首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Autumnal input of leaf litter is a pivotal energy source in most headwater streams. In temporary streams, however, water stress may lead to a seasonal shift in leaf abscission. Leaves accumulate at the surface of the dry streambed or in residual pools and are subject to physicochemical preconditioning before decomposition starts after flow recovery. In this study, we experimentally tested the effect of photodegradation on sunlit streambeds and anaerobic fermentation in anoxic pools on leaf decomposition during the subsequent flowing phase. To mimic field preconditioning, we exposed Populus tremula leaves to UV–VIS irradiation and wet-anoxic conditions in the laboratory. Subsequently, we quantified leaf mass loss of preconditioned leaves and the associated decomposer community in five low-order temporary streams using coarse and fine mesh litter bags. On average, mass loss after approximately 45 days was 4 and 7% lower when leaves were preconditioned by irradiation and anoxic conditions, respectively. We found a lower chemical quality and lower ergosterol content (a proxy for living fungal biomass) in leaves from the anoxic preconditioning, but no effects on macroinvertebrate assemblages were detected for any preconditioning treatment. Overall, results from this study suggest a reduced processing efficiency of organic matter in temporary streams due to preconditioning during intermittence of flow leading to reduced substrate quality and repressed decomposer activity. These preconditioning effects may become more relevant in the future given the expected worldwide increase in the geographical extent of intermittent flow as a consequence of global change.  相似文献   

2.
3.
There have been few long term investigations of the effects of afforestation on stream temperatures in the UK, and the present study uses the results of continuous monitoring of water temperatures in a forest and a moorland stream of the Loch Grannoch area in southwest Scotland over a 4 year period to investigate the effects of planting coniferous forest on stream thermal regime. The presence of a coniferous tree canopy resulted in a lowering of mean water temperatures by ~0·5 °C but larger reductions in summer monthly mean maxima and diel ranges of up to 5 °C and 4 °C respectively. The diel cycle in the forested stream lagged behind that of the moorland site in all months of the year, but the delay in timing was greater for the peak than for the trough in the diel cycle. Mean water temperatures were higher in the forest stream during the mid‐winter months, reflecting higher minimum values. Contrasts in stream thermal regime between forest and moorland showed relatively little interannual variability over the study period. Continuous monitoring of air temperatures during 2002 revealed contrasts between the study sites that were less pronounced for air than for water temperature, and suggested it is the shading of incoming solar radiation that has a strong effect in determining the water temperature behaviour of the forested stream. Although the biological impact of the observed contrasts in stream temperature between land uses is likely to be relatively modest, the presence of forest cover moderates the occurrence of high summer temperatures inimical to the survival of some salmonid species. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

4.
Strategies for offsetting seasonal impacts of pumping on a nearby stream   总被引:4,自引:0,他引:4  
Ground water pumping from aquifer systems that are hydraulically connected to streams depletes streamflow. The amplitude and timing of stream depletion depend on the stream depletion factor (SDF(i)) of the pumping wells, which is a function of aquifer hydraulic characteristics and the distance from the wells to the stream. Wells located at different locations, but having the same SDF and the same rate and schedule of pumping, will deplete streamflow equally. Wells with small SDF(i) deplete streamflow approximately synchronously with pumping. Wells with large SDF(i) deplete streamflow at approximately a constant rate throughout the year, regardless of the pumping schedule. For large values of SDF(i), artificial recharge that occurs on a different schedule from pumping can offset streamflow depletion effectively. The requirements are (1) that the pumping and recharge wells both have the same SDF(i) and (2) that the annual total quantities of recharge and pumping be equal. At larger SDF(i) values, it takes longer for pumping to impact streamflow in a wide aquifer than it does in a narrow aquifer. In basins that are closed to further withdrawals because streamflow is fully allocated, water-use changes replace new allocations as the source of water for new developments. Ground water recharge can be managed to offset the impacts of new ground water developments, allowing for changes in the timing and source of withdrawals from a basin without injuring existing users or instream flows.  相似文献   

5.
6.
Nutrient enrichment and changes in riparian tree species composition affect many streams worldwide but their combined effects on decomposers and litter decomposition have been rarely assessed. In this study we assessed the effects of experimental nitrogen (N) enrichment of a small forest stream on the decomposition of three leaf litter species differing in initial chemical composition [alder (Alnus glutinosa), chestnut (Castanea sativa) and poplar (Populus nigra)], incubated individually and in 2-species mixtures during late spring-early summer. To better understand the effects of litter mixing on litter decomposition, component litter species were processed individually for remaining mass and fungal reproductive activity. Litter decomposition rates were high. Nitrogen enrichment significantly stimulated litter decomposition only for alder incubated individually. Differences among litter treatments were found only at the N enriched site where the nutrient rich alder litter decomposed faster than all other litter treatments; only at this site was there a significant relationship between litter decomposition and initial litter N concentration. Decomposition rates of all litter mixtures were lower than those expected from the decomposition rates of the component litter species incubated individually, at the N enriched and reference sites, suggesting antagonistic effects of litter mixing. Conidial production by aquatic hyphomycetes for each sampling date was not affected by nutrient enrichment, litter species or mixing. Aquatic hyphomycetes species richness for each sampling date was higher at the N enriched site than at the reference site and higher for alder litter than for chestnut and poplar, but no effect of mixing was found. Aquatic hyphomycetes communities were structured by litter identity and to a lesser extent by N enrichment, with no effect of mixing. This study suggests that nutrient enrichment and litter quality may not have such strong effects on decomposers and litter decomposition in warmer seasons contrary to what has been reported for autumn-winter. Changes in the composition of the riparian vegetation may have unpredictable effects on litter decomposition independently of streams trophic state.  相似文献   

7.
Irradiation of dissolved organic carbon (DOC) of terrestrial origin that is freshly released to surface waters can produce particulate organic carbon (POC). Laboratory experiments with stream water were conducted to determine POC and particulate metals formation during exposure to artificial solar radiation comparable to surface intensity. The results showed that decreases in DOC concentration were accompanied initially by increasing and later by decreasing POC concentrations. Data were fit to first order kinetics models to compare rates of POC formation and loss with DOC and absorbance loss, and to better understand how metals might be involved in photochemical POC formation. This abiotic mechanism may be important for the transfer of allochthonous DOC and metals to sediments in temperate aquatic systems.  相似文献   

8.
Twenty conservative tracer injections were carried out in the same reach of a small woodland stream in order to determine how variation in discharge and leaf accumulation affect stream hydraulic parameters. The injections were made at various discharge rates ranging from 2·6 to 40 l/s. Five of the injections were made during late autumn, when there were large accumulations of leaves in the stream. Estimates of hydraulic parameters were made by fitting a transient storage solute transport model to conservative tracer concentration profiles. Velocity increased almost linearly with increasing discharge, indicating a decline in the Darcy friction factor. Dispersion also increased with increasing discharge, especially for the lower flow injections. The relative size of the storage zone was small (∽0·1). There was no definable relationship between discharge and the relative storage zone size, but the rates of exchange between the storage zone and the main channel increased markedly with increasing discharge. The presence of large accumulations of leaves had a clear effect on the hydraulic characteristics of the stream, producing much higher friction factors, larger storage zone sizes and lower velocity than would have been predicted by discharge alone. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

9.
Processes occurring at various scales interact to influence the export of organic carbon from watersheds to freshwater ecosystems and eventually the ocean. The goal of this study was to determine if and how differences in wetland extent and presence of lakes influenced dissolved organic carbon (DOC) concentrations and yields in streams. We monitored stream flow, DOC and dissolved inorganic carbon concentrations periodically for 2 years at four sites with forested watersheds, four sites with wetland watersheds, and four sites with wetland watersheds that also contained in-network lakes. As expected, the presence of wetlands resulted in higher DOC concentrations and yields, but the impact of lakes was less clear on the magnitude of DOC concentrations and yields. With respect to temporal dynamics, we found positive relationships between stream flow and DOC concentration (median r2 = 0.89) in streams without upstream lakes. The relationships for forested sites are among the strongest reported in the literature, and suggest a clear shift in hydrologic flowpath from intersecting mineral soils at low flow, to organic soils at high flow. In streams with upstream lakes, the relationship between flow and concentration was non-significant for three of four sites unless time lags with flow were applied to the concentration data, after which the relationship was similar to the non-lake streams (median r2 = 0.95). These findings suggest that lakes buffering temporal patterns in streams by hydrologically delaying pulses of carbon, but provide little support that in-line lakes have a net effect on carbon exports in this region.  相似文献   

10.
Urbanization negatively impacts water quality in streams by reducing stream-groundwater interactions, which can reduce a stream's capacity to naturally attenuate nitrate. Meadowbrook Creek, a first order urban stream in Syracuse, New York, has an inverse urbanization gradient, with heavily urbanized headwaters that are disconnected from the floodplain and downstream reaches that have intact riparian floodplains and connection to riparian aquifers. This system allows assessment of how stream-groundwater interactions in urban streams impact the net sources and sinks of nitrate at the reach scale. We used continuous (15-min) streamflow measurements and weekly grab samples at three gauging stations positioned longitudinally along the creek to develop continuous nitrate load estimates at the inlet and outlet of two contrasting reaches. Nitrate load estimates were determined using a USGS linear regression model, RLOADEST, and differences between loads at the inlet and outlet of contrasting reaches were used to quantify nitrate sink and source behaviour year-round. We observed a nitrate load of 1.4 × 104 kg NO3 per water year, on average, at the outlet of the urbanized reach while the nitrate load at the outlet of the downstream, connected reach was 1.0 × 104 kg NO3 per water year, on average. We found the more heavily urbanized, hydrologically-disconnected reach was a net source of nitrate regardless of season. In contrast, stream-groundwater exchange caused the hydrologically connected reach to be both a source and sink for nitrate, depending on time of year. Both reaches alter nitrate source and sink behaviour at various spatiotemporal scales. Groundwater connection in the downstream, connected reach reduces annual nitrate loads and provides more opportunities for sources and sinks of nitrate year-round than the hydrologically disconnected stream reach. Mechanisms include groundwater discharge into the stream with variable nitrate concentrations, surface-water groundwater interactions that foster denitrification, and stream load loss to surrounding near-stream aquifers. This study emphasizes how loads are important in understanding how stream-groundwater interactions impact reach scale nitrate export in urban streams.  相似文献   

11.
Urban streams in the Northeastern United States have large road salt inputs during the winter, increased nonpoint sources of inorganic nitrogen and decreased short‐term and permanent storage of nutrients. Restoration activities that re‐establish connection between streams and riparian environments may be effective for improving urban stream water quality. Meadowbrook Creek, a first‐order stream in Syracuse, NY, provides a unique setting to explore impacts of stream–floodplain connection because it flows along a negative urbanization gradient, from channelized and armoured headwaters to a broad, vegetated floodplain with a riparian aquifer. In this study, we investigated how reconnection to groundwater and introduction of riparian vegetation impacted urban surface water chemistry by making biweekly longitudinal surveys of stream water chemistry in the creek from May 2012 until June 2013. We used multiple methods to measure groundwater discharge rates along the creek. Chloride concentrations in the upstream, disconnected reach were influenced by discharge of road salt during snow melt events and ranged from 161.2 to 1440 mg/l. Chloride concentrations in the downstream, connected reach had less temporal variation, ranging from 252.0 to 1049 mg/l, because of buffering by groundwater discharge, as groundwater chloride concentrations ranged from 84.0 to 655.4 mg/l. In the summer, there was little to no nitrate in the disconnected reach because of limited sources and high primary productivity, but concentrations reached over 1 mg N/l in the connected reach because of the presence of riparian vegetation. During the winter, when temperatures fell below freezing, nitrate concentrations in the disconnected reach increased to 0.58 mg N/l but were still lower than the connected reach, which averaged 0.88 mg N/l. Urban stream restoration projects that restore floodplain connection may impact water quality by storing high salinity road run‐off during winter overbank events and discharging that water year‐round, thereby attenuating seasonal fluctuations in chloride. Contrary to prior findings, we observed that floodplain connection and riparian vegetation may alter nitrate sources and sinks such that nitrate concentrations increase longitudinally in connected urban streams. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
土壤动物对鄱阳湖湿地冬季凋落物分解过程的影响   总被引:1,自引:0,他引:1  
为了研究湿地土壤动物对凋落物分解速率以及对土壤养分归还的影响,于2017年11月份在鄱阳湖湿地收集苔草(Carex cinerascens)、南荻(Triarrhena lutarioriparia)和芦苇(Phragmites australis) 3种植物的凋落物,利用凋落物袋法开展原位的模拟实验研究中使用了网孔大小分别为4.5 mm(大)和0.1 mm(小)的分解袋来对比分析土壤动物的影响结果表明:不同物种之间凋落物分解速率有差异,苔草的分解速率显著大于南荻和芦苇,南荻与芦苇的分解速率差异不明显;凋落物的分解速率与凋落物总有机碳和总氮的积累量(NAITOC/NAITN)呈负相关,与残余凋落物质量呈负相关,与凋落物总磷含量呈正相关;凋落物总氮含量在不同物种凋落物中差异明显,表现为苔草>芦苇>南荻,并且与分解速率的大小关系相对应,因此高氮植物凋落物的分解速率较快;土壤动物能够提高分解速率,促进凋落物营养元素的释放,进而调节凋落物中C、N、P元素向土壤养分库的归还过程本研究将为湿地生态系统的营养元素循环研究提供科学数据.  相似文献   

13.
Recent climate change represents one of the most serious anthropogenic threats to lake ecosystems in Canada. As meteorological and hydrological conditions are altered by climate change, so too are physical, chemical and biological properties of lakes. The ability to quantify the impact of climate change on the physical properties of lakes represents an integral step in estimating future chemical and biological change. To that end, we have used the dynamic reservoir simulation model, a one‐dimensional vertical heat transfer and mixing model, to hindcast and compare lake temperature‐depth profiles against 30 years of long‐term monitoring data in Harp Lake, Ontario. These temperature profiles were used to calculate annual (June–September) thermal stability values from 1979 to 2009. Comparisons between measured and modelled lake water temperature and thermal stability over three decades showed strong correlation (r2 > 0.9). However, despite significant increases in modelled thermal stability over the 30 year record, we found no significant change in the timing of the onset, breakdown or the duration of thermal stratification. Our data suggest that increased air temperature and decreased wind are the primary drivers of enhanced stability in Harp Lake since 1979. The high‐predictive ability of the Harp Lake dynamic reservoir simulation model suggests that its use as a tool in future lake management projects is appropriate. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

14.
15.
16.
There is major uncertainty in the responses of litter decomposition to the inundation regimes in field studies, mainly because of the difficulties in identification of the individual effect of duration and frequency using field studies alone. The interactive role of inundation regime and litter quality also remains unclear. The responses of mass loss to simulated inundation regime (duration and frequency) and litter quality were investigated in leaves of Carex brevicuspis and leaves and stems of Miscanthus sacchariflorus from Dongting Lake, China. Three litter types differing in litter quality were incubated under seven different inundations over 360 days (three single inundations of 90, 180, and 360 days; three repeated 180-day inundations of 2, 3, and 6 times; and no inundations) in a pond near Dongting Lake. Initial N and P contents were highest in C. brevicuspis leaves, intermediate in M. sacchariflorus leaves, and lowest in M. sacchariflorus stems, whereas the organic C, cellulose, and lignin contents were ranked in the opposite order among the three litter types. Decomposition rate was highest in M. sacchariflorus leaves (0.00222–0.00900 day−1), intermediate in C. brevicuspis leaves (0.00135–0.00500 day−1), and lowest in M. sacchariflorus stems (0.00080–0.00100 day−1). The decomposition rate of both C. brevicuspis and M. sacchariflorus leaves increased with increasing inundation duration or decreasing frequency. However, both duration and frequency of inundation had no effect on decomposition of M. sacchariflorus stems. At the end of the incubation, N mineralization was complete in leaf litters with increasing rates with increasing inundation duration or decreasing inundation frequency, but accumulation was found in M. sacchariflorus stems. Organic C decayed quickly in both leaf litters compared with the stem litter. These data indicate that inundation regime has no effect on the decomposition of refractory stem litter while prolonged and stable inundation stimulates the degradation of labile leaf litter.  相似文献   

17.
The influence of streambed sediment clogging on macroinvertebrate communities was investigated in the Lemme creek (NW Italy). To assess how fine sediment accumulation can influence the colonisation process and community composition of macroinvertebrates, we placed 48 traps in the riverbed. The traps consisted of boxes built with metal net (mesh 1 cm, height 15 cm, sides 5 cm) covered with nylon net except for the apex, allowing access exclusively from the top. We created four trap types filled with 100% gravel, 30% sand and 70% gravel, 70% sand and 30% gravel and 100% sand. After 20 and 40 days, we removed 6 traps/type. Macroinvertebrates rapidly colonised the traps, as we found no significant community differences between the two removal dates. Among the four trap types, we found significant differences in taxa number and abundance, which both decreased with increasing clogging. Thus, our study supports the hypothesis that clogging and the accumulation of fine substratum elements strongly affects benthic stream communities.  相似文献   

18.
Seagrass leaf litters are an important source of sediment organic carbon (SOC). However, the mechanisms of seagrass leaf litter decomposition influencing SOC composition and the key transformation processes remain unknown. We performed a laboratory chamber experiment to compare the labile organic carbon (OC) composition and the enzyme activities governing SOC transformation between the seagrass group (seagrass leaf litter addition) and the control group. The results showed that the seagrass leaf litter decomposition significantly elevated the salt-extractable carbon (SEC) content and the SEC/SOC. Additionally, the levels of invertase, polyphenol oxidase, and cellulase in the seagrass leaf litters addition group were generally higher than in the control group, which could elevate recalcitrant OC decomposition. Following 24 days incubation, addition of seagrass leaf litter increased the amount of CO2 released, but decreased the SOC content. Therefore, seagrass leaf litter decomposition leached abundant dissolved OC, which enhanced the activity and transformation of SOC.  相似文献   

19.
以鄱阳湖典型碟形湖泊——白沙湖为监测对象,开展水体有机碳(TOC)、总氮(TN)、铵态氮(NH_4~+-N)和硝态氮(NO_3~--N)浓度的年内动态变化的定位观测,结合在白沙湖开展的灰化薹草(Carex cinerascens)分解模拟实验和稳定同位素示踪技术,对薹草分解过程和水体营养盐浓度变化进行时间匹配,分析水体中颗粒态有机物(POM)的来源,并探讨水位变化和薹草分解对水体营养盐浓度的交互作用.结果表明,水体TOC、TN和NH_4~+-N浓度在枯水季1—4月明显高于其他月份;薹草在0~60 d具有最高的分解速率,鄱阳湖碟形湖泊洲滩湿地薹草分解起始时间为当年12月前后;水体POM与薹草活体和分解残体的δ~(13)C差异不显著,而与苦草和藻类具有显著性差异,说明薹草分解残体是水体中POM的主要来源;薹草分解过程明显影响湖泊水体TN、NH_4~+-N和TOC浓度变化;水位变化对湖泊水体NO_3~--N浓度变化效应最明显.  相似文献   

20.
Experimental removal of woody debris from a small, gravel-bed stream in a forested area resulted in a four-fold increase in bedload transport at bankfull discharge. This was caused by increased transportability of sediment previously stored upslope of debris buttresses or in low-energy hydraulic environments related to debris. Bank erosion delivered additional sediment to the channel, and transport energy was increased by an inferred increase in the component of total boundary shear stress affecting grains on the bed. Increased transport following debris removal in May 1987 continued throughout the entire autumn storm season through late November 1987, indicating persistent adjustment of the stream bed and banks despite marked response to earlier flows as large as bankfull. Stream bed adjustments included development of a semi-regular sequence of alternate bars and pools, many of which were spaced independently of former pool locations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号