首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The evolution of Alfvén turbulence due to three-wave interactions is discussed using kinetic theory for a collisionless, thermal plasma. In particular, we consider decay of Alfvén waves through three-wave coupling with an ion sound mode in the random-phase approximation. Two decay processes are of particular interest: an Alfvén wave decays into a backward propagating Alfvén wave and a forward propagating ion sound wave, and an Alfvén wave decays into a backward propagating fast magnetoacoustic wave and a forward ion sound wave. The former was widely discussed in the literature, particularly under the coherent wave assumption. The latter was not well explored and is discussed here.  相似文献   

2.
Properties of a guided MHD-wave propagating in a magnetic field tube with the plasma density differing from the ambient density are studied. Like the Alvén wave this wave propagates along the magnetic field and is connected with the field-aligned currents flowing at the periphery of the oscillating tube. The guided wave is accompanied by the magnetic field compression, nevertheless the wave moves without attenuation. The guided wave velocity is between the Alvén velocities inside and outside the oscillating tube. In a tube of elliptical cross-section the propagation velocity depends on the polarization of the wave.  相似文献   

3.
Shock compression experiments on Kinosaki basalt were carried out in the interest of studying collisional phenomena in the solar nebula. Shock waves of 7 and 31 GPa were generated using a thin flyer plate, and a shock wave of 16 GPa was generated using a thick cylindrical projectile. By employing in-material manganin and carbon pressure gauges, the shock wave attenuation was examined and the propagation velocities of the shock wave and rarefaction wave were measured.The attenuation mechanism consists of two effects: the rarefaction wave and geometrical expansion. The rarefaction effect includes the reflected wave and the edge wave. The efficiency of these mechanisms depends on the geometry of the projectile, initially induced pressure, and materials of the target and projectile.As a result of the experiments, a cylindrical impactor created an isobaric region of size almost equal to the projectile radius. The shock wave in the far field was attenuated similarly with the power of −1.7 to −1.8 of the propagation distance under our experimental conditions. The shock wave generated using a thin flyer plate was attenuated by the rarefaction wave generated on the back surface of the flyer plate and by geometrical expansion effects. The shock wave generated using a thick projectile was attenuated by edge-wave and by geometrical expansion effects.According to elastic theory, the rigidity of basalt at 7 and 31 GPa was calculated as 35±7 and 0±3 GPa, respectively, using the measured rarefaction wave velocities. The decayed shock pressure was related to the ejection velocity of the impact fragments, which were obtained in previous disruption experiments. The attenuation rates in previous experiments were consistent with ours. The previous impact scaling parameter called “nondimensional impact stress (PI)” has been improved.  相似文献   

4.
引力波和引力波望远镜的发展   总被引:1,自引:1,他引:1  
简要回顾了广义相对论中相关的引力波理论,讨论了对引力波进行探测的重要意义和几种可能的途径;系统介绍了近50年来国际上对引力波进行探测的主要活动,以及当前几个具有代表性的引力波望远镜工程的进展。  相似文献   

5.
We derive a mixed modified Korteweg-de Vries (MK-dV) equation from a semi-relativistic ion acoustic wave with hot ions by the fluid approximation. The positive cubic nonlinearity of the mixed MK-dV equation give rise to the periodic progressive waves and the algebraic solitary waves. The periodic wave bears a series of solitary pulses, and the algebraic solitary wave reduces the rarefactive solitary wave in the limit of the particular boundary condition. These nonlinear wave modes explain, respectively, the periodic pulse of the potential and the rarefactive solitary wave of the fine structure observed in space.  相似文献   

6.
The dynamical evolution of a relativistic explosion in a homogeneous medium is studied by means of a time-dependent, hydrodynamic code. When the expanding velocity of the shock front reduces to the sound velocity in the relativistic fluid, the reverse shock wave propagating inward through the expanding material is generated. The radius of the turning point of the reverse shock wave is proportional to the explosion energy and hardly depends on the mass of the explosion products. In the case of the non-relativistic explosion, the reverse shock wave is generated just after the free expansion stage. The radius of the turning point of the reverse shock wave is proportional to the mass of the explosion products and little depends on the explosion energy. In both cases of the non-relativistic and relativistic explosion, the reverse shock wave is strong in a spherical explosion and weak in a cylindrical one. The plane symmetric explosion does not generate the reverse shock wave.  相似文献   

7.
The work deals with the resonant particle excitation of two electrostatic waves with closely spaced wave numbers, when there is an inhomogeneity present in the form of a spatially dependent wave number. Resonant particle behaviour in such a field is investigated and the resonant particle current is computed for a variety of cases. If the inhomogeneity is such that resonant particles see the wave numbers of the waves increasing, then it turns out that the wave of greatest wave number is preferentially amplified. If the gradient is reversed it is the opposite wave which grows. Thus when a narrow band electrostatic wave is subject to beam excitation, only one of the sideband waves is unstable.The theory is applied to the closely analogous problem of sideband formation in the case of triggering of VLF emissions by magnetospheric whistler pulses, and seems to account for much of the observed behaviour.  相似文献   

8.
The rapid variation of density with depth in a stellar core can distort acoustic wave propagation in stellar interiors, producing a reflected wave. The reflectivity can come from a rapid density change at the boundary of a convective core, or from the steep gradients established in a radiative core during chemical evolution. We analyse this wave reflection within the framework of wave scattering theory, and address the question of the detectability of the reflected wave in the autocorrelation function of stellar p-mode measurements.  相似文献   

9.
The expression for nonlinear shift of a wave number of a whistler wave propagating through the ionosphere has been derived and the results have been discussed. It is seen that nonlinear shift of a wave number of a whistler is significant in some physical situations. From numerical estimations it is observed that wave number shifts of a whistler for both the LCP and RCP waves become significant when the frequency of the waves are nearly equal to the ion-cyclotron frequency.  相似文献   

10.
The mutual influence between two whistler mode waves, through cyclotron resonant interaction of each wave with the same set of energetic electrons, is analysed both theoretically and by computer simulations ; this two-wave interaction mechanism seems to be an important process in understanding recently observed phenomena in Siple Station VLF multi-wave injection experiments. A criterion is established to estimate the threshold for the critical frequency spacing (for given wave amplitudes) for a significant mutual interaction between two monochromatic waves to occur. This criterion is based on the overlap of coherence bandwidths associated with the trapping domains of each wave and it takes into account the geomagnetospheric medium inhomogeneity. The effects of a perturbing second wave on electrons trapped by a first wave is discussed, considering the general situation of varying-frequency waves, and a simulation model is used to track the motion of test-electrons in the two-waves field. Conditions leading to detrapping and subsequent trapping by the second wave of previously first-wave trapped electrons are analysed and suggest the possibility of this phenomenon to play an important role in frequency entrainment and energy exchange between two waves.  相似文献   

11.
Surface magnetohydrodynamic wave propagation on a magnetic interface in a cold plasma is studied. The anisotropic ion viscosity is taken into account. Only long waves damping weakly in a wave period are considered. The dispersion equation is obtained. This equation is shown always to have exactly one root if there is no viscosity. The dependences of phase velocity, penetration depth and damping decrement of waves on the parameters of undisturbed plasma and wave propagation direction are investigated. The resulting application for describing of surface wave damping in the solar corona is discussed.  相似文献   

12.
Grib  S. A.  Koutchmy  S.  Sazonova  V. N. 《Solar physics》1996,169(1):151-166
We consider the magnetohydrodynamic (MHD) interactions of solar coronal fast shock waves of flare and/or nonflare origin with the boundaries of coronal streamers and coronal holes. Boundaries are treated as MHD tangential discontinuities (TD). Different parameters of the observed corona are used in the investigation. The general case of the oblique interaction is studied.It is shown that a solar fast shock wave must be refracted usually as a fast shock wave inside the coronal streamer. For the special case of the velocity shear across TD, a slow shock wave is generated. On the contrary, the shock wave refracted inside the coronal hole is indeed a slow shock wave.The significance of different effects due to the interaction of fast and slow shock waves on the coronal magnetic field is noticed, especially at the time of a coronal mass ejection (CME). It is also shown, that an oblique fast MHD coronal shock wave may trigger an instability at the boundary of a streamer considered as a TD. It might have a relation with the observed process of abrupt disappearance of the streamer's boundary in the solar corona.On leave from the Academy of Sciences, Central Astronomical Observatory Pulkovo, 196140, St. Petersburg, Russia.  相似文献   

13.
A method is presented for the numerical study of the temporal evolution of nonlinear periodic waves in solar coronal loops which are approximated by smoothed slabs of enhanced gas density embedded within a uniform magnetic field. This method uses a fast Fourier transform technique to calculate spatial derivatives and a modified Euler algorithm for the time scheme for solving cold magnetohydrodynamic equations that govern nonlinear perturbations. The numerical results show that nonlinearity can play a significant role, leading to wave breaking of the kink wave and slab demolition for the sausage one. The kink periodic wave adjusts better to the smoothed slab than the sausage wave.  相似文献   

14.
Wills-Davey  M.J.  Thompson  B.J. 《Solar physics》1999,190(1-2):467-483
TRACE observations from 13 June 1998 in 171 and 195 Å wavelengths show a propagating disturbance, initiated near the origin of a C-class flare. The wave moves through and disrupts diffuse, overarching coronal loops. Only these overlying structures are affected by the wave; lower-lying coronal structures are unperturbed. The front does not appear in contemporaneous Lyman-α observations. The disturbance creates two types of displacement: (1) that of the wave front itself, and (2) those of large anchored magnetic structures, which `bob' due to the wave and show transverse velocities an order of magnitude smaller than those of the front. Comparisons between the 171 and 195 Å data show that the front appears differently at different temperatures. Observations in 171 Å (approx. 0.95 MK) show strong displacement of individual magnetic structures, while 195 Å (approx. 1.4 MK) data reveals a strong wave front and associated dimming but resolve much less structural motion. There is also strong evidence of heating in the material engulfed by the wave front, and comparisons of the 171 and 195 Å data allow us to constrain the temperature of the plasma through which the wave is propagating to 1–1.4 MK. Examination of the trajectories and velocities of points along the front suggests that the disturbance is Alfvénic in nature but contains a compressive component. This is best explained by a fast-mode magnetoacoustic wave. A comparison of the motion of anchored structures to that of the wave front gives a constraint on pulse width. Comparisons with contemporaneous SOHO-EIT full-disk 195 Å data show evidence that the disturbance is contained within a set of transequatorial field lines, such that it propagates from a southern active region to a northern one with no extensive motion to the east or west. The associated transequatorial loops display residual motion for about a hour after they are initially disturbed. These results, coupled with the deflection of wave trajectories, lead us to speculate on field strength differences between the transequatorial loops and the region in the TRACE field of view.  相似文献   

15.
The governing dynamical equations of the right-handed circularly polarized dispersive Alfvén wave (DAW), which becomes dispersive owing to the finite frequency of the wave, and the slow Alfvén wave have been obtained using a two-fluid model. The wave localization at different instants of time and its power spectrum have been investigated. The ponderomotive force associated with the pump wave results in intense localized structures. The steepening of spectra is observed from the inertial range to the dispersive range. The results imply that the DAW may play a significant role in solar-wind turbulence. In addition, the formation of DAW localized structures is further examined considering two primary approaches, parametric instability (filamentation) and the reconnection-based model, to study the impact on the turbulent spectrum in more detail.  相似文献   

16.
The paper examines the evolutionary behaviour of acceleration waves in a perfectly conducting inviscid radiating gas permeated by a transverse magnetic field. Solution of the problem in the characteristic plane has been determined. It is shown that a linear solution in the characteristic plane exhibits nonlinear behaviour in the physical plane. Transport equation governing the behaviour of acceleration waves has been derived. The effect of radiative heat transfer under the influence of magnetic field on the formation of shock wave with generalized geometry is analyzed. The critical amplitude of the initial disturbance has been obtained such that the initial amplitude of any compressive wave greater than the critical one always terminates into shock wave. Critical time, when the compressive wave will grow into a shock wave, has been determined. Also, it is assessed as to how the radiative heat transfer in the presence of magnetic field affects the shock formation.  相似文献   

17.
The propagation of sonic discontinuity in conducting and radiating atmosphere has been discussed under the influence of magnetic field. The velocity of sonic wave and its termination into shock wave has been obtained. We have also obtained the critical time at which sonic wave terminates into shock wave. There is significant effect of magnetic field on sonic velocity and its termination into shock wave.  相似文献   

18.
We study the parametric decays of an electromagnetic wave propagating along an external magnetic field in an electron-positron plasma. We include weakly relativistic effects on the particle motions in the wave field, and the nonlinear ponderomotive force. We find resonant and nonresonant wave couplings. These include, ordinary decay instabilities, in which the pump wave decays into an electro-acoustic mode and a sideband wave. There are also nonresonant couplings involving two sideband waves, and a nonresonant modulational instability in which the pump wave decays into two sideband modes. Depending on the parameters involved, there is a resonant modulational instability involving a forward propagating electro-acoustic mode and a sideband daughter wave.  相似文献   

19.
The interaction of a spiral wave with stars near the inner Lindblad resonance in a galactic disk has been investigated. The dispersion relation describing the behavior of the complex wave number of the spiral wave as a function of the distance to the resonance has been derived within the framework of a purely linear problem and in the leading orders of the epicyclic and WKB approximations. We also have improved the result of Mark (1971) concerning behavior of the amplitude of leading spiral wave near the resonance circle. We have studied the consequences following from the hypothesis that weak nonlinearity in a narrow resonance region changes the standard rule of bypassing the pole in the complex plane, known as the Landau–Lin bypass rule, to taking the corresponding principal value integral. By analogy with hydrodynamics, where such a problem arises when analyzing the resonant interaction of waves with shear flows, we expect that a small, but finite amplitude can lead to a modification of the bypass rule and, as a consequence, to the elimination of the effect of spiral wave absorption at the resonance and its reflection. We have shown that under some assumptions the presumed picture actually takes place, but the detailed situation looks quite unexpected: near the resonance the regions where stars cause wave attenuation alternate with the regions where the wave is amplified. At the same time, there is no wave absorption effect when integrated over the resonance region.  相似文献   

20.
We study the fundamental modes of radiation hydrodynamic linear waves that arise from one-dimensional small-amplitude initial fluctuations with wave number k in a radiating and scattering grey medium by taking into account the gravitational effects. The equation of radiative acoustics is derived from three hydrodynamic equations, Poisson’s equation, and two moment equations of radiation, by assuming a spherical symmetry for the matter and radiation and by using the Eddington approximation. We solve the dispersion relation as a quintic function of angular frequency ω, the wave number k being a real parameter. Numerical results reveal that wave patterns of five solutions are distinguished into three types: the radiation-dominated, type 1, and type 2 matter-dominated cases. In the case of no gravitaional effects (Kaneko et al., 2005), the following wave modes appear: radiation wave, conservative radiation wave, entropy wave, Newtonian-cooling wave, opacity-damped and cooling-damped waves, constant-volume and constant-pressure diffusions, adiabatic sound wave, cooling-damped and drag-force-damped isothermal sound waves, isentropic radiation-acoustic wave, and gap mode. Meanwhile, the gravitaional effects being taken into account, the growing gravo-diffusion mode newly arises from the constant-pressure diffusion at the point that k agrees with Jeans’ wave number specified by the isothermal sound speed. This mode changes to the growing radiation-acoustic gravity mode near the point that k becomes Jeans’ wave number specified by the isentropic radiation-acoustic speed. In step with a transition between them, the isentropic radiation-acoustic wave splits into the damping radiation-acoustic gravity mode and constant-volume diffusion. The constant-volume diffusion emerges twice if the gravitational effects are taken into account. Since analytic solutions are derived for all wave modes, we discuss their physical significance. The critical conditions are given which distinguish between radiation-dominated and type 1 matter-dominated cases, and between type 1 and type 2 matter-dominated cases. Waves in a self-gravitating scattering grey medium are also analyzed, which provides us some hints for the effects of energy and momentum exchange between matter and radiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号