadati-Benioff zones with the distribution of calc-alkaline volcanism enables to reconstruct fossil plate boundaries and to define allochtonous terranes in apparently homogeneous continental plates. The hampering effect of the ocean floor morphology and of the fragments of continental plates approaching the trench, which substantially influences the rates of subduction and the geodynamic history of active continental margins in different domains along the trench, allows us to understand the complicated geological development of continental wedges in fossil convergent plate margins. The establishment of the segmented nature of active subduction zones and the dramatic morphology of the lower limit of the active subducted slab along the trench help us to interpret extensive lateral gaps in volcanic chains overlying active as well as fossil subduction zones.  相似文献   

3.
Cosmogenic and radioactive 10Be, stable 9Be and B concentrations have been determined for four alkaline lavas from the recent cycle of historical activity at Mt. Vesuvius, in the Central Campania Province (Italy). The goal of this study was to use the Be isotope and Be-B systematics of these lavas in a manner analogous to that used in regions unequivocally related to active subduction, in hopes of being able to document a subduction origin for the Vesuvian lavas. Four lavas measured to date have low 10Be concentrations as well as low B/Be ratios. While the low 10Be concentrations could reflect subduction and incorporation of old sediments and/or only contributions from the basaltic part of the subducting plate, the combination of low 10Be and low B/Be ratios must be interpreted as the absence of a subduction signature in these lavas. Unfortunately, the absence of a subduction signature in the lavas cannot be used unequivocally to argue against recent subduction in the Central Campania region. Subduction of an unusually young, hot slab which has lost its B through prograde metamorphic reactions at shallow levels could explain the absence of a subduction signature, as could extensive crustal contamination. In addition, recent studies in Java show that alkaline lavas in this region of active subduction never show a subduction signature, even when erupting in close proximity to calc-alkaline and tholeiitic lavas which do; by analogy, the Vesuvian lavas studied may have been generated in a part of the sub-arc mantle which either does not experience or does not preserve the chemical signature of subduction modification. The present data set does not allow us to make definitive statements about the role of subduction in the origin of the Central Campania lavas.  相似文献   

4.
邵志刚  张国民  李志雄  夏红 《地震》2008,28(3):33-42
通过计算前人研究所给出的中国大陆26条活动地块边界带上地震过程的变异系数, 分析了各边界带的地震活动类型, 结果表明中国大陆东部地区的边界带地震都表现为丛集过程, 西部地区大多是泊松过程或者准周期过程, 尤其是大陆板块俯冲作用强烈的边界带上地震活动主要呈现为泊松过程, 青臧高原北部和东部地区的边界带都表现为准周期过程, 并讨论了可能的物理机制。 并在以往研究的基础上, 基于对数正态分布函数, 计算了各边界带目前地震发生的累计概率以及未来五年内地震发生的条件概率, 探讨了各活动地块边界带的危险程度等。  相似文献   

5.
The morphology of the Wadati-Benioff zone in the region of Kamchatka, the Kurile Islands and Hokkaido, based on the distribution of 6319 earthquake foci, has verified the existence of an intermediate-depth aseismic gap and its relation to active andesitic volcanism. It appeared that deep-focus earthquakes in this region belong to a paleosubduction zone activated by an intermediate-depth collision with the active subduction zone in the area of Hokkaido. A system of deep seismically active fracture zones was delineated in the continental plate and confirmed by the results of deep seismic sounding. Two of these fractures, dipping toward the subduction zone, may be considered as the principal feeding channels for active and Holocene volcanoes of the continental volcanic bels of Kamchatka.  相似文献   

6.
The present Pacific Ocean differs significantly in its structure and evolution from the expanding Atlantic Ocean. The Pacific is asymmetric. Its mid-ocean ridge is located not along its median line but is closer to South America and adjoins North America. The Pacific is surrounded by a ring of subduction zones but has marginal seas only at its Eurasian margins. After the breakup of Pangea, the Atlantic began to open and the Pacific began to close. This paper examines the evolution of the Pacific Ocean and, in particular, the formation mechanisms of its present structures. Numerical modeling of the long-term drift of a large continent is performed, with the initial position of the continent corresponding to the state after the breakup of the supercontinent. At first the continent, driven by the nearest descending mantle flow, begins to approach a subduction zone. Since the mantle flows beneath a large continent have different directions, its velocity is a few times lower than that of the mantle flows near the subduction zone. As a result, a zone of extension arises at the active continental margin and a fragment is broken off from the continent; this fragment rapidly moves away and stops above the descending mantle flow as in a trap. A marginal sea forms at the active continental margin. The continent continues its slow movement toward the subduction zone. The oceanic lithosphere, which earlier sank vertically, begins to descend obliquely. This evolutionary stage corresponds to the present position of Eurasia. The modeling shows how the interaction of the continent with the mantle causes the subduction zone to roll back toward the ocean. Subsequently, the continent nevertheless catches up with the subduction zone, and they move together for a while. The marginal sea then closes and high compressive stresses arise at the active continental margin. This state corresponds to the present position of South America. During the subsequent drift, the continent together with the subduction zone reaches the mid-ocean ridge and partially overrides it. This state corresponds to North America, which was the first to break off from Pangea and passed through the stages of both Eurasia and South America. The large and slowly moving Eurasia, which formed only at the time of Pangea, is still in the first evolutionary stage of the Pacific Ocean closure.  相似文献   

7.
Summary The morphology of the Wadati-Benioff zone in the region of Central America, based on the distribution of 1377 earthquake foci, verified the existence of an intermediate aseismic gap and its relation to active andesitic volcanism, and the non-uniformity of subduction due to the hampering effect of the main structural features of the subducting Cocos plate. Four deep seismically active fracture zones, genetically connected with the process of subduction, and three fracture zones manifesting the possible boundary between the Americas and Caribbean plates were identified in the continental wedge.  相似文献   

8.
东南亚巽他弧形汇聚板块俯冲构造体系是全球最为活跃的板块汇聚边界地带之一, 早期研究认为巽他弧俯冲体系主要发育俯冲增生型板块边缘, 以典型的增生棱柱体弧前隆起地貌为主要特征; 最新研究发现东印度洋沃顿海盆圣诞岛海底火山群省最东段Roo海隆已经随板块运动到达爪哇海沟区域, 与巽他弧其他区域正常洋壳俯冲过程相比, Roo海隆凸起构造在巽他弧体系中触发了不同的俯冲地质过程.本文结合前人研究成果, 全面梳理认识Roo海隆区域属性特征, 包括海隆岩性与年代学特征、起源争议、"隆-沟"区域俯冲深部结构特征; 进一步增强对弧前早期俯冲侵蚀过程的理解, 包括局部增生棱柱体前缘碰撞侵蚀凹陷、弧前隆起差异性抬升、弧前盆地挤压破碎变窄; 并首次利用二维多道地震资料解释, 探讨弧后盆地对"隆-沟-弧-盆"新俯冲构造格局的响应特征.目前弧后肯登-马都拉海峡盆地内正在发生新一期挤压构造运动, 我们认为其发育的浅层挤压背斜构造特征是Roo海隆凸起构造形成的垂直正交快速高角度新俯冲构造格局下弧后盆地内的直接构造变形响应.  相似文献   

9.
Cretaceous episodic growth of the Japanese Islands   总被引:1,自引:0,他引:1  
G. Kimura 《Island Arc》1997,6(1):52-68
Abstract The Japanese Islands formed rapidly in situ along the eastern Asian continental margin in the Cretaceous due to both tectonic and magmatic processes. In the Early Cretaceous, huge oceanic plateaus created by the mid-Panthalassa super plume accreted with the continental margin. This tectonic interaction of oceanic plateau with continental crust is one of the significant tectonic processes responsible for continental growth in subduction zones. In the Japanese Islands, Late Cretaceous-Early Paleogene continental growth is much more episodic and drastic. At this time the continental margin uplifted regionally, and intra-continent collision tectonics took place in the northern part of the Asian continent. The uplifting event appears to have been caused by the subduction of very young oceanic crust (i.e. the Izanagi-Kula Plate) along the continental margin. Magmatism was also very active, and melting of the young oceanic slab appears to have resulted in ubiquitous plutons in the continental margin. Regional uplift of the continental margin and intra-continent collision tectonics promoted erosion of the uplifted area, and a large amount of terrigenous sediment was abruptly supplied to the trench. As a result of the rapid supply of terrigenous detritus, the accretionary complexes (the Hidaka Belt in Hokkaido and the Shimanto Belt in Southwest Japan) grew rapidly in the subduction zone. The rapid growth of the accretionary complexes and the subduction of very young, buoyant oceanic crust caused the extrusion of a high-P/T metamorphic wedge from the deep levels of the subduction zone. Episodic growth of the Late Cretaceous Japanese Islands suggests that subduction of very young oceanic crust and/or ridge subduction are very significant for the formation of new continental crust in subduction zones.  相似文献   

10.
太平洋板块俯冲对中国东北深浅震影响机理的数值模拟   总被引:1,自引:0,他引:1  
张慧  焦明若  刘峡 《地震》2012,32(2):135-144
本文采用与深度有关的不同分层结构模型, 并考虑太平洋板块俯冲角度差异等特征, 建立太平洋板块向中国东北地区俯冲的2D纵向静力学模型。 以太平洋板片俯冲速度为约束条件, 通过变化俯冲板块的俯冲角度, 数值模拟太平洋板块向中国东北的俯冲过程, 探讨太平洋板块俯冲作用对于我国东北深浅震的影响, 得到不同俯冲角度模型的深浅部应力场分布, 揭示区域构造应力场的总体特征和断裂带局部特性, 并讨论了活动断裂带以及邻近区域对东北地区深浅部构造应力场的响应。 结果表明, 太平洋板块俯冲角度的变化对于中国东北地区深浅震的地震活动格局具有重要影响, 断裂带构造环境是浅源地震孕育的基本条件。  相似文献   

11.
We have used a coupled thermo-mechanical finite-element (FE) model of crustal deformation driven by mantle/oceanic subduction to demonstrate that the tectonic evolution of the Lachlan Fold Belt (LFB) during the Mid-Palaeozoic (Late Ordovician to Early Carboniferous) can be linked to continuous subduction along a single subduction zone. This contrasts with most models proposed to date which assume that separate subduction zones were active beneath the western, central and eastern sections of the Lachlan Orogen. We demonstrate how the existing data on the structural, volcanic and erosional evolution of the Lachlan Fold Belt can be accounted for by our model. We focus particularly on the timing of fault movement in the various sectors of the orogen. We demonstrate that the presence of the weak basal decollement on which most of the Lachlan Fold Belt is constructed effectively decouples crustal structures from those in the underlying mantle. The patterns of faulting in the upper crust appears therefore to be controlled by lateral strength contrasts inherited from previous orogenic events rather than the location of one or several subduction zones. The model also predicts that the uplift and deep exhumation of the Wagga-Omeo Metamorphic Belt (WOMB) is associated with the advection of this terrane above the subduction point and is the only tectonic event that gives us direct constraints on the location of the subduction zone. We also discuss the implications of our model for the nature of the basement underlying the present-day orogen.  相似文献   

12.
On the initiation of subduction zones   总被引:1,自引:0,他引:1  
Analysis of the relation between intraplate stress fields and lithospheric rheology leads to greater insight into the role that initiation of subduction plays in the tectonic evolution of the lithosphere. Numerical model studies show that if after a short evolution of a passive margin (time span a few tens of million years) subduction has not yet started, continued aging of the passive margin alone does not result in conditions more favorable for transformation into an active margin.Although much geological evidence is available in supporting the key role small ocean basins play in orogeny and ophiolite emplacement, evolutionary frameworks of the Wilson cycle usually are cast in terms of opening and closing of wide ocean basins. We propose a more limited role for large oceans in the Wilson cycle concept. In general, initiation of subduction at passive margins requires the action of external plate-tectonic forces, which will be most effective for young passive margins prestressed by thick sedimentary loads. It is not clear how major subduction zones (such as those presently ringing the Pacific Basin) form but it is unlikely they form merely by aging of oceanic lithosphere. Conditions likely to exist in very young oceanic regions are quite favorable for the development of subduction zones, which might explain the lack of preservation of back-arc basins and marginal seas.Plate reorganizations probably occur predominantly by the formation of new spreading ridges, because stress relaxation in the lithosphere takes place much more efficiently through this process than through the formation of new subduction zones.  相似文献   

13.
The seismically active Macquarie Ridge complex forms the Pacific-India plate boundary between New Zealand and the Pacific-Antarctic spreading center. The Late Cenozoic deformation of New Zealand and focal mechanisms of recent large earthquakes in the Macquarie Ridge complex appear consistent with the current plate tectonic models. These models predict a combination of strike-slip and convergent motion in the northern Macquarie Ridge, and strike-slip motion in the southern part. The Hjort trench is the southernmost expression of the Macquarie Ridge complex. Regional considerations of the magnetic lineations imply that some oceanic crust may have been consumed at the Hjort trench. Although this arcuate trench seems inconsistent with the predicted strike-slip setting, a deep trough also occurs in the Romanche fracture zone.Geoid anomalies observed over spreading ridges, subduction zones, and fracture zones are different. Therefore, geoid anomalies may be diagnostic of plate boundary type. We use SEASAT data to examine the Macquarie Ridge complex and find that the geoid anomalies for the northern Hjort trench region are different from the geoid anomalies for the Romanche trough. The Hjort trench region is characterized by an oblique subduction zone geoid anomaly, e.g., the Aleutian-Komandorski region. Also, limited first-motion data for the large 1924 earthquake that occurred in the northern Hjort trench suggest a thrust focal mechanism. We conclude that subduction is occurring at the Hjort trench. The existence of active subduction in this area implies that young oceanic lithosphere can subduct beneath older oceanic lithosphere.  相似文献   

14.
Very low to zero shallow dip angles are observed at several moderately young subduction zones with an active trenchward moving overriding plate. We have investigated the effects of latent heat for this situation, where mantle material is pushed through the major mantle phase transitions during shallow low-angle subduction below the overriding plate. The significance of the buoyancy forces, arising from the latent heat effects, on the dynamics of the shallowly subducting slab is examined by numerical modeling. When a 32-Ma-old slab is overridden with 2.5 cm/yr by a continent, flat subduction occurs with a 4–5 cm/yr convergence rate. When latent heat is included in the model, forced downwellings cause a thermal anomaly and consequently thermal and phase buoyancy forces. Under these circumstances, the flat slab segment subducts horizontally about 350 km further and for about 11 Ma longer than in the case without latent heat, before it breaks through the 400-km phase transition. The style of subduction strongly depends on the mantle rheology: increasing the mantle viscosity by one order of magnitude can change the style of subduction from steep to shallow. Similarly, an overriding velocity of less than 1 cm/yr leads to steep subduction, which gradually changes to flat subduction when increasing the overriding velocity. However, these model parameters do not change the aforementioned effect of the latent heat, provided that low-angle subduction occurs. In all models latent heat resulted in a substantial increase of the flat slab length by 300–400 km. Varying the olivine–spinel transition Clapeyron slope γ from 1 to 6 MPa/K reveals a roughly linear relation between γ and the horizontal length of the slab. Based on these results, we conclude that buoyancy forces due to latent heat of phase transitions play an important role in low-angle subduction below an overriding plate.  相似文献   

15.
The Sulawesi Sea and Sulawesi Island are located in the western Pacific area where volcanic activity,plate subduction,and seismic activity are very active.The Sulawesi basin formed during the Middle Eocene-Late Eocene and nearly half of the Eocene oceanic crust has subducted below the North Sulawesi Trench.The Sulawesi Island was spliced and finalized in the Early Pliocene-Pleistocene during volcanic activity and is recently very active.This area is an optimal location to study volcanic geothermal conditions and subduction initiation mechanisms in the southern part of the western Pacific plate margin,which are important in geothermal and geodynamic research.In this study,we combined 133 heat flow data with gravity and magnetic data to calculate the Moho structure and Curie point depth of the Sulawesi Sea and periphery of the Sulawesi Island,and analyze the distribution characteristics of the geothermal gradient and thermal conductivity.The results show that the average depths of the Moho and Curie surfaces in this area are 18.4 and 14.3 km,respectively,which is consistent with the crustal velocity layer structure in the Sulawesi Basin previously determined by seismic refraction.The average geothermal gradient is 4.96°C(100 m)-1.The oceanic area shows a high geothermal gradient and low thermal conductivity,whereas the land area shows a low geothermal gradient and high thermal conductivity,both of which are consistent with statistical results of the geothermal gradient at the measured heat flow points.The highest geothermal gradient zone occurs in the transition zone from the Sulawesi Sea to Sulawesi Island,corresponding to the spreading ridge of the southward-moving Sulawesi Basin.Comprehensive gravity,magnetic,and geothermal studies have shown a high crustal geothermal gradient in the study area,which is conducive to the subduction initiation.The northern part of the Palu-koro fault on the western side of Sulawesi is likely the location where subduction initiation is occurring.During the process of moving northwest,the northern and eastern branches of Sulawesi Island have different speeds;the former is slow and the latter is fast.These branches also show different deep tectonic dynamic directions;the northern branch tilts north-up and the eastern branch tilts north-down.  相似文献   

16.
Soichi  Osozawa 《Island Arc》1993,2(3):142-151
Abstract Normal faults parallel to the trend of an active ridge are formed in the accretionary prism at trench-trench-ridge triple junction, due to continuous spreading of the subducted ridge. Normal faults are observed in the Nabae and Mugi sub-belts, accretionary zones formed by ridge subduction in the Shimanto Belt. Igneous and sedimentary dykes intrude through the previous normal faults. Using these fault and dyke data, intermediate principal axis of stress relating to the normal faulting is determined, and is fitted to the trend of the subducted ridge. Normal faults formed by ridge subduction are useful for plate reconstruction.  相似文献   

17.
Abstract   The development of voluminous granitic magmatism and widespread high-grade metamorphism in Mid-Cretaceous southwest Japan have been explained by the subduction of a spreading ridge (Kula–Pacific or Farallon–Izanagi plate boundaries) beneath the Eurasian continent and the formation of a slab window. In the present study, the thermal consequences of the formation of a slab window beneath a continental margin are evaluated through a 2-D numerical simulation. The model results are evaluated by comparison with the Mid-Cretaceous geology of southwest Japan. Of particular interest are the absence of an amphibolite- to granulite-facies metamorphic belt near the Wadati–Benioff plane, and significant melting of the lower crustal-mafic rocks sufficient to form a large amount of granitic magma. Because none of the model results simultaneously satisfied these two geological interpretations, it is suggested that subduction of plate boundaries in Mid-Cretaceous southwest Japan was not associated with the opening of a slab window. According to previous studies, and the results of the present study, two different tectonic scenarios could reasonably explain the geological interpretations for Mid-Cretaceous southwest Japan: (i) The spreading ridge did not subduct beneath the Eurasian continent, but was located off the continental margin, implying the continuous subduction of very young oceanic lithosphere; (ii) ridge subduction beneath the continental margin occurred after active spreading had ceased. Consequently, in both tectonic scenarios, the subduction of plate boundaries at the Mid-Cretaceous southwest Japan was not associated with a slab window, but very young (hot) oceanic lithosphere.  相似文献   

18.
活动海岭俯冲与岛弧火山活动的热模拟研究   总被引:7,自引:1,他引:6       下载免费PDF全文
为解释活动海岭的俯冲会造成岛弧火山活动的间断这一现象,本文采用有限单元法对活动海岭俯冲的热演化过程进行了模拟计算.一般情况下,摩擦剪切生热使岛弧下100km左右深度形成地温反转,俯冲板片海洋地壳内角门岩等含水矿物脱水,释放的水进入其上覆板块,降低了地幔岩石的熔点,使热的地幔楔状体内发生部分熔融,形成岛弧火山活动.高温的活动海岭俯冲时不再出现这种温度反转,俯冲板片在较浅深度达到较高温度而脱水,水进入上覆相对较冷的地幔楔状体不能造成熔融,因此岛弧火山活动会中断.  相似文献   

19.
— The Indo-Burma (Myanmar) subduction boundary is highly oblique to the direction of relative velocity of the Indian tectonic plate with respect to the Eurasian plate. The area includes features of active subduction zones such as a Wadati-Benioff zone of earthquakes, a magmatic arc, thrust and fold belts. It also has features of oblique subduction such as: an arc-parallel strike-slip fault (Sagaing Fault) that takes up a large fraction of the northward component of motion and a buttress (the Mishmi block) that resists the motion of the fore-arc sliver. In this paper, I have examined the seismicity, slip vectors and principal axes of the focal mechanisms of the earthquakes to look for features of active subduction zones and for evidence of slip partitioning as observed in other subduction zones. The data set consists of Harvard CMT solutions of 89 earthquakes (1977–1999 with 4.8≦̸Mw≦̸7.2 and depths between 3–140 km). Most of these events are shallow and intermediate depth events occurring within the Indian plate subducting eastward beneath the Indo-Burman ranges. Some shallow events within the fore-arc region have arc-parallel Paxes, reflecting buttressing of the fore-arc sliver at its leading edge. Some of the shallowest events have nearly E-W oriented P axes which might account for recent folding and thrusting. Examination of earthquake slip vectors in this region shows that the slip vector azimuths of earthquakes in the region between 20°–26°N are rotated towards the trench normal, which is an indication of partial partitioning of the oblique convergence. It is seen that all aspects of seismicity, including the paucity of shallow underthrusting earthquakes and the orientation of P axes, are consistent with oblique convergence. The conclusions of this paper are consistent with recent geological studies and interpretations such as the coexistence of eastward subduction, volcanic activity and transcurrent movement through mid-Miocene to Quaternary period.  相似文献   

20.
In the south-eastern corner of the Tyrrhenian basin, in the central Mediterranean Sea, a tight alignment of earthquakes along a well-defined Benioff zone marks one of the narrowest active trenches worldwide, where one of the last fragment of the former Tethys ocean is consumed. Seismic tomography furnishes snapshot images of the present-day position of this slab, and seismic anisotropy allows to reconstruct the past kinematics of the subduction process. Using seismic anisotropy fast directions as a proxy for the present and past mantle flow, we look backward for the seismic traces of the slab motion through the western-central Mediterranean mantle, from the starting locus of subduction toward its present day position. The result of combining independent data sets provides a coherent pattern of anisotropy that illustrates an example of slab rollback from its initiation point to its present-day position.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号